1
|
Milligan RJ, Scott EM, Jones DOB, Bett BJ, Jamieson AJ, O'Brien R, Pereira Costa S, Rowe GT, Ruhl HA, Smith KL, de Susanne P, Vardaro MF, Bailey DM. Evidence for seasonal cycles in deep-sea fish abundances: A great migration in the deep SE Atlantic? J Anim Ecol 2020; 89:1593-1603. [PMID: 32198925 DOI: 10.1111/1365-2656.13215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/14/2020] [Indexed: 11/29/2022]
Abstract
Animal migrations are of global ecological significance, providing mechanisms for the transport of nutrients and energy between distant locations. In much of the deep sea (>200 m water depth), the export of nutrients from the surface ocean provides a crucial but seasonally variable energy source to seafloor ecosystems. Seasonal faunal migrations have been hypothesized to occur on the deep seafloor as a result, but have not been documented. Here, we analyse a 7.5-year record of photographic data from the Deep-ocean Environmental Long-term Observatory Systems seafloor observatories to determine whether there was evidence of seasonal (intra-annual) migratory behaviours in a deep-sea fish assemblage on the West African margin and, if so, identify potential cues for the behaviour. Our findings demonstrate a correlation between intra-annual changes in demersal fish abundance at 1,400 m depth and satellite-derived estimates of primary production off the coast of Angola. Highest fish abundances were observed in late November with a smaller peak in June, occurring approximately 4 months after corresponding peaks in primary production. Observed changes in fish abundance occurred too rapidly to be explained by recruitment or mortality, and must therefore have a behavioural driver. Given the recurrent patterns observed, and the established importance of bottom-up trophic structuring in deep-sea ecosystems, we hypothesize that a large fraction of the fish assemblage may conduct seasonal migrations in this region, and propose seasonal variability in surface ocean primary production as a plausible cause. Such trophic control could lead to changes in the abundance of fishes across the seafloor by affecting secondary production of prey species and/or carrion availability for example. In summary, we present the first evidence for seasonally recurring patterns in deep-sea demersal fish abundances over a 7-year period, and demonstrate a previously unobserved level of dynamism in the deep sea, potentially mirroring the great migrations so well characterized in terrestrial systems.
Collapse
Affiliation(s)
- Rosanna J Milligan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, USA
| | - E Marian Scott
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | | | | | - Alan J Jamieson
- School of Natural and Environmental Science, Newcastle University, Newcastle Upon Tyne, UK
| | - Robert O'Brien
- BP Exploration Operating Company Limited, Sunbury on Thames, UK
| | - Sofia Pereira Costa
- BP Angola (Block 18) BV, BP International Centre for Business & Technology, Sunbury on Thames, UK
| | | | - Henry A Ruhl
- National Oceanography Centre, Southampton, UK.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Ken L Smith
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Philippe de Susanne
- BP Angola (Block 18) BV, BP International Centre for Business & Technology, Sunbury on Thames, UK
| | | | - David M Bailey
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Linley TD, Craig J, Jamieson AJ, Priede IG. Bathyal and abyssal demersal bait-attending fauna of the Eastern Mediterranean Sea. MARINE BIOLOGY 2018; 165:159. [PMID: 30294008 PMCID: PMC6153865 DOI: 10.1007/s00227-018-3413-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Baited cameras were deployed over a depth range of 532-5111 m in the Ionian Sea to characterise the large mobile fauna. The planned installation of a neutrino telescope also offers the potential for biological observatories. The current study was intended to aid observatory placement. At increasing depths, sediment was observed to become more uniform and animal burrows and tracks reduced. A total of 10 species of deep-sea fishes were identified from images; four elasmobranchs, which were not recorded deeper than 1841 m, and six teleosts. At depths > 3000 m, including Calypso Deep, the deepest point in the Mediterranean, only one fish species was observed; the Mediterranean grenadier, Coryphaenoides mediterraneus (3400-5111 m), extending this species' maximum recorded depth to 5111 m. Four species of decapod crustacea could be identified from images. The dressed deep-sea shrimp, Acanthephyra eximia (1346-5111 m) was the only invertebrate recorded at abyssal depths, including the deepest point. A faunal change was detected at ~ 1000 m depth. Incorporating other studies from the Eastern Mediterranean identified additional faunal boundaries at ~ 1500 m and ~ 2500 m. The time from landing the observation equipment to the arrival of the first fish increased exponentially with depth at a slower rate to that observed in the Atlantic Ocean. The estimated density of bait-attending deep-sea fish was, therefore, significantly impoverished compared to the Atlantic Ocean at equivalent depth. Barriers to colonisation, low resource input, and high temperature at depth relative to the Atlantic Ocean are probable causes of the impoverished fauna.
Collapse
Affiliation(s)
- Thomas D. Linley
- Oceanlab, University of Aberdeen, Main Street, Newburgh, Aberdeen, AB41 6AA UK
- Present Address: School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Jessica Craig
- Oceanlab, University of Aberdeen, Main Street, Newburgh, Aberdeen, AB41 6AA UK
| | - Alan J. Jamieson
- Oceanlab, University of Aberdeen, Main Street, Newburgh, Aberdeen, AB41 6AA UK
- Present Address: School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Imants G. Priede
- Oceanlab, University of Aberdeen, Main Street, Newburgh, Aberdeen, AB41 6AA UK
- Hellenic Centre for Marine Research, Box 2214, 71003 Heraklion, Crete Greece
| |
Collapse
|
3
|
Jamieson AJ, Linley TD, Craig J. Baited camera survey of deep-sea demersal fishes of the West African oil provinces off Angola: 1200-2500m depth, East Atlantic Ocean. MARINE ENVIRONMENTAL RESEARCH 2017; 129:347-364. [PMID: 28683930 DOI: 10.1016/j.marenvres.2017.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Deep-sea demersal fish surveys using baited cameras were undertaken in the West African oil provinces between 1297 m and 2453 m depth in 2002, 2005 and 2008. A total of 29 deployments amounting to 16,175 images encountered 31 species of bait attending deep-sea fish from 17 families. The extrapolated species richness was 34, indicating that the survey encountered over 90% of bait attending fish species in this area. The dominant species in the area were the morid Antimora rostrata, the synaphobranchids Synaphobranchus cf. kaupii and Simenchelys parasitica, the somniosid Centroscymnus coelolepis and the zoarcid Pachycara crassiceps. An unusually high diversity of bait attending macrourids was observed in addition to patchy aggregations of zoarcids. This study serves as baseline survey data on which to base future long-term environmental monitoring of fish populations in the vicinity of the West African oil provinces.
Collapse
Affiliation(s)
- Alan J Jamieson
- Oceanlab, Institute of Biological and Environmental Sciences, University of Aberdeen, Main Street, Newburgh, Aberdeenshire, AB41 6AA, United Kingdom.
| | - Thomas D Linley
- Oceanlab, Institute of Biological and Environmental Sciences, University of Aberdeen, Main Street, Newburgh, Aberdeenshire, AB41 6AA, United Kingdom
| | - Jessica Craig
- Oceanlab, Institute of Biological and Environmental Sciences, University of Aberdeen, Main Street, Newburgh, Aberdeenshire, AB41 6AA, United Kingdom
| |
Collapse
|
4
|
Higgs ND, Gates AR, Jones DOB. Fish food in the deep sea: revisiting the role of large food-falls. PLoS One 2014; 9:e96016. [PMID: 24804731 PMCID: PMC4013046 DOI: 10.1371/journal.pone.0096016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/22/2014] [Indexed: 11/19/2022] Open
Abstract
The carcasses of large pelagic vertebrates that sink to the seafloor represent a bounty of food to the deep-sea benthos, but natural food-falls have been rarely observed. Here were report on the first observations of three large 'fish-falls' on the deep-sea floor: a whale shark (Rhincodon typus) and three mobulid rays (genus Mobula). These observations come from industrial remotely operated vehicle video surveys of the seafloor on the Angola continental margin. The carcasses supported moderate communities of scavenging fish (up to 50 individuals per carcass), mostly from the family Zoarcidae, which appeared to be resident on or around the remains. Based on a global dataset of scavenging rates, we estimate that the elasmobranch carcasses provided food for mobile scavengers over extended time periods from weeks to months. No evidence of whale-fall type communities was observed on or around the carcasses, with the exception of putative sulphide-oxidising bacterial mats that outlined one of the mobulid carcasses. Using best estimates of carcass mass, we calculate that the carcasses reported here represent an average supply of carbon to the local seafloor of 0.4 mg m(-2)d(-1), equivalent to ∼ 4% of the normal particulate organic carbon flux. Rapid flux of high-quality labile organic carbon in fish carcasses increases the transfer efficiency of the biological pump of carbon from the surface oceans to the deep sea. We postulate that these food-falls are the result of a local concentration of large marine vertebrates, linked to the high surface primary productivity in the study area.
Collapse
Affiliation(s)
- Nicholas D. Higgs
- Marine Institute, Plymouth University, Drake Circus, Plymouth, United Kingdom
- * E-mail:
| | - Andrew R. Gates
- SERPENT Project, National Oceanography Centre, Southampton, United Kingdom
| | - Daniel O. B. Jones
- SERPENT Project, National Oceanography Centre, Southampton, United Kingdom
| |
Collapse
|