Hwang DJ, Roberts IM, Wilson TM. Assembly of tobacco mosaic virus and TMV-like pseudovirus particles in Escherichia coli.
ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1994;
9:543-58. [PMID:
7518274 DOI:
10.1007/978-3-7091-9326-6_52]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
High-level expression of plant viral proteins, including coat protein (CP), is possible in Escherichia coli. Native tobacco mosaic virus (TMV) CP expressed in E. coli remains soluble but has a non-acetylated N-terminal Ser residue and following extraction, is unable to package TMV RNA in vitro under standard assembly conditions. Changing the Ser to Ala or Pro by PCR-mutagenesis did not confer assembly competence in vitro, despite these being non-acetylated N-termini present in two natural strains of TMV. All TMV CPs made in E. coli formed stacked cylindrical aggregates in vitro at pH 5.0 and failed to be immunogold-labelled using a mouse monoclonal antibody specific for helically assembled TMV CP. TMV self-assembly has been studied extensively in vitro, and an origin of assembly sequence (OAS) mapped internally on the 6.4 kb ssRNA genome. Pseudovirus particles can be assembled mono- or bi-directionally in vitro using virus-derived CP and chimeric ssRNAs containing the cognate TMV OAS, but otherwise of unlimited length and sequence. Studies on plant virus assembly in vivo would be facilitated by a model system amenable to site-directed mutagenesis and rapid recovery of progeny particles. When chimeric transcripts containing the TMV OAS were co-expressed with TMV CP in vivo for 2-18 h, helical TMV-like ribonucleoprotein particles of the predicted length were formed in high yield (up to 7.4 micrograms/mg total bacterial protein). In addition to providing a rapid, inexpensive and convenient system to produce, protect and recover chimeric gene transcripts of any length or sequence, this E. coli system also offers a rapid approach for studying the molecular requirements for plant virus "self-assembly" in vivo. Transcription of a full-length cDNA clone of TMV RNA also resulted in high levels of CP expression and assembly of sufficient intact genomic RNA to initiate virus infection of susceptible tobacco plants.
Collapse