1
|
Sánchez Reyes LL, McTavish EJ, O’Meara B. DateLife: Leveraging Databases and Analytical Tools to Reveal the Dated Tree of Life. Syst Biol 2024; 73:470-485. [PMID: 38507308 PMCID: PMC11282365 DOI: 10.1093/sysbio/syae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Chronograms-phylogenies with branch lengths proportional to time-represent key data on timing of evolutionary events, allowing us to study natural processes in many areas of biological research. Chronograms also provide valuable information that can be used for education, science communication, and conservation policy decisions. Yet, achieving a high-quality reconstruction of a chronogram is a difficult and resource-consuming task. Here we present DateLife, a phylogenetic software implemented as an R package and an R Shiny web application available at www.datelife.org, that provides services for efficient and easy discovery, summary, reuse, and reanalysis of node age data mined from a curated database of expert, peer-reviewed, and openly available chronograms. The main DateLife workflow starts with one or more scientific taxon names provided by a user. Names are processed and standardized to a unified taxonomy, allowing DateLife to run a name match across its local chronogram database that is curated from Open Tree of Life's phylogenetic repository, and extract all chronograms that contain at least two queried taxon names, along with their metadata. Finally, node ages from matching chronograms are mapped using the congruification algorithm to corresponding nodes on a tree topology, either extracted from Open Tree of Life's synthetic phylogeny or one provided by the user. Congruified node ages are used as secondary calibrations to date the chosen topology, with or without initial branch lengths, using different phylogenetic dating methods such as BLADJ, treePL, PATHd8, and MrBayes. We performed a cross-validation test to compare node ages resulting from a DateLife analysis (i.e, phylogenetic dating using secondary calibrations) to those from the original chronograms (i.e, obtained with primary calibrations), and found that DateLife's node age estimates are consistent with the age estimates from the original chronograms, with the largest variation in ages occurring around topologically deeper nodes. Because the results from any software for scientific analysis can only be as good as the data used as input, we highlight the importance of considering the results of a DateLife analysis in the context of the input chronograms. DateLife can help to increase awareness of the existing disparities among alternative hypotheses of dates for the same diversification events, and to support exploration of the effect of alternative chronogram hypotheses on downstream analyses, providing a framework for a more informed interpretation of evolutionary results.
Collapse
Affiliation(s)
- Luna L Sánchez Reyes
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, 446 Hesler Biology Building, Knoxville, TN 37996, USA
| | - Emily Jane McTavish
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343, USA
| | - Brian O’Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, 446 Hesler Biology Building, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Mo R, Zhu D, Sun J, Yuan Q, Guo F, Duan Y. Molecular identification and phylogenetic analysis of the mitogenome in endangered giant nuthatch Sitta magna ( Passeriformes, Sittidae). Heliyon 2024; 10:e30513. [PMID: 38765151 PMCID: PMC11098796 DOI: 10.1016/j.heliyon.2024.e30513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
The Giant Nuthatch Sitta magna (family Sittidae) is a passerine bird, the quantification of the number of habitats and species on a global scale remains low. Most species are restricted to low elevations in southwest China, eastern Myanmar, and northern Thailand. To characterize the mitochondrial genome sequence of S. magna and its phylogenetic relationships with other members within the genus Sitta, the mitochondrial genome of S. magna was sequenced using the whole genome shotgun method. The sequencing results showed that the mitochondrial genome was 16,829 bp long and consisted of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and one control region (D-loop). All tRNAs were predicted to form a typical clover secondary structure. Among the 13 PCGs, only the start codon in COI was ATC, the start codon by the remaining 12 PCGs was ATG, and the stop codons were TAG, TAA, AGG, AGA, and TA. Bayesian inference and maximum likelihood phylogenetic analysis of the sequences of 17 species generated consistent well-supported phylogenies. The family Polioptilidae and the family Troglodytidae were closely related, and the family Sittidae was confined to a single branch. The genus Sitta in the family Sittidae was mainly clustered into three branches. Our findings provide new mitochondrial genomic data that could be used for phylogenetic and taxonomic studies; our results also certificate into the phylogenetic relationships within the genus Sitta ((S. himalayensi+(S. nagaensis + S. europaea))+(S. villosa + S. yunnanensis))+(S. carolinensis + S. magna).
Collapse
Affiliation(s)
- Ruixin Mo
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming, 650224, China
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Dong Zhu
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming, 650224, China
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Jing Sun
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Qingmiao Yuan
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming, 650224, China
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Feng Guo
- Administration of Zixi Mountain Provincial Nature Reserve, Chuxiong, 675008, China
| | - Yubao Duan
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming, 650224, China
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| |
Collapse
|
3
|
Yuan Q, Guo Q, Cao J, Luo X, Duan Y. Description of the Three Complete Mitochondrial Genomes of Sitta (S. himalayensis, S. nagaensis, and S. yunnanensis) and Phylogenetic Relationship (Aves: Sittidae). Genes (Basel) 2023; 14:genes14030589. [PMID: 36980861 PMCID: PMC10047972 DOI: 10.3390/genes14030589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Nuthatches (genus Sitta; family Sittidae) are a passerine genus with a predominantly Nearctic and Eurasian distribution. To understand the phylogenetic position of Sitta and phylogenetic relations within this genus, we sequenced the complete mitochondrial genomes of three Sitta species (S. himalayensis, S. nagaensis, and S. yunnanensis), which were 16,822–16,830 bp in length and consisted of 37 genes and a control region. This study recovered the same gene arrangement found in the mitogenomes of Gallus gallus, which is considered the typical ancestral avian gene order. All tRNAs were predicted to form the typical cloverleaf secondary structures. Bayesian inference and maximum likelihood phylogenetic analyses of sequences of 18 species obtained a well-supported topology. The family Sittidae is the sister group of Troglodytidae, and the genus Sitta can be divided into three major clades. We demonstrated the phylogenetic relationships within the genus Sitta (S. carolinensis + ((S. villosa + S. yunnanensis) + (S. himalayensis + (S. europaea + S. nagaensis)))).
Collapse
Affiliation(s)
- Qingmiao Yuan
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming 650224, China
- Department of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Qiang Guo
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming 650224, China
- Department of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Jing Cao
- Administration of Zixi Mountain Provincial Nature Reserve, Chuxiong 675000, China
| | - Xu Luo
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming 650224, China
- Correspondence: authors: (X.L.); (Y.D.)
| | - Yubao Duan
- Department of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
- Correspondence: authors: (X.L.); (Y.D.)
| |
Collapse
|
4
|
The complete mitochondrial genomes of Tarsiger cyanurus and Phoenicurus auroreus: a phylogenetic analysis of Passeriformes. Genes Genomics 2018; 40:151-165. [PMID: 29892923 DOI: 10.1007/s13258-017-0617-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
Passeriformes is the largest group within aves and the phylogenetic relationships between Passeriformes have caused major disagreement in ornithology. Particularly, the phylogenetic relationships between muscicapoidea and sylvioidea are complex, and their taxonomic boundaries have not been clearly defined. Our aim was to study the status of two bird species: Tarsiger cyanurus and Phoenicurus auroreus. Furthermore, we analyzed the phylogenetic relationships of Passeriformes. Complete mitochondrial DNA (mtDNA) sequences of both species were determined and the lengths were 16,803 (T. cyanurus) and 16,772 bp (P. auroreus), respectively. Thirteen protein-coding genes, 22 tRNA genes, two rRNA genes, and one control region were identified in these mtDNAs. The contents of A and T at the base compositions was significantly higher than the content of G and C, and this AT skew was positive, while the GC skew was negative. The monophyly of Passeriformes is divided into four major clades: Corvoidea, Sylvioidea, Passeroidea, and Musicicapoidea. Paridae should be separated from the superfamily Sylvioidea and placed within the superfamily Muscicapoidea. The family Muscicapidae and Corvida were paraphyly, while Carduelis and Emberiza were grouped as a sister taxon. The relationships between some species of the order passeriformes may remain difficult to resolve despite an effort to collect additional characters for phylogenetic analysis. Current research of avian phylogeny should focus on adding characters and taxa and use both effectively to obtain a better resolution for deeper and shallow nodes.
Collapse
|
5
|
Frenkel Z, Kiat Y, Izhaki I, Snir S. Convex recoloring as an evolutionary marker. Mol Phylogenet Evol 2016; 107:209-220. [PMID: 27818264 DOI: 10.1016/j.ympev.2016.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/16/2016] [Accepted: 10/25/2016] [Indexed: 11/27/2022]
Abstract
With the availability of enormous quantities of genetic data it has become common to construct very accurate trees describing the evolutionary history of the species under study, as well as every single gene of these species. These trees allow us to examine the evolutionary compliance of given markers (characters). A marker compliant with the history of the species investigated, has undergone mutations along the species tree branches, such that every subtree of that tree exhibits a different state. Convex recoloring (CR) uses combinatorial representation to measure the adequacy of a taxonomic classifier to a given tree. Despite its biological origins, research on CR has been almost exclusively dedicated to mathematical properties of the problem, or variants of it with little, if any, relationship to taxonomy. In this work we return to the origins of CR. We put CR in a statistical framework and introduce and learn the notion of the statistical significance of a character. We apply this measure to two data sets - Passerine birds and prokaryotes, and four examples. These examples demonstrate various applications of CR, from evolutionary relatedness, through lateral evolution, to supertree construction. The above study was done with a new software that we provide, containing algorithmic improvement with a graphical output of a (optimally) recolored tree. AVAILABILITY A code implementing the features and a README is available at http://research.haifa.ac.il/ssagi/software/convexrecoloring.zip.
Collapse
Affiliation(s)
- Zeev Frenkel
- Department of Ecology and Evolutionary Biology, University of Haifa, Israel
| | - Yosef Kiat
- Israeli Bird Ringing Center, Society for the Protection of Nature in Israel, Israel
| | - Ido Izhaki
- Department of Ecology and Evolutionary Biology, University of Haifa, Israel
| | - Sagi Snir
- Department of Ecology and Evolutionary Biology, University of Haifa, Israel
| |
Collapse
|
6
|
Gibb GC, England R, Hartig G, McLenachan PAT, Taylor Smith BL, McComish BJ, Cooper A, Penny D. New Zealand Passerines Help Clarify the Diversification of Major Songbird Lineages during the Oligocene. Genome Biol Evol 2015; 7:2983-95. [PMID: 26475316 PMCID: PMC5635589 DOI: 10.1093/gbe/evv196] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Passerines are the largest avian order, and the 6,000 species comprise more than half of all extant bird species. This successful radiation probably had its origin in the Australasian region, but dating this origin has been difficult due to a scarce fossil record and poor biogeographic assumptions. Many of New Zealand’s endemic passerines fall within the deeper branches of the passerine radiation, and a well resolved phylogeny for the modern New Zealand element in the deeper branches of the oscine lineage will help us understand both oscine and passerine biogeography. To this end we present complete mitochondrial genomes representing all families of New Zealand passerines in a phylogenetic framework of over 100 passerine species. Dating analyses of this robust phylogeny suggest Passeriformes originated in the early Paleocene, with the major lineages of oscines “escaping” from Australasia about 30 Ma, and radiating throughout the world during the Oligocene. This independently derived conclusion is consistent with the passerine fossil record.
Collapse
Affiliation(s)
- Gillian C Gibb
- Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Ryan England
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand Present address: Forensic Business Group, Institute of Environmental Science and Research (ESR Ltd.), Mt Albert Science Centre, Auckland, New Zealand
| | - Gerrit Hartig
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand Present address: Starlims Germany GmbH An Abbott Company, Witten, Germany
| | | | - Briar L Taylor Smith
- Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Bennet J McComish
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand Present address: School of Physical Sciences, University of Tasmania, Hobart, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, South Australia, Australia
| | - David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
Brown LM, Graham CH. Demography, traits and vulnerability to urbanization: can we make generalizations? J Appl Ecol 2015. [DOI: 10.1111/1365-2664.12521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leone M. Brown
- Department of Ecology and Evolution; Stony Brook University; Stony Brook NY 11794-5245 USA
- Odum School of Ecology; University of Georgia; Athens GA 30602-2202 USA
| | - Catherine H. Graham
- Department of Ecology and Evolution; Stony Brook University; Stony Brook NY 11794-5245 USA
| |
Collapse
|
8
|
Keith Barker F. Mitogenomic data resolve basal relationships among passeriform and passeridan birds. Mol Phylogenet Evol 2014; 79:313-24. [DOI: 10.1016/j.ympev.2014.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/31/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
|
9
|
Klingenberg CP, Marugán-Lobón J. Evolutionary Covariation in Geometric Morphometric Data: Analyzing Integration, Modularity, and Allometry in a Phylogenetic Context. Syst Biol 2013; 62:591-610. [DOI: 10.1093/sysbio/syt025] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Christian Peter Klingenberg
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; and 2Unidad de Paleontología, Departamento de Biología, C/Darwin 2, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jesús Marugán-Lobón
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; and 2Unidad de Paleontología, Departamento de Biología, C/Darwin 2, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Marshall HD, Baker AJ, Grant AR. Complete mitochondrial genomes from four subspecies of common chaffinch (Fringilla coelebs): new inferences about mitochondrial rate heterogeneity, neutral theory, and phylogenetic relationships within the order Passeriformes. Gene 2013; 517:37-45. [PMID: 23313296 DOI: 10.1016/j.gene.2012.12.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
We describe whole mitochondrial genome sequences from four subspecies of the common chaffinch (Fringilla coelebs), and compare them to 31 publicly available mitochondrial genome sequences from other Passeriformes. Rates and patterns of mitochondrial gene evolution are analyzed at different taxonomic levels within this avian order, and evidence is adduced for and against the nearly neutral theory of molecular evolution and the role of positive selection in shaping genetic variation of this small but critical genome. We find evidence of mitochondrial rate heterogeneity in birds as in other vertebrates, likely due to differences in mutational pressure across the genome. Unlike in gadine fish and some of the human mitochondrial work we do not observe strong support for the nearly neutral theory of molecular evolution; instead evidence from molecular clocks, distribution of dN/dS ratios at different levels of the taxonomic hierarchy and in different lineages, McDonald-Kreitman tests within Fringillidae, and site-specific tests of selection within Passeriformes, all point to a role for positive selection, especially for the complex I NADH dehydrogenase genes. The protein-coding mitogenome phylogeny of the order Passeriformes is broadly consistent with previously-reported molecular findings, but provides support for a sister relationship between the superfamilies Muscicapoidea and Passeroidea on a short basal internode of the Passerida where relationships have been difficult to resolve. An unexpected placement of the Paridae (represented by Hume's groundpecker) within the Muscicapoidea was observed. Consistent with other molecular studies the mtDNA phylogeny reveals paraphyly within the Muscicapoidea and a sister relationship of Fringilla with Carduelis rather than Emberiza.
Collapse
Affiliation(s)
- H Dawn Marshall
- Wildlife Genetics and Genomics Laboratory, Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | | | | |
Collapse
|
11
|
Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre PH, Graham CH, Graves GR, Jønsson KA, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J, Rahbek C. An Update of Wallace’s Zoogeographic Regions of the World. Science 2012; 339:74-8. [PMID: 23258408 DOI: 10.1126/science.1228282] [Citation(s) in RCA: 516] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modern attempts to produce biogeographic maps focus on the distribution of species, and the maps are typically drawn without phylogenetic considerations. Here, we generate a global map of zoogeographic regions by combining data on the distributions and phylogenetic relationships of 21,037 species of amphibians, birds, and mammals. We identify 20 distinct zoogeographic regions, which are grouped into 11 larger realms. We document the lack of support for several regions previously defined based on distributional data and show that spatial turnover in the phylogenetic composition of vertebrate assemblages is higher in the Southern than in the Northern Hemisphere. We further show that the integration of phylogenetic information provides valuable insight on historical relationships among regions, permitting the identification of evolutionarily unique regions of the world.
Collapse
Affiliation(s)
- Ben G Holt
- Center for Macroecology, Evolution, and Climate, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rainio MJ, Kanerva M, Wahlberg N, Nikinmaa M, Eeva T. Variation of basal EROD activities in ten passerine bird species--relationships with diet and migration status. PLoS One 2012; 7:e33926. [PMID: 22479477 PMCID: PMC3315499 DOI: 10.1371/journal.pone.0033926] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 02/21/2012] [Indexed: 11/21/2022] Open
Abstract
Inter-specific differences in animal defence mechanisms against toxic substances are currently poorly understood. The ethoxyresorufin-O-deethylase (EROD) enzyme plays an important role in defence against toxic chemicals in a wide variety of animals, and it is an important biomarker for environmental contamination. We compared basal hepatic EROD activity levels among ten passerine species to see if there is inter-specific variation in enzyme activity, especially in relation to their diet and migration status. Migratory insectivores showed higher EROD activity compared to granivores. We hypothesize that the variable invertebrate diet of migratory insectivores contains a wider range of natural toxins than the narrower diet of granivores. This may have affected the evolution of mixed function oxidases (MFO) system and enzyme activities. We further tested whether metabolic rates or relative liver size were associated with the variation in detoxification capacity. We found no association between EROD activity and relative (per mass unit) basal metabolic rate (BMR). Instead, EROD activity and relative liver mass (% of body mass) correlated positively, suggesting that a proportionally large liver also functions efficiently. Our results suggest that granivores and non-migratory birds may be more vulnerable to environmental contaminants than insectivores and migratory birds. The diet and migration status, however, are phylogenetically strongly connected to each other, and their roles cannot be fully separated in our analysis with only ten passerine species.
Collapse
Affiliation(s)
- Miia J Rainio
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland.
| | | | | | | | | |
Collapse
|
13
|
Silva-Iturriza A, Ketmaier V, Tiedemann R. Profound population structure in the Philippine Bulbul Hypsipetes philippinus (Pycnonotidae, Aves) is not reflected in its Haemoproteus haemosporidian parasite. INFECTION GENETICS AND EVOLUTION 2012; 12:127-36. [DOI: 10.1016/j.meegid.2011.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/19/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
|
14
|
Mayr G. Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds. J ZOOL SYST EVOL RES 2010. [DOI: 10.1111/j.1439-0469.2010.00586.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
|
16
|
Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS One 2010; 5:e13456. [PMID: 20976147 PMCID: PMC2956655 DOI: 10.1371/journal.pone.0013456] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/23/2010] [Indexed: 11/29/2022] Open
Abstract
Background The rate of extrapair paternity is a commonly used index for the risk of sperm competition in birds, but paternity data exist for only a few percent of the approximately 10400 extant species. As paternity analyses require extensive field sampling and costly lab work, species coverage in this field will probably not improve much in the foreseeable future. Recent findings from passerine birds, which constitute the largest avian order (∼5 900 species), suggest that sperm phenotypes carry a signature of sperm competition. Here we examine how well standardized measures of sperm length variation can predict the rate of extrapair paternity in passerine birds. Methodology/Principal Findings We collected sperm samples from 55 passerine species in Canada and Europe for which extrapair paternity rates were already available from either the same (n = 24) or a different (n = 31) study population. We measured the total length of individual spermatozoa and found that both the coefficient of between-male variation (CVbm) and within-male variation (CVwm) in sperm length were strong predictors of the rate of extrapair paternity, explaining as much as 65% and 58%, respectively, of the variation in extrapair paternity among species. However, only the CVbm predictor was independent of phylogeny, which implies that it can readily be converted into a currency of extrapair paternity without the need for phylogenetic correction. Conclusion/Significance We propose the CVbm index as an alternative measure to extrapair paternity for passerine birds. Given the ease of sperm extraction from male birds in breeding condition, and a modest number of sampled males required for a robust estimate, this new index holds a great potential for mapping the risk of sperm competition across a wide range of passerine birds.
Collapse
|
17
|
Sangster G, Alström P, Forsmark E, Olsson U. Multi-locus phylogenetic analysis of Old World chats and flycatchers reveals extensive paraphyly at family, subfamily and genus level (Aves: Muscicapidae). Mol Phylogenet Evol 2010; 57:380-92. [DOI: 10.1016/j.ympev.2010.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 06/25/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
|
18
|
Nabholz B, Jarvis ED, Ellegren H. Obtaining mtDNA genomes from next-generation transcriptome sequencing: A case study on the basal Passerida (Aves: Passeriformes) phylogeny. Mol Phylogenet Evol 2010; 57:466-70. [DOI: 10.1016/j.ympev.2010.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/08/2010] [Accepted: 06/15/2010] [Indexed: 01/06/2023]
|
19
|
Burri R, Salamin N, Studer RA, Roulin A, Fumagalli L. Adaptive Divergence of Ancient Gene Duplicates in the Avian MHC Class II. Mol Biol Evol 2010; 27:2360-74. [DOI: 10.1093/molbev/msq120] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Schweizer M, Seehausen O, Güntert M, Hertwig ST. The evolutionary diversification of parrots supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations. Mol Phylogenet Evol 2010; 54:984-94. [DOI: 10.1016/j.ympev.2009.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
21
|
Plasmodium relictum (lineage P-SGS1): Further observation of effects on experimentally infected passeriform birds, with remarks on treatment with Malarone. Exp Parasitol 2009; 123:134-9. [PMID: 19545566 DOI: 10.1016/j.exppara.2009.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 11/22/2022]
Abstract
Plasmodium relictum (lineage P-SGS1) is a widespread malaria parasite that causes disease of different severity in different species of birds. However, experimental studies on the effects of this parasite on avian hosts are uncommon. We investigated development of this lineage in experimentally infected greenfinches Carduelis chloris and compared the obtained data with the literature information about the virulence of the same parasite lineage for phylogenetically closely related bird species. We also used an opportunity to test the efficacy of the antimalarial drug Malarone in treatment of the experimental infection. The cryopreserved strain of the lineage P-SGS1 was multiplied in 4 experimentally infected chaffinches. Light parasitemia developed in these birds; the parasites were then inoculated to 6 uninfected recipient greenfinches. Six uninfected greenfinches were used as negative controls. Light parasitemia developed in all experimental greenfinches. There were no significant effects of malaria on the body mass of greenfinches, but haematocrit value was slightly lower in experimental birds than in control ones; the infection did not cause mortality or morbidity in these birds. According to available data, all investigated fringillid birds are susceptible to P. relictum (P-SGS1), but the same malaria parasite develops markedly differently in different bird species, even closely related hosts. Thus, the observed effects of the same malaria lineage on one species of bird cannot be generalized to others, even closely related ones. The cure with Malarone was highly efficient for blood stages of P. relictum, but exoerythrocytic stages were unaffected.
Collapse
|