1
|
Berbel-Filho WM, Pacheco G, Tatarenkov A, Lira MG, Garcia de Leaniz C, Rodríguez López CM, Lima SMQ, Consuegra S. Phylogenomics reveals extensive introgression and a case of mito-nuclear discordance in the killifish genus Kryptolebias. Mol Phylogenet Evol 2022; 177:107617. [PMID: 36038055 DOI: 10.1016/j.ympev.2022.107617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Introgression is a widespread evolutionary process leading to phylogenetic inconsistencies among distinct parts of the genomes, particularly between mitochondrial and nuclear-based phylogenetic reconstructions (e.g., mito-nuclear discordances). Here, we used mtDNA and genome-wide nuclear sites to provide the first phylogenomic-based hypothesis on the evolutionary relationships within the killifish genus Kryptolebias. In addition, we tested for evidence of past introgression in the genus given the multiple reports of undergoing hybridization between its members. Our mtDNA phylogeny generally agreed with the relationships previously proposed for the genus. However, our reconstruction based on nuclear DNA revealed an unknown lineage - Kryptolebias sp. 'ESP' - as the sister group of the self-fertilizing mangrove killifishes, K. marmoratus and K. hermaphroditus. All individuals sequenced of Kryptolebias sp. 'ESP' had the same mtDNA haplotype commonly observed in K. hermaphroditus, demonstrating a clear case of mito-nuclear discordance. Our analysis further confirmed extensive history of introgression between Kryptolebias sp. 'ESP' and K. hermaphroditus. Population genomics analyses indicate no current gene flow between the two lineages, despite their current sympatry and history of introgression. We also confirmed introgression between other species pairs in the genus that have been recently reported to form hybrid zones. Overall, our study provides a phylogenomic reconstruction covering most of the Kryptolebias species, reveals a new lineage hidden in a case of mito-nuclear discordance, and provides evidence of multiple events of ancestral introgression in the genus. These findings underscore the importance of investigating different genomic information in a phylogenetic framework, particularly in taxa where introgression is common as in the sexually diverse mangrove killifishes.
Collapse
Affiliation(s)
- Waldir M Berbel-Filho
- Department of Biology, University of Oklahoma, Norman, OK, USA(1); Department of Biosciences, College of Science, Swansea University, Swansea, UK.
| | - George Pacheco
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Andrey Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Mateus G Lira
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Natal, Brazil
| | | | - Carlos M Rodríguez López
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Sergio M Q Lima
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Natal, Brazil
| | - Sofia Consuegra
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
2
|
Lira MGS, Berbel-Filho WM, Espírito-Santo HMV, Tatarenkov A, Avise JC, de Leaniz CG, Consuegra S, Lima SMQ. Filling the gaps: phylogeography of the self-fertilizing Kryptolebias species (Cyprinodontiformes: Rivulidae) along South American mangroves. JOURNAL OF FISH BIOLOGY 2021; 99:644-655. [PMID: 33846974 DOI: 10.1111/jfb.14753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Mangrove killifishes of the genus Kryptolebias have been historically classified as rare because of their small size and cryptic nature. Major gaps in distribution knowledge across mangrove areas, particularly in South America, challenge the understanding of the taxonomic status, biogeographical patterns and genetic structuring of the lineages composing the self-fertilizing "Kryptolebias marmoratus species complex." In this study, the authors combined a literature survey, fieldwork and molecular data to fill major gaps of information about the distribution of mangrove killifishes across western Atlantic mangroves. They found that selfing mangrove killifishes are ubiquitously distributed across the Caribbean, Central and South American mangroves and report 14 new locations in South America, extending the range of both the "Central clade" and "Southern clade" lineages which overlap in the Amazon. Although substantial genetic differences were found between clades, the authors also found further genetic structuring within clades, with populations in Central America, north and northeast Brazil generally showing higher levels of genetic diversity compared to the clonal ones in southeast Brazil. The authors discuss the taxonomic status and update the geographical distribution of the Central and Southern clades, as well as potential dispersal routes and biogeographical barriers influencing the distribution of the selfing mangrove killifishes in the western Atlantic mangroves.
Collapse
Affiliation(s)
- Mateus G S Lira
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Programa de Pós-Graduação em Sistemática e Evolução, Natal, Brazil
| | | | | | - Andrei Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - John C Avise
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | | | - Sofia Consuegra
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Sergio M Q Lima
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Programa de Pós-Graduação em Sistemática e Evolução, Natal, Brazil
| |
Collapse
|
3
|
More than meets the eye: syntopic and morphologically similar mangrove killifish species show different mating systems and patterns of genetic structure along the Brazilian coast. Heredity (Edinb) 2020; 125:340-352. [PMID: 32826964 DOI: 10.1038/s41437-020-00356-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/22/2023] Open
Abstract
Different mating systems can strongly affect the extent of genetic diversity and population structure among species. Given the increased effects of genetic drift on reduced population size, theory predicts that species undergoing self-fertilisation should have greater population structure than outcrossed species; however, demographic dynamics may affect this scenario. The mangrove killifish clade is composed of the two only known examples of self-fertilising species among vertebrates (Kryptolebias marmoratus and Kryptolebias hermaphroditus). A third species in this clade, Kryptolebias ocellatus, inhabits mangrove forests in southeast Brazil; however, its mating system and patterns of genetic structure have been rarely explored. Here, we examined the genetic structure and phylogeographic patterns of K. ocellatus along its distribution, using mitochondrial DNA and microsatellites to compare its patterns of genetic structure with the predominantly selfing and often-syntopic, K. hermaphroditus. Our results indicate that K. ocellatus reproduces mainly by outcrossing, with no current evidence of selfing, despite being an androdioecious species. Our results also reveal a stronger population subdivision in K. ocellatus compared to K. hermaphroditus, contrary to the theoretical predictions based on reproductive biology of the two species. Our findings indicate that, although morphologically similar, K. ocellatus and K. hermaphroditus had remarkably different evolutionary histories when colonising the same mangrove areas in southeastern Brazil, with other factors (e.g., time of colonisation, dispersal/establishment capacity) having more profound effects on the current population structuring of those species than differences in mating systems.
Collapse
|
4
|
Tatarenkov A, Earley RL, Taylor DS, Davis WP, Avise JC. Extensive hybridization and past introgression between divergent lineages in a quasi-clonal hermaphroditic fish: Ramifications for species concepts and taxonomy. J Evol Biol 2020; 34:49-59. [PMID: 32242998 DOI: 10.1111/jeb.13624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/23/2020] [Accepted: 03/15/2020] [Indexed: 01/31/2023]
Abstract
Extreme inbreeding is expected to reduce the incidence of hybridization, serving as a prezygotic barrier. Mangrove rivulus is a small killifish that reproduces predominantly by self-fertilization, producing highly homozygous lines throughout its geographic range. The Bahamas and Caribbean are inhabited by two highly diverged phylogeographic lineages of mangrove rivulus, Kryptolebias marmoratus and a 'Central clade' closely related to K. hermaphroditus from Brazil. The two lineages are largely allopatric, but recently were found in syntopy on San Salvador, Bahamas, where a single hybrid was reported. To better characterize the degree of hybridization and the possibility of secondary introgression, here we conducted a detailed genetic analysis of the contact zone on San Salvador. Two mixed populations were identified, one of which contained sexually mature hybrids. The distribution of heterozygosity at diagnostic microsatellite loci in hybrids showed that one of these hybrids was an immediate offspring from the K. marmoratus x Central clade cross, whereas the remaining five hybrids were products of reproduction by self-fertilization for 1-3 generations following the initial cross. Two hybrids had mitochondrial haplotypes of K. marmoratus and the remaining four hybrids had a haplotype of the Central clade, indicating that crosses go in both directions. In hybrids, alleles of parental lineages were represented in equal proportions suggesting lack of recent backcrossing to either of the parental lineages. However, sympatric populations of two lineages were less diverged than allopatric populations, consistent with introgression. Results are discussed in terms of applicability of the biological species concept for isogenic, effectively clonal, organisms.
Collapse
Affiliation(s)
- Andrey Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | | | | | - John C Avise
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Tatarenkov A, Earley RL, Taylor DS, Davis WP, Avise JC. Natural hybridization between divergent lineages in a selfing hermaphroditic fish. Biol Lett 2019; 14:rsbl.2018.0118. [PMID: 29899129 DOI: 10.1098/rsbl.2018.0118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/16/2018] [Indexed: 01/03/2023] Open
Abstract
By definition, mating between individuals is infrequent in highly selfing organisms, and so too, therefore, hybridization should be rare between genetically divergent lineages in predominantly self-fertilizing species. Notwithstanding these expectations, here we report a remarkable case of natural hybridization between highly diverged phylogeographic lineages of the mangrove rivulus, a small killifish that reproduces predominantly by self-fertilization and typically is found as highly homozygous lines in most parts of its extensive geographical range. Two distinctive genetic lineages (Kryptolebias marmoratus and a 'Central clade' closely related to K. hermaphroditus) previously were not known in sympatry, but were found by us to co-occur on San Salvador, Bahamas. Genetic analyses of a mitochondrial and multiple nuclear markers determined the direction of a cross producing a hybrid fish. Furthermore, we show that this hybrid individual was viable, as it successfully reproduced by self-fertilization for two generations. Additional sampling of this population will be necessary to determine if backcrossing of hybrids to the parental lineages occurs in nature and to analyse whether such backcross progeny are viable. Application of the biological species concept (BSC) is traditionally difficult in clonally reproducing organisms. Our results show that although mangrove rivulus fish are mostly highly selfing in nature (resulting in isogenic, effectively clonal and homozygous progeny), classification within this taxonomic complex need not be incompatible with the BSC.
Collapse
Affiliation(s)
- Andrey Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | | | | | - John C Avise
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Fellous A, Earley RL, Silvestre F. Identification and expression of mangrove rivulus (Kryptolebias marmoratus) histone deacetylase (HDAC) and lysine acetyltransferase (KAT) genes. Gene 2019; 691:56-69. [DOI: 10.1016/j.gene.2018.12.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
|
7
|
Fellous A, Earley RL, Silvestre F. The Kdm/Kmt gene families in the self-fertilizing mangrove rivulus fish, Kryptolebias marmoratus, suggest involvement of histone methylation machinery in development and reproduction. Gene 2019; 687:173-187. [DOI: 10.1016/j.gene.2018.11.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
|
8
|
Development of G: a test in an amphibious fish. Heredity (Edinb) 2018; 122:696-708. [PMID: 30327484 DOI: 10.1038/s41437-018-0152-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/16/2018] [Accepted: 09/24/2018] [Indexed: 01/06/2023] Open
Abstract
Heritable variation in, and genetic correlations among, traits determine the response of multivariate phenotypes to natural selection. However, as traits develop over ontogeny, patterns of genetic (co)variation and integration captured by the G matrix may also change. Despite this, few studies have investigated how genetic parameters underpinning multivariate phenotypes change as animals pass through major life history stages. Here, using a self-fertilizing hermaphroditic fish species, mangrove rivulus (Kryptolebias marmoratus), we test the hypothesis that G changes from hatching through reproductive maturation. We also test Cheverud's conjecture by asking whether phenotypic patterns provide an acceptable surrogate for patterns of genetic (co)variation within and across ontogenetic stages. For a set of morphological traits linked to locomotor (jumping) performance, we find that the overall level of genetic integration (as measured by the mean-squared correlation across all traits) does not change significantly over ontogeny. However, we also find evidence that some trait-specific genetic variances and pairwise genetic correlations do change. Ontogenetic changes in G indicate the presence of genetic variance for developmental processes themselves, while also suggesting that any genetic constraints on morphological evolution may be age-dependent. Phenotypic correlations closely resembled genetic correlations at each stage in ontogeny. Thus, our results are consistent with the premise that-at least under common environment conditions-phenotypic correlations can be a good substitute for genetic correlations in studies of multivariate developmental evolution.
Collapse
|
9
|
Fellous A, Labed‐Veydert T, Locrel M, Voisin A, Earley RL, Silvestre F. DNA methylation in adults and during development of the self-fertilizing mangrove rivulus, Kryptolebias marmoratus. Ecol Evol 2018; 8:6016-6033. [PMID: 29988456 PMCID: PMC6024129 DOI: 10.1002/ece3.4141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to genetic variation, epigenetic mechanisms such as DNA methylation might make important contributions to heritable phenotypic diversity in populations. However, it is often difficult to disentangle the contributions of genetic and epigenetic variation to phenotypic diversity. Here, we investigated global DNA methylation and mRNA expression of the methylation-associated enzymes during embryonic development and in adult tissues of one natural isogenic lineage of mangrove rivulus fish, Kryptolebias marmoratus. Being the best-known self-fertilizing hermaphroditic vertebrate affords the opportunity to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. Using the LUminometric Methylation Assay (LUMA), we described variable global DNA methylation at CpG sites in adult tissues, which differed significantly between hermaphrodite ovotestes and male testes (79.6% and 87.2%, respectively). After fertilization, an immediate decrease in DNA methylation occurred to 15.8% in gastrula followed by re-establishment to 70.0% by stage 26 (liver formation). Compared to zebrafish, at the same embryonic stages, this reprogramming event seems later, deeper, and longer. Furthermore, genes putatively encoding DNA methyltransferases (DNMTs), Ten-Eleven Translocation (TET), and MeCP2 proteins showed specific regulation in adult gonad and brain, and also during early embryogenesis. Their conserved domains and expression profiles suggest that these proteins play important roles during reproduction and development. This study raises questions about mangrove rivulus' peculiar reprogramming period in terms of epigenetic transmission and physiological adaptation of individuals to highly variable environments. In accordance with the general-purpose genotype model, epigenetic mechanisms might allow for the expression of diverse phenotypes among genetically identical individuals. Such phenotypes might help to overcome environmental challenges, making the mangrove rivulus a valuable vertebrate model for ecological epigenetic studies. The mangrove rivulus, Kryptolebias marmoratus, is the best-known self-fertilizing hermaphroditic vertebrate that allows to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. The reprogramming event is later, more dramatic and longer than in other described vertebrates. High evolutionary conservation and expression patterns of DNMT, TET, and MeCP2 proteins in K. marmoratus suggest biological roles for each member in gametogenesis and development.
Collapse
Affiliation(s)
- Alexandre Fellous
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Tiphaine Labed‐Veydert
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Mélodie Locrel
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Anne‐Sophie Voisin
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Ryan L. Earley
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Frederic Silvestre
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| |
Collapse
|
10
|
Loureiro M, Sá RD, Serra SW, Alonso F, Lanés LEK, Volcan MV, Calviño P, Nielsen D, Duarte A, Garcia G. Review of the family Rivulidae (Cyprinodontiformes, Aplocheiloidei) and a molecular and morphological phylogeny of the annual fish genus Austrolebias Costa 1998. NEOTROPICAL ICHTHYOLOGY 2018. [DOI: 10.1590/1982-0224-20180007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT The family Rivulidae is the fourth most diverse clade of Neotropical fishes. Together with some genera of the related African family Nothobranchiidae, many rivulids exhibit a characteristic annual life cycle, with diapausing eggs and delayed embryonic development, which allows them to survive in the challenging seasonal ponds that they inhabit. Rivulidae also includes two species known as the only the self-fertilizing vertebrates and some species with internal fertilization. The first goal of this article is to review the systematics of the family considering phylogenetic relationships and synapomorphies of subfamilial clades, thus unifying information that is dispersed throughout the literature. From this revision, it is clear that phylogenetic relationships within Rivulidae are poorly resolved, especially in one of the large clades that compose it, the subfamily Rivulinae, where conflicting hypotheses of relationships of non-annual and annual genera are evident. The second goal of this work is to present an updated phylogenetic hypothesis (based on mitochondrial, nuclear, and morphological information) for one of the most speciose genus of Rivulidae, Austrolebias. Our results confirm the monophyly of the genus and of some subgeneric clades already diagnosed, but propose new relationships among them and their species composition, particularly in the subgenus Acrolebias.
Collapse
Affiliation(s)
| | | | | | - Felipe Alonso
- CONICET, Argentina; Grupo de Investigación y Conservación de Killis, Argentina
| | | | | | - Pablo Calviño
- Grupo de Investigación y Conservación de Killis, Argentina
| | | | | | | |
Collapse
|
11
|
Tatarenkov A, Lima SMQ, Earley RL, Berbel-Filho WM, Vermeulen FBM, Taylor DS, Marson K, Turner BJ, Avise JC. Deep and concordant subdivisions in the self-fertilizing mangrove killifishes (Kryptolebias) revealed by nuclear and mtDNA markers. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Tatarenkov A, Mesak F, Avise JC. Complete mitochondrial genome of a self-fertilizing fish Kryptolebias marmoratus (Cyprinodontiformes, Rivulidae) from Florida. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 28:244-245. [PMID: 26710713 DOI: 10.3109/19401736.2015.1115861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome was sequenced in a mangrove rivulus Kryptolebias marmoratus from western Florida using next-generation sequencing. The 17 329 bp-long genome was identical in length and 99.8% similar to a previously published genome of this species from a specimen of unknown geographic origin. Gene arrangement in K. marmoratus is similar to other cyprinodontiform fishes, except for the presence of a second copy of the control region inserted upstream of the nad1 gene.
Collapse
Affiliation(s)
- Andrey Tatarenkov
- a Department of Ecology and Evolutionary Biology , University of California , Irvine , CA , USA
| | - Felix Mesak
- a Department of Ecology and Evolutionary Biology , University of California , Irvine , CA , USA
| | - John C Avise
- a Department of Ecology and Evolutionary Biology , University of California , Irvine , CA , USA
| |
Collapse
|
13
|
Avise JC, Tatarenkov A. Population genetics and evolution of the mangrove rivulus Kryptolebias marmoratus, the world's only self-fertilizing hermaphroditic vertebrate. JOURNAL OF FISH BIOLOGY 2015; 87:519-538. [PMID: 26223378 DOI: 10.1111/jfb.12741] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/09/2015] [Indexed: 05/20/2023]
Abstract
The mangrove rivulus, Kryptolebias marmoratus (Rivulidae, Cyprinodontiformes), is phylogenetically embedded within a large clade of oviparous (egg laying) and otherwise mostly gonochoristic (separate sex) killifish species in the circumtropical suborder Aplocheiloidei. It is unique in its reproductive mode: K. marmoratus is essentially the world's only vertebrate species known to engage routinely in self-fertilization as part of a mixed-mating strategy of selfing plus occasional outcrossing with gonochoristic males. This unique form of procreation has profound population-genetic and evolutionary-genetic consequences that are the subject of this review.
Collapse
Affiliation(s)
- J C Avise
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, U.S.A
| | - A Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, U.S.A
| |
Collapse
|
14
|
Tatarenkov A, Earley RL, Perlman BM, Scott Taylor D, Turner BJ, Avise JC. Genetic Subdivision and Variation in Selfing Rates Among Central American Populations of the Mangrove Rivulus, Kryptolebias marmoratus. J Hered 2015; 106:276-84. [DOI: 10.1093/jhered/esv013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/16/2015] [Indexed: 01/10/2023] Open
|
15
|
Mesak F, Tatarenkov A, Earley RL, Avise JC. Hundreds of SNPs vs. dozens of SSRs: which dataset better characterizes natural clonal lineages in a self-fertilizing fish? Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Gonzalez EG, Pedraza-Lara C, Doadrio I. Genetic Diversity and Population History of the Endangered Killifish Aphanius baeticus. J Hered 2014; 105:597-610. [DOI: 10.1093/jhered/esu034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
17
|
Tatarenkov A, Earley RL, Taylor DS, Avise JC. Microevolutionary distribution of isogenicity in a self-fertilizing fish (Kryptolebias marmoratus) in the Florida Keys. Integr Comp Biol 2012; 52:743-52. [PMID: 22593558 DOI: 10.1093/icb/ics075] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mangrove rivulus Kryptolebias marmoratus and a closely related species are the world's only vertebrates that routinely self-fertilize. Such uniqueness presents a model for understanding why this reproductive mode, common in plants and invertebrates, is so rare in vertebrates. A survey of 32 highly polymorphic loci in >200 specimens of mangrove rivulus from multiple locales in the Florida Keys, USA, revealed extensive population-genetic structure on microspatial and micro-temporal scales. Observed heterozygosities were severely constrained, as expected for a hermaphroditic species with a mixed-mating system and low rates of outcrossing. Despite the pronounced population structure and the implied restrictions on effective gene flow, isogenicity (genetic identity across individuals) within and among local inbred populations was surprisingly low even after factoring out probable de novo mutations. Results indicate that neither frequent bottlenecks nor directional genetic adaptation to local environmental conditions were the primary driving forces impacting multilocus population-genetic architecture in this self-fertilizing vertebrate species. On the other hand, a high diversity of isogenic lineages within relatively small and isolated local populations is consistent with the action of diversifying selection driven by the extreme spatio-temporal environmental variability that is characteristic of mangrove habitats.
Collapse
Affiliation(s)
- Andrey Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|