Sindeldecker D, Stoodley P. The many antibiotic resistance and tolerance strategies of
Pseudomonas aeruginosa.
Biofilm 2021;
3:100056. [PMID:
34471871 PMCID:
PMC8387898 DOI:
10.1016/j.bioflm.2021.100056]
[Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a bacterial pathogen associated with a wide range of infections and utilizes several strategies to establish and maintain infection including biofilm production, multidrug resistance, and antibiotic tolerance. Multidrug resistance in P. aeruginosa, as well as in all other bacterial pathogens, is a growing concern. Aminoglycoside resistance, in particular, is a major concern in P. aeruginosa infections and must be better understood in order to maintain effective clinical treatment. In this review, the various antibiotic resistance and tolerance mechanisms of Pseudomonas are explored including: classic mutation driven resistance, adaptive resistance, persister cells, small colony variants, phoenix colonies, and biofilms. It is important to further characterize each of these phenotypes and continue to evaluate antibiotic surviving isolates for novel driving mechanisms, so that we are better prepared to combat the rising number of recurrent and recalcitrant infections.
Collapse