1
|
Laskowski KL, Seebacher F, Habedank M, Meka J, Bierbach D. Two Locomotor Traits Show Different Patterns of Developmental Plasticity Between Closely Related Clonal and Sexual Fish. Front Physiol 2021; 12:740604. [PMID: 34712149 PMCID: PMC8546259 DOI: 10.3389/fphys.2021.740604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
The capacity to compensate for environmental change determines population persistence and biogeography. In ectothermic organisms, performance at different temperatures can be strongly affected by temperatures experienced during early development. Such developmental plasticity is mediated through epigenetic mechanisms that induce phenotypic changes within the animal's lifetime. However, epigenetic modifiers themselves are encoded by DNA so that developmental plasticity could itself be contingent on genetic diversity. In this study, we test the hypothesis that the capacity for developmental plasticity depends on a species' among-individual genetic diversity. To test this, we exploited a unique species complex that contains both the clonal, genetically identical Amazon molly (Poecilia formosa), and the sexual, genetically diverse Atlantic molly (Poecilia mexicana). We predicted that the greater among-individual genetic diversity in the Atlantic molly may increase their capacity for developmental plasticity. We raised both clonal and sexual mollies at either warm (28°C) or cool (22°C) temperatures and then measured locomotor capacity (critical sustained swimming performance) and unforced movement in an open field across a temperature gradient that simulated environmental conditions often experienced by these species in the wild. In the clonal Amazon molly, differences in the developmental environment led to a shift in the thermal performance curve of unforced movement patterns, but much less so in maximal locomotor capacity. In contrast, the sexual Atlantic mollies exhibited the opposite pattern: developmental plasticity was present in maximal locomotor capacity, but not in unforced movement. Thus our data show that developmental plasticity in clones and their sexual, genetically more diverse sister species is trait dependent. This points toward mechanistic differences in how genetic diversity mediates plastic responses exhibited in different traits.
Collapse
Affiliation(s)
- Kate L Laskowski
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Evolution and Ecology, University of California, Davis, Davis, CA, United States
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW, Australia
| | - Marie Habedank
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Johannes Meka
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, Berlin, Germany.,Cluster of Excellence "Science of Intelligence," Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Connelly AD, Ryan MJ. Phenotypic Variation in an Asexual-Sexual Fish System: Visual Lateralization. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.605943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexual reproduction is nearly ubiquitous in the vertebrate world, yet its evolution and maintenance remain a conundrum due to the cost of males. Conversely, asexually reproducing species should enjoy a twofold population increase and thus replace sexual species all else being equal, but the prevalence of asexual species is rare. However, stable coexistence between asexuals and sexuals does occur and can shed light on the mechanisms asexuals may use in order to persist in this sex-dominated world. The asexual Amazon molly (Poecilia formosa) is required to live in sympatry with one of its sexual sperm hosts –sailfin molly (Poecilia latipinna) and Atlantic molly (Poecilia mexicana)—and are ecological equivalents to their host species in nearly every way except for reproductive method. Here, we compare the visual lateralization between Amazon mollies and sailfin mollies from San Marcos, Texas. Neither Amazon mollies nor sailfin mollies exhibited a significant eye bias. Additionally, Amazon mollies exhibited similar levels of variation in visual lateralization compared to the sailfin molly. Further investigation into the source of this variation –clonal lineages or plasticity—is needed to better understand the coexistence of this asexual-sexual system.
Collapse
|
3
|
Makowicz AM, Travis J. Are you more than the sum of your parents' genes? Phenotypic plasticity in a clonal vertebrate and F1 hybrids of its parental species. Evolution 2020; 74:1124-1141. [PMID: 32380569 DOI: 10.1111/evo.13998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/04/2020] [Indexed: 12/26/2022]
Abstract
All known vertebrate clones have originated from hybridization events and some have produced distinct evolutionary lineages via hybrid speciation. Amazon mollies (Poecilia formosa) present an excellent study system to investigate how clonal species have adapted to heterogeneous environments because they are the product of a single hybridization event between male sailfin mollies (Poecilia latipinna) and female Atlantic mollies (Poecilia mexicana). Here, we ask whether the hybrid species differs from the combination of its parental species' genes in its plastic response to different environments. Using a three-way factorial design, we exposed neonates produced by Amazon mollies and reciprocal F1 hybrid crosses to different thermal (24°C and 29°C) and salinity (0/2, 12, and 20 ppt) regimes. We measured various ontogenetic and life history characteristics across the life span of females. Our major results were as follows: (1) Reaction norms of growth and maturation to temperature and salinity are quite similar between the two hybrid crosses; (2) Amazon molly reaction norms were qualitatively different than the P. latipinna male and P. mexicana female (L×M) hybrids for the ontogenetic variables; (3) Amazon molly reaction norms in reproductive traits were also quite different from L×M hybrids; and (4) The reaction norms of net fertility were very different between Amazon mollies and L×M hybrids. We conclude that best locale for Amazon mollies is not the best locale for hybrids, which suggests that Amazon mollies are not just an unmodified mix of parental genes but instead have adapted to the variable environments in which they are found. Hybridization resulting in asexuality may represent an underappreciated mechanism of speciation because the unlikely events required to produce such hybrids rarely occur and is dependent upon the genetic distance between parental species.
Collapse
Affiliation(s)
- Amber M Makowicz
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, 32306
| | - Joseph Travis
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, 32306
| |
Collapse
|
4
|
Makowicz A, Murray L, Schlupp I. Size, species and audience type influence heterospecific female–female competition. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2019.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Gomes-Silva G, Pereira BB, Liu K, Chen B, Santos VSV, de Menezes GHT, Pires LP, Santos BMT, Oliveira DM, Machado PHA, de Oliveira Júnior RJ, de Oliveira AMM, Plath M. Using native and invasive livebearing fishes (Poeciliidae, Teleostei) for the integrated biological assessment of pollution in urban streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134336. [PMID: 31783440 DOI: 10.1016/j.scitotenv.2019.134336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Invasive species are increasingly replacing native species, especially in anthropogenically transformed or polluted habitats. This opens the possibility to use invasive species as indicator taxa for the biological assessment of pollution. Integrated biological assessment, however, additionally relies on the application of multiple approaches to quantify physiological or cytogenetic responses to pollution within the same focal species. This is challenging when species are restricted to either polluted or unpolluted sites. Here, we make use of a small group of neotropical livebearing fishes (family Poeciliidae) for the integrated biological assessment of water quality. Comparing urban and suburban stream sections that receive varying degrees of pollution from industrial and domestic waste waters in and around the Brazilian city of Uberlândia, we demonstrate that two members of this family may indeed serve as indicators of water pollution levels. The native species Phalloceros caudimaculatus appears to be replaced by invasive guppies (Poecilia reticulata) at heavily polluted sites. Nevertheless, we demonstrate that both species could be used for the assessment of bioaccumulation of heavy metals (Pb, Cu, and Cr). Ambient (sediment) concentrations predicted concentrations in somatic tissue across species (R2-values between 0.74 and 0.96). Moreover, we used cytogenetic methods to provide an estimate of genotoxic effects of water pollution and found pollution levels (multiple variables, condensed into principal components) to predict the occurrence of nuclear abnormalities (e.g., frequencies of micro-nucleated cells) across species (R2 between 0.69 and 0.83). The occurrence of poeciliid fishes in urban and polluted environments renders this family a prime group of focal organisms for biological water quality monitoring and assessment. Both species could be used interchangeably to assess genotoxic effects of water pollution, which may facilitate future comparative analyses over extensive geographic scales, as members of the family Poeciliidae have become invasive in tropical and subtropical regions worldwide.
Collapse
Affiliation(s)
- Guilherme Gomes-Silva
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Boscolli Barbosa Pereira
- Institute of Geography, Universidade Federal de Uberlândia, Uberlândia, Brazil; Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Kai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Bojian Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | | | | | - Luís Paulo Pires
- Institute of Biology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | | | | | | | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China; Shaanxi Key Laboratory for Molecular Biology in Agriculture, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
6
|
Pease AA, Capps KA, Rodiles-Hernández R, Castillo MM, Mendoza-Carranza M, Soria-Barreto M, González-Díaz AA. Trophic structure of fish assemblages varies across a Mesoamerican river network with contrasting climate and flow conditions. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2019.e00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Laskowski KL, Doran C, Bierbach D, Krause J, Wolf M. Naturally clonal vertebrates are an untapped resource in ecology and evolution research. Nat Ecol Evol 2019; 3:161-169. [PMID: 30692622 DOI: 10.1038/s41559-018-0775-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022]
Abstract
Science requires replication. The development of many cloned or isogenic model organisms is a testament to this. But researchers are reluctant to use these traditional animal model systems for certain questions in evolution or ecology research, because of concerns over relevance or inbreeding. It has largely been overlooked that there are a substantial number of vertebrate species that reproduce clonally in nature. Here we highlight how use of these naturally evolved, phenotypically complex animals can push the boundaries of traditional experimental design and contribute to answering fundamental questions in the fields of ecology and evolution.
Collapse
Affiliation(s)
- Kate L Laskowski
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany.
| | - Carolina Doran
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
| | - Jens Krause
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Max Wolf
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
| |
Collapse
|
8
|
Janko K, Eisner J, Mikulíček P. Sperm-dependent asexual hybrids determine competition among sexual species. Sci Rep 2019; 9:722. [PMID: 30679449 PMCID: PMC6345890 DOI: 10.1038/s41598-018-35167-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 10/12/2018] [Indexed: 12/04/2022] Open
Abstract
Interspecific competition is a fundamental process affecting community structure and evolution of interacting species. Besides direct competition, this process is also mediated by shared enemies, which can change the outcome of competition dramatically. However, previous studies investigating interactions between competing species and their parasites (parasite-mediated competition) completely overlooked the effect of ‘sperm’ parasites (i.e. sperm-dependent parthenogens or pseudogams) on competition. These organisms originate by interspecific hybridization, produce clonal gametes, but exploit parental species for their own reproduction, being therefore analogous to classical parasites. Here we use the reaction-diffusion model and show that pseudogams alter the outcome of interspecific competition significantly. They may either slow down competitive exclusion of the inferior competitor or even turn the outcome of competition between the species. Asexual organisms may thus have unexpectedly strong impact on community structure, and have more significant evolutionary potential than was previously thought.
Collapse
Affiliation(s)
- Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 27721, Liběchov, Czech Republic. .,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chitussiho 10, 71000, Ostrava, Czech Republic.
| | - Jan Eisner
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 27721, Liběchov, Czech Republic. .,Department of Mathematics and Biomathematics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic.
| | - Peter Mikulíček
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia.
| |
Collapse
|
9
|
Schlupp I. Male mate choice in livebearing fishes: an overview. Curr Zool 2018; 64:393-403. [PMID: 30402080 PMCID: PMC6007348 DOI: 10.1093/cz/zoy028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/01/2018] [Indexed: 12/12/2022] Open
Abstract
Although the majority of studies on mate choice focus on female mate choice, there is growing recognition of the role of male mate choice too. Male mate choice is tightly linked to 2 other phenomena: female competition for males and ornamentation in females. In the current article, I review the existing literature on this in a group of fishes, Poeciliidae. In this group, male mate choice appears to be based on differences in female quality, especially female size, which is a proxy for fecundity. Some males also have to choose between heterospecific and conspecific females in the unusual mating system of the Amazon molly. In this case, they typically show a preference for conspecific females. Whereas male mate choice is relatively well documented for this family, female ornamentation and female competition are not.
Collapse
Affiliation(s)
- Ingo Schlupp
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | | |
Collapse
|
10
|
Makowicz AM, Muthurajah DS, Schlupp I. Host species of a sexual-parasite do not differentiate between clones of Amazon mollies. Behav Ecol 2017. [DOI: 10.1093/beheco/arx179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Amber M Makowicz
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Department of Biology, Lehrstuhl für Zoologie und Evolutionsbiologie, University Konstanz, Universitätsstraβe, Konstanz, Germany
| | | | - Ingo Schlupp
- Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
11
|
Leung C, Angers B. Imitating the cost of males: A hypothesis for coexistence of all-female sperm-dependent species and their sexual host. Ecol Evol 2017; 8:266-272. [PMID: 29321869 PMCID: PMC5756870 DOI: 10.1002/ece3.3681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/22/2017] [Accepted: 11/08/2017] [Indexed: 11/05/2022] Open
Abstract
All-female sperm-dependent species are particular asexual organisms that must coexist with a closely related sexual host for reproduction. However, demographic advantages of asexual over sexual species that have to produce male individuals could lead both to extinction. The unresolved question of their coexistence still challenges and fascinates evolutionary biologists. As an alternative hypothesis, we propose those asexual organisms are afflicted by a demographic cost analogous to the production of males to prevent exclusion of the host. Previously proposed hypotheses stated that asexual individuals relied on a lower fecundity than sexual females to cope with demographic advantage. In contrast, we propose that both sexual and asexual species display the same number of offspring, but half of asexual individuals imitate the cost of sex by occupying ecological niches but producing no offspring. Simulations of population growth in closed systems under different demographic scenarios revealed that only the presence of nonreproductive individuals in asexual females can result in long-term coexistence. This hypothesis is supported by the fact that half of the females in some sperm-dependent organisms did not reproduce clonally.
Collapse
Affiliation(s)
- Christelle Leung
- Department of Biological Sciences Université de Montréal Montreal QC Canada
| | - Bernard Angers
- Department of Biological Sciences Université de Montréal Montreal QC Canada
| |
Collapse
|
12
|
Sommer-Trembo C, Petry AC, Gomes Silva G, Vurusic SM, Gismann J, Baier J, Krause S, Iorio JDAC, Riesch R, Plath M. Predation risk and abiotic habitat parameters affect personality traits in extremophile populations of a neotropical fish ( Poecilia vivipara). Ecol Evol 2017; 7:6570-6581. [PMID: 28861258 PMCID: PMC5574810 DOI: 10.1002/ece3.3165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/23/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
Understanding whether and how ambient ecological conditions affect the distribution of personality types within and among populations lies at the heart of research on animal personality. Several studies have focussed on only one agent of divergent selection (or driver of plastic changes in behavior), considering either predation risk or a single abiotic ecological factor. Here, we investigated how an array of abiotic and biotic environmental factors simultaneously shape population differences in boldness, activity in an open‐field test, and sociability/shoaling in the livebearing fish Poecilia vivipara from six ecologically different lagoons in southeastern Brazil. We evaluated the relative contributions of variation in predation risk, water transparency/visibility, salinity (ranging from oligo‐ to hypersaline), and dissolved oxygen. We also investigated the role played by environmental factors for the emergence, strength, and direction of behavioral correlations. Water transparency explained most of the behavioral variation, whereby fish from lagoons with low water transparency were significantly shyer, less active, and shoaled less than fish living under clear water conditions. When we tested additional wild‐caught fish from the same lagoons after acclimating them to homogeneous laboratory conditions, population differences were largely absent, pointing toward behavioral plasticity as a mechanism underlying the observed behavioral differences. Furthermore, we found correlations between personality traits (behavioral syndromes) to vary substantially in strength and direction among populations, with no obvious associations with ecological factors (including predation risk). Altogether, our results suggest that various habitat parameters simultaneously shape the distribution of personality types, with abiotic factors playing a vital (as yet underestimated) role. Furthermore, while predation is often thought to lead to the emergence of behavioral syndromes, our data do not support this assumption.
Collapse
Affiliation(s)
- Carolin Sommer-Trembo
- College of Animal Science and Technology Northwest A&F University Yangling China.,Department of Ecology and Evolution Goethe University Frankfurt Frankfurt am Main Germany
| | - Ana Cristina Petry
- Núcleo em Ecologia e Desenvolvimento Sócioambiental de Macaé Universidade Federal do Rio de Janeiro Macaé Brazil
| | - Guilherme Gomes Silva
- College of Animal Science and Technology Northwest A&F University Yangling China.,BSc Study Program "Saude Ambiental" Universidade Federal de Uberlândia Uberlândia Brazil
| | | | - Jakob Gismann
- Department of Ecology and Evolution Goethe University Frankfurt Frankfurt am Main Germany
| | - Jasmin Baier
- Department of Ecology and Evolution Goethe University Frankfurt Frankfurt am Main Germany
| | - Sarah Krause
- Department of Ecology and Evolution Goethe University Frankfurt Frankfurt am Main Germany
| | | | - Rüdiger Riesch
- School of Biological Sciences Royal Holloway, University of London Egham UK
| | - Martin Plath
- College of Animal Science and Technology Northwest A&F University Yangling China
| |
Collapse
|
13
|
Dala-Corte RB, Silva ERD, Fialho CB. Diet-morphology relationship in the stream-dwelling characid Deuterodon stigmaturus (Gomes, 1947) (Characiformes: Characidae) is partially conditioned by ontogenetic development. NEOTROPICAL ICHTHYOLOGY 2016. [DOI: 10.1590/1982-0224-20150178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT We tested whether interindividual variations in diet composition within a population of Deuterodon stigmaturus can be explained by morphological differences between individuals, and whether diet-morphology relationships are dependent on the ontogenetic development. We analyzed diet of 75 specimens sampled in a coastal stream of Southern Brazil. Variation in stomach content was summarized with a Principal Coordinate Analysis (PCoA). The retained PCoA axes were tested as response to standard length (SL), and to values of intestine length (IL) and mouth length (ML) independent of body size, using linear mixed-effects models (LMM). The most consumed food items by D. stigmaturus were filamentous algae (41%), terrestrial plants (20.3%), detritus (12%), and aquatic invertebrates (8.8%). The LMMs showed that SL was positively related to consumption of terrestrial plants, whereas IL independent of SL was negatively related to aquatic invertebrates and positively related to filamentous algae. When body sized was held constant, ML was not related to diet variation. Interindividual diet differences conditioned to body size suggest that individuals shift their trophic niche and function in the ecosystem along the ontogenetic development. Relationships between intestine length and diet composition suggest interindividual differences in foraging ability and digestibility of distinct food items.
Collapse
|
14
|
Makowicz AM, Schlupp I. Effects of Female-Female Aggression in a Sexual/Unisexual Species Complex. Ethology 2015. [DOI: 10.1111/eth.12406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Mercado-Silva N, Lyons J, Moncayo-Estrada R, Gesundheit P, Krabbenhoft TJ, Powell DL, Piller KR. Stable isotope evidence for trophic overlap of sympatric Mexican Lake Chapala silversides (Teleostei: Atherinopsidae: Chirostoma spp.). NEOTROPICAL ICHTHYOLOGY 2015. [DOI: 10.1590/1982-0224-20140079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
We explore the trophic role that a diverse sympatric group of fishes in the genus Chirostoma play in a large, shallow lake in central Mexico, Lake Chapala. We use δ13C and δ15N stable isotope - based food web analyses to explore how they relate to other components of the Lake Chapala ecosystem. We find five Chirostoma species in top trophic levels of the Chapala food web compared to other fishes, relying on a combination of zooplankton, fish and benthic resources as energy sources. Food web metric analyses showed generally overlapping trophic niches for members of Chirostoma, especially in terms of δ13C. However, C. jordani had lower mean δ15N isotopic values than C. promelas. As a group, "pescados blancos" (C. sphyraena and C. promelas) also had higher δ15N signatures than "charales" (C. consocium, C. jordani and C. labarcae) reflecting greater piscivory, but these differences were not strong for all food web metrics used. Trophic overlap among species of Chirostoma in Lake Chapala raises questions about the forces that might have led to a morphologically diverse but functionally similar and monophyletic group of species.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel L. Powell
- Southeastern Louisiana University, USA; Texas A&M University, USA
| | | |
Collapse
|
16
|
Diets of sexual and sperm-dependent asexual dace (Chrosomusspp.): relevance to niche differentiation and mate choice hypotheses for coexistence. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2012.00178.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
RIESCH RÜDIGER, PLATH MARTIN, MAKOWICZ AMBERM, SCHLUPP INGO. Behavioural and life-history regulation in a unisexual/bisexual mating system: does male mate choice affect female reproductive life histories? Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01886.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|