1
|
Sasaki M, Mitchell A, Booth DJ, Nagelkerken I. Novel ecological interactions alter physiological responses of range-extending tropical and local temperate fishes under ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169413. [PMID: 38114039 DOI: 10.1016/j.scitotenv.2023.169413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Global warming facilitates species range-expansions, leading to novel biological interactions between local and range-expanding species. Little is still known of how such novel interactions modify the performance of interacting species or how these interactions might be altered under climate change. Here, we used an aquarium experiment to investigate the novel ecological interactions between a poleward range-extending coral reef damselfish ("tropical-vagrant") and a local temperate species ("temperate-local") collected from a climate warming hotspot in SE Australia. We measured the effect of novel interactions (isolated vs. paired fish species) on energy expenditure (activity levels, oxidative stress, and antioxidant responses), energy gain (feeding rates), and growth rates of both fish species under present-day (23 °C) and future ocean temperatures (26 °C). Short-term growth rates were faster in both species under novel interactions (paired species), regardless of elevated temperature. Compared to isolated species, activity level, feeding rate and oxidative stress level were also higher in the paired temperate fish but not in the paired tropical fish. The tropical fish showed an increased feeding rate and long-term growth under elevated temperature, irrespective of novel interactions. We conclude that novel ecological interactions under climate change can be an important driver of physiological traits in sympatric tropical and temperate fishes and can mediate critical physiological performance of fishes under ocean warming.
Collapse
Affiliation(s)
- Minami Sasaki
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Angus Mitchell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - David J Booth
- Fish Ecology Lab, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
2
|
Morris MT, Hauton C, Baylay AJ, Peruzza L, Targett TE, Ciotti BJ. Spatial variation in the gastrointestinal microbiome, diet, and nutritional condition of a juvenile flatfish among coastal habitats. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105413. [PMID: 34284178 DOI: 10.1016/j.marenvres.2021.105413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Gut microbiota are important for the health, fitness and development of animal hosts, but little is known about these assemblages in wild populations of fish. Such knowledge is particularly important for juvenile life stages where nutritional intake critically determines early development, growth, and ultimately recruitment. We characterise the microbiome inhabiting the gut of young-of-the-year European plaice ('YOY plaice') on sandy beaches, their key juvenile habitat, and examine how these microbial communities vary spatially in relation to diet and nutritional condition of their plaice hosts. Body size, diet (stomach fullness and eukaryotic 18S ribosomal sequencing), nutritional condition (RNA:DNA) and gut microbiota (16S prokaryotic ribosomal sequencing) were compared in fish at two spatial scales: between beaches separated by 10s of kilometres and between sites at different depths on the same beach, separated by 10s of metres. The main microbial phyla in YOY plaice guts were Proteobacteria, Spirochaetes, Tenericutes and Verrucomicrobiae. Within the Proteobacteria there was an unusual dominance of Alphaproteobacteria. Differences in body size, diet and nutritional condition of YOY plaice between beaches were accompanied by differences in gut microbial assemblage structure. Notably, substantially reduced nutritional condition and size at one of the beaches was associated with lower stomach fullness, reduced consumption of annelids and differences in the abundance and presence of specific microbial taxa. Differences were also detected in microbial assemblages, body size, and diet between depths within the same nursery beach, although stomach fullness and nutritional condition did not vary significantly. The functional links between the environment, gut microbiota, and their hosts are potentially important mediators of the development of young fish through critical life stages. Our study indicates that these links need to be addressed at 10 km and even 10 m scales to capture the variability observed in wild populations of juvenile fish.
Collapse
Affiliation(s)
- Marc T Morris
- Ocean and Earth Science, University of Southampton, Waterfront Campus, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK; Present address: Australian Centre for Ecogenomics, University of Queensland, Brisbane, St Lucia, 4072, Australia
| | - Chris Hauton
- Ocean and Earth Science, University of Southampton, Waterfront Campus, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Alison J Baylay
- Ocean and Earth Science, University of Southampton, Waterfront Campus, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Timothy E Targett
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - Benjamin J Ciotti
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
3
|
Chételat J, Shao Y, Richardson MC, MacMillan GA, Amyot M, Drevnick PE, Gill H, Köck G, Muir DCG. Diet influences on growth and mercury concentrations of two salmonid species from lakes in the eastern Canadian Arctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115820. [PMID: 33120140 DOI: 10.1016/j.envpol.2020.115820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/27/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Diet, age, and growth rate influences on fish mercury concentrations were investigated for Arctic char (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) in lakes of the eastern Canadian Arctic. We hypothesized that faster-growing fish have lower mercury concentrations because of growth dilution, a process whereby more efficient growth dilutes a fish's mercury burden. Using datasets of 57 brook trout and 133 Arctic char, linear regression modelling showed fish age and diet indices were the dominant explanatory variables of muscle mercury concentrations for both species. Faster-growing fish (based on length-at-age) fed at a higher trophic position, and as a result, their mercury concentrations were not lower than slower-growing fish. Muscle RNA/DNA ratios were used as a physiological indicator of short-term growth rate (days to weeks). Slower growth of Arctic char, inferred from RNA/DNA ratios, was found in winter versus summer and in polar desert versus tundra lakes, but RNA/DNA ratio was (at best) a weak predictor of fish mercury concentration. Net effects of diet and age on mercury concentration were greater than any potential offset by biomass dilution in faster-growing fish. In these resource-poor Arctic lakes, faster growth was associated with feeding at a higher trophic position, likely due to greater caloric (and mercury) intake, rather than growth efficiency.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, K1A 0H3, Canada.
| | - Yueting Shao
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, K1A 0H3, Canada
| | - Murray C Richardson
- Geography and Environmental Studies, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Gwyneth A MacMillan
- Centre D'études Nordiques (CEN), Département de Sciences Biologiques, Université de Montréal, Montréal, QC, H2V 2S9, Canada
| | - Marc Amyot
- Centre D'études Nordiques (CEN), Département de Sciences Biologiques, Université de Montréal, Montréal, QC, H2V 2S9, Canada
| | - Paul E Drevnick
- Alberta Environment and Parks, Government of Alberta, Calgary, AB, T2E 7J2, Canada
| | - Hardeep Gill
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, K1A 0H3, Canada
| | - Günter Köck
- Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, A-6020 Innsbruck, Austria
| | - Derek C G Muir
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON, L7S 1A1, Canada
| |
Collapse
|
4
|
Di Pane J, Joly L, Koubbi P, Giraldo C, Monchy S, Tavernier E, Marchal P, Loots C. Ontogenetic shift in the energy allocation strategy and physiological condition of larval plaice (Pleuronectes platessa). PLoS One 2019; 14:e0222261. [PMID: 31525738 PMCID: PMC6746568 DOI: 10.1371/journal.pone.0222261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/25/2019] [Indexed: 11/29/2022] Open
Abstract
Condition indices aim to evaluate the physiological status of fish larvae by estimating both the level of starvation and potential of survival. Histological indices reveal direct effects of starvation whereas biochemical indices such as lipid classes or RNA:DNA ratios are used as proxies of condition, giving information on the amount of energy reserves and growth rate, respectively. We combined these three indices to evaluate ontogenetic variations of growth performance, lipid dynamics and nutritional condition of plaice larvae caught in the field during winter 2017 in the eastern English Channel and the Southern Bight of the North Sea. RNA:DNA ratios showed that larvae at the beginning of metamorphosis (stage 4) had a lower growth rate than younger individuals (stages 2 and 3). A significant increase in the proportion of triglycerides also occurred at stage 4, indicating energy storage. Histological indices indicated that most of the larvae were in good condition, even younger ones with low lipid reserves. There was, however, an increase in the proportion of healthy individuals over ontogeny, especially with respect to liver vacuoles which were larger and more numerous for stage 4 larvae. Combined together, these condition indices revealed the ontogenetic shift in the energy allocation strategy of plaice larvae. Young larvae (stages 2 and 3) primarily allocate energy towards somatic growth. The decrease in growth performance for stage 4 was not related to poor condition, but linked to a higher proportion of energy stored as lipids. Since the quantity of lipid reserves is particularly important for plaice larvae to withstand starvation during metamorphosis, this could be considered as a second critical period after the one of exogenous feeding for larval survival and recruitment success.
Collapse
Affiliation(s)
- Julien Di Pane
- IFREMER, Channel and North Sea Fisheries Research Unit, Boulogne-sur-Mer, France
| | - Léa Joly
- IFREMER, Channel and North Sea Fisheries Research Unit, Boulogne-sur-Mer, France
| | - Philippe Koubbi
- UFR 918 « Terre, Environnement, Biodiversité », Sorbonne Université, Paris, France
| | - Carolina Giraldo
- IFREMER, Channel and North Sea Fisheries Research Unit, Boulogne-sur-Mer, France
| | | | - Eric Tavernier
- LOG—Laboratoire d’Océanologie et Géosciences, Wimereux, France
| | - Paul Marchal
- IFREMER, Channel and North Sea Fisheries Research Unit, Boulogne-sur-Mer, France
| | - Christophe Loots
- IFREMER, Channel and North Sea Fisheries Research Unit, Boulogne-sur-Mer, France
- * E-mail:
| |
Collapse
|
5
|
Abstract
A microbe's growth rate helps to set its ecological success and its contribution to food web dynamics and biogeochemical processes. Growth rates at the community level are constrained by biomass and trophic interactions among bacteria, phytoplankton, and their grazers. Phytoplankton growth rates are approximately 1 d(-1), whereas most heterotrophic bacteria grow slowly, close to 0.1 d(-1); only a few taxa can grow ten times as fast. Data from 16S rRNA and other approaches are used to speculate about the growth rate and the life history strategy of SAR11, the most abundant clade of heterotrophic bacteria in the oceans. These strategies are also explored using genomic data. Although the methods and data are imperfect, the available data can be used to set limits on growth rates and thus on the timescale for changes in the composition and structure of microbial communities.
Collapse
Affiliation(s)
- David L Kirchman
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware 19958;
| |
Collapse
|
6
|
Rees BB, Targett TE, Ciotti BJ, Tolman CA, Akkina SS, Gallaty AM. Temporal dynamics in growth and white skeletal muscle composition of the mummichog Fundulus heteroclitus during chronic hypoxia and hyperoxia. JOURNAL OF FISH BIOLOGY 2012; 81:148-164. [PMID: 22747810 DOI: 10.1111/j.1095-8649.2012.03319.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Specific growth rate (G(S) ) and white skeletal muscle composition were measured in the mummichog Fundulus heteroclitus over a period of 28 days at four levels of dissolved oxygen (DO): severe hypoxia (c. 1.2 mg O(2) l(-1) ), moderate hypoxia (3.0 mg O(2) l(-1) ), normoxia (7.1 mg O(2) l(-1) ) and hyperoxia (10.6 mg O(2) l(-1) ). The G(S) was calculated over 0-8, 0-14, 0-28 and 14-28 days, and muscle protein, lactate dehydrogenase (LDH), DNA, RNA and water were measured at 0, 8, 14 and 28 days. Exposure of fish to severe hypoxia was associated with significantly reduced G(S) , lower muscle protein content and lower RNA:DNA compared with other DO treatments. When calculated over the first and second half of the 28 day exposure, however, G(S) of fish in severe hypoxia increased significantly during the second two-week interval, to the same rate as that of normoxic fish. Muscle LDH activity and water content were not significantly affected by DO level. Neither moderate hypoxia nor hyperoxia significantly affected G(S) or any biochemical variable. The results demonstrate that F. heteroclitus can tolerate wide variation in ambient oxygen concentration and, during prolonged exposure to severe hypoxia, shows significant compensation for the initial negative effects on growth. The capacity of F. heteroclitus to grow over a wide range of DO probably contributes to its ability to exploit habitats characterized by marked variation in oxygen availability.
Collapse
Affiliation(s)
- B B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | | | | | | | |
Collapse
|