1
|
Characterization of conformation-specific monoclonal antibodies against rabies virus nucleoprotein. Arch Virol 2010; 155:1187-92. [PMID: 20521069 DOI: 10.1007/s00705-010-0709-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
Abstract
Three anti-rabies virus (RABV) nucleoprotein (N) monoclonal antibodies (Mab) were characterized by immunofluorescence assays, western blotting, and immunohistochemistry. One of these Mabs recognized the antigen by all of the assays, while the other two recognized N only in the native form in the immunofluorescence assay. These data, together with epitope mapping studies, suggest that two anti-N Mabs recognize conformational epitopes located within the N-terminal region of the RABV N protein. The availability of Mabs specific for both linear and epitope-specific antibodies should prove valuable for rabies diagnosis as well as for RABV N protein structure-function studies.
Collapse
|
2
|
Toriumi H, Kawai A. Structural difference recognized by a monoclonal antibody #404-11 between the rabies virus nucleocapsid (NC) produced in virus infected cells and the NC-like structures produced in the nucleoprotein (N) cDNA-transfected cells. Microbiol Immunol 2005; 49:757-70. [PMID: 16113504 DOI: 10.1111/j.1348-0421.2005.tb03666.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated structural changes in the rabies virus (HEP-Flury strain) nucleocapsid (NC) during the virus replication, for which we used two anti-nucleoprotein (N) monoclonal antibodies (mAbs), #404-11 (specific for a conformation-dependently exposed linear epitope) and #1-7-11 (specific for a conformational epitope which is exposed after the nucleocapsid formation). Both mAbs recognized the N protein of the viral NC, but not of the RNA-free N-P complex. The 1-7-11 and 404-11 epitopes could be mapped to the N-terminal and the C-terminal regions of N protein, respectively. Immunoprecipitation studies demonstrated that treatment of the NC either with the alkaline phosphatase or sodium deoxycholate (DOC) resulted in dissociation of most P proteins from the NC and in the reduced reactivity to mAb #404-11, but not to mAb #1-7-11. NC-like structures produced in the N cDNA-transfected cells displayed strong reactivity to mAb #1-7-11; however, reactivity to mAb #404-11 was very weak. And, coexpression with viral phosphoprotein (P) resulted in little increase in reactivity to mAb #404-11 of the NC-like structures, while the reactivity was significantly increased by cotransfection with P and the viral minigenome whose 3'- and 5'-end structures were derived from the viral genome. From these results, we assume that, although the 404-11 epitope is a linear one, the epitope-containing region is exposed only when N proteins encapsidate properly the viral RNA in collaboration with the P protein. Further, exposure of the 404-11 epitope region might be function-related, and be regulated by association and dissociation of the P protein.
Collapse
Affiliation(s)
- Harufusa Toriumi
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
3
|
Toriumi H, Kawai A. Association of rabies virus nominal phosphoprotein (P) with viral nucleocapsid (NC) is enhanced by phosphorylation of the viral nucleoprotein (N). Microbiol Immunol 2005; 48:399-409. [PMID: 15215627 DOI: 10.1111/j.1348-0421.2004.tb03529.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated possible role(s) of N protein phosphorylation in the rabies virus replication process. A large amount of P proteins are associated with the viral nucleocapsid (NC) in the infected cell, the amount which was greatly decreased by phosphatase-treatment of the isolated NC, indicating that the phosphate group of N and/or P proteins is essential for their stable association with the NC. Immunoprecipitation studies were performed on the coexpressed normal N or phosphorylation deficient N(S389A) and P proteins, demonstrating that the P protein associated with phosphorylation-deficient NC-like structures was much less in amount than that associated with the wild type NC. Similar results were also obtained with a mutant P protein, PDeltaN19, which lacked the N-terminal 19 amino acids and was capable of binding to the NC-like structures but incapable of forming the RNA-free N-P complexes. Immunoprecipitation studies with mAb #402-13 further suggested that the NC-specific linear 402-13 epitope was exposed even on the P proteins which were associated with the phosphorylation-deficient NC-like structures, but such association was very weak as demonstrated by greatly decreased amounts of coprecipitated NC-like structures. From these results, we assume that the phosphorylation of N protein enhances the association between the 402-13 epitope-positive P protein and the NC probably by stabilizing such P-NC binding.
Collapse
Affiliation(s)
- Harufusa Toriumi
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | |
Collapse
|
4
|
Irie T, Matsuda Y, Honda Y, Morimoto K, Kawai A. Studies on the escape mutants of rabies virus which are resistant to neutralization by a highly conserved conformational epitope-specific monoclonal antibody #1-46-12. Microbiol Immunol 2003; 46:449-61. [PMID: 12222931 DOI: 10.1111/j.1348-0421.2002.tb02719.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigated a virus-neutralizing conformational epitope of the rabies virus glycoprotein (G) that is recognized by an anti-G monoclonal antibody (mAb; #1-46-12) and shared by most of the laboratory strains of the virus. To investigate the epitope structure, we isolated escape mutants from the HEP-Flury virus (wild-type; wt) after repeated passages in culture in the presence of the mAb. Immunofluorescence studies indicated that the mutants could be classified into two groups; the Group I lacked the epitope, while Group II preserved the epitope. The latter was dominant under the passage conditions, since Group I disappeared during the continuous passages. G proteins showed different electrophoretic mobilities; G protein of Group I migrated at the same rate as wt G protein, while that of Group II migrated at a slower rate, which was shown to be due to acquisition of an additional oligosaccharide side chain. Nucleotide sequencing of the G gene strongly suggested that amino acid substitutions at Thr-36 by Pro and Ser-39 by Thr of the G protein are responsible for the escape mutations of Groups I and II, respectively. The latter is a unique mutation of the rabies virus that allows the G protein to be glycosylated additionally at Asn-37, a potential glycosylation site that is not glycosylated in the parent virus, in preserving the epitope-positive conformation. These results suggest that to keep the 1-46-12 epitope structure is of greater survival advantage for the virus to escape the neutralization than to destroy it, which could be achieved by acquiring an additional oligosaccharide chain at Asn-37.
Collapse
Affiliation(s)
- Takashi Irie
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
5
|
Irie T, Kawai A. Studies on the different conditions for rabies virus neutralization by monoclonal antibodies #1-46-12 and #7-1-9. J Gen Virol 2002; 83:3045-3053. [PMID: 12466481 DOI: 10.1099/0022-1317-83-12-3045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus-neutralizing activity of two monoclonal antibodies (mAbs), #7-1-9 and #1-46-12, against rabies virus glycoprotein (G) was compared. Although these mAbs affected the virion's ability to bind to host cells similarly, a big difference was found in the titres of virus neutralization (1:7132 and 1:32 for mAbs #1-46-12 and #7-1-9, respectively, at a concentration of 10 micro g protein/ml). Although no big difference in virion-binding affinity between the two mAbs was found, the number of antibodies required for virus neutralization was very low, </=20 molecules for mAb #1-46-12 and >/=250 molecules for mAb #7-1-9. In the latter case, the mAbs cover a major part of the virion surface and cause steric hindrance of viral receptor-binding activity. The infectivity of an epitope-preserved escape mutant virus (R-61) was not affected by the binding of high numbers of mAb #1-46-12 to the virion, which implies that mAb binding does not mask the receptor-binding site of the viral spikes. Based on these results, it is hypothesized that mAb #1-46-12 affected virus infectivity by a mechanism different from covering the virion spikes. Possible virus-neutralizing mechanisms by low numbers of mAb #1-46-12 in comparison to that of mAb #7-1-9 are discussed.
Collapse
Affiliation(s)
- Takashi Irie
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan1
| | - Akihiko Kawai
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan1
| |
Collapse
|
6
|
Toriumi H, Honda Y, Morimoto K, Tochikura TS, Kawai A. Structural relationship between nucleocapsid-binding activity of the rabies virus phosphoprotein (P) and exposure of epitope 402-13 located at the C terminus. J Gen Virol 2002; 83:3035-3043. [PMID: 12466480 DOI: 10.1099/0022-1317-83-12-3035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural changes of the nominal phosphoprotein (P) of rabies virus using a monoclonal antibody, mAb #402-13, was investigated. This mAb recognized a linear epitope that was mapped roughly to a C-terminal region of the P protein, ranging from aa 256 to 297. The P gene products were detected by the mAb in immunoblot assays, the products of which were produced either in BHK-21 cells or in Escherichia coli cells. The mAb, however, detected very low levels of P gene products in immunoprecipitation assays. The mAb recognized the nucleocapsid (NC)-associated P proteins but recognized free P protein and free N-P complex produced in the infected cells much less efficiently. When the P proteins were released from the NC, however, they were no longer recognized by the mAb. Similar results were obtained from BHK-21 cells co-transfected with P and N cDNAs. Furthermore, studies with C-terminally truncated P protein mutants revealed that the NC-binding ability of the P protein was dependent on the presence of the C-terminal epitope region. From these results, it is thought that the 402-13 epitope region is concealed when the P protein is present in a free form or free N-P complex but is exposed when it is associated with the NC. The C-terminal epitope region seemed to be essential for the P protein to be associated with the NC but not for the formation of free N-P complexes with newly synthesized N protein.
Collapse
Affiliation(s)
- Harufusa Toriumi
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan1
| | - Yoshikazu Honda
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan1
| | - Kinjiro Morimoto
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan1
| | - Tadafumi S Tochikura
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan1
| | - Akihiko Kawai
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan1
| |
Collapse
|
7
|
Kawai A, Toriumi H, Tochikura TS, Takahashi T, Honda Y, Morimoto K. Nucleocapsid formation and/or subsequent conformational change of rabies virus nucleoprotein (N) is a prerequisite step for acquiring the phosphatase-sensitive epitope of monoclonal antibody 5-2-26. Virology 1999; 263:395-407. [PMID: 10544112 DOI: 10.1006/viro.1999.9962] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the antigenic maturation of rabies virus N protein, for which we used some conformational epitope-specific monoclonal antibodies (MAbs) and an MAb (5-2-26) against a phosphorylation-dependent linear epitope. Infected cells were lysed with a deoxycholate-free lysis buffer and separated by ultracentrifugation into the soluble top and the nucleocapsid fractions. None of the study MAbs recognized N proteins in the top fraction, whereas nucleocapsid-associated N proteins were recognized by all of the MAbs. Immunoprecipitation with polyclonal anti-N antibodies coprecipitated the P proteins from the top fraction, indicating that soluble N proteins are mostly associated with the P protein. The N proteins dissociated from both the N-P complex and nucleocapsids were recognized by none of the study MAbs, whereas the MAb 5-2-6 recognized the SDS-denatured N proteins of the nucleocapsid but not of the top fraction. In addition, the phosphorylation-deficient mutant N proteins were shown to be similarly accumulated as the wild-type N proteins into the viral inclusion bodies, defined as the virus-specific structures composed of viral nucleocapsids, that are produced in the cytoplasm of the infected cells. Based on these results, we believe that newly synthesized N proteins are not immediately phosphorylated at serine-389 (a common phosphorylation site) but are first associated with the P protein. After being used for encapsidation of the viral RNA, the N proteins undergo conformational changes, whereby epitopes for the conformation-specific MAbs are formed and become phosphorylated at serine-389.
Collapse
Affiliation(s)
- A Kawai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Sakyo-ku, 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Yamamoto K, Tochikura TS, Xiao S, Sakurai A, Kawai A. Association of a cellular 21-kDa transmembrane protein (VAP21) with enveloped viruses. Microbiol Immunol 1999; 43:449-59. [PMID: 10449251 DOI: 10.1111/j.1348-0421.1999.tb02428.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We reported previously that the rabies virions contained a 21-kDa cellular transmembrane protein (referred to as VAP21) as a minor component (Sagara, J. et al, Microbiol. Immunol. 41(12): 947-955, 1997). In this study, we further examined the possible interactions of VAP21 with other enveloped viruses, including the vesicular stomatitis virus (VSV; negative-stranded RNA virus), Sindbis virus (positive-stranded RNA virus) and herpes simplex virus type 1 (HSV-1; double-stranded DNA virus). An immunoblot analysis demonstrated that all of these enveloped viruses contained VAP21 in the virion as a minor component. Immunoprecipitation studies suggested that VAP21 was associated with certain viral proteins in the cell, such as the matrix (M) protein of VSV, a capsid protein of Sindbis virus, and at least a capsid protein (VP5) of HSV-1. The association was disrupted by treatment with 0.5% sodium dodecyl sulfate, but resistant to the treatment with 1% NP-40 plus 1% deoxycholate. These results suggest that: 1) VAP21 is not primarily associated with the viral transmembrane glycoprotein but rather with the internal viral protein, and, 2) this association would cause the efficient incorporation of VAP21 into the virion.
Collapse
Affiliation(s)
- K Yamamoto
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
9
|
Nakahara K, Ohnuma H, Sugita S, Yasuoka K, Nakahara T, Tochikura TS, Kawai A. Intracellular behavior of rabies virus matrix protein (M) is determined by the viral glycoprotein (G). Microbiol Immunol 1999; 43:259-70. [PMID: 10338196 DOI: 10.1111/j.1348-0421.1999.tb02402.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To investigate the nature and intracellular behavior of the matrix (M) protein of an avirulent strain (HEP-Flury) of rabies virus, we cloned and sequenced the cDNA of the protein. Using expression vectors pZIP-NeoSV(X)1 and pCDM8, the cDNA was transfected to animal cells (BHK-21 and COS-7) with or without coexpression of viral glycoprotein (G). When M protein alone was expressed in the cells, it displayed homogeneous distribution in the whole cell including the nucleus. In contrast, coexpression with G protein resulted in the abolishment of nuclear distribution of M antigen, and both of the antigens displayed a colocalized distribution in the cell, especially at the cellular membrane as seen in the virus-infected cells, while the distribution of G antigen was not affected by coexpressed M antigen. Immunoprecipitation studies revealed that M protein was coprecipitated with G protein by anti-G antibody, and vice versa, although cross-linking with dithiobis(succinimidyl propionate) was necessary for coprecipitation because of their easier dissociation in the presence of sodium deoxycholate. These results suggest that M protein intimately associates with G protein, which may affect or regulate the behavior (e.g., intracellular localization) of M protein. Studies with deletion mutants of M protein indicate that an internal region around the amino acids from 115 to 151 is essential for the M protein to preserve its binding ability to G protein.
Collapse
Affiliation(s)
- K Nakahara
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Takamatsu F, Asakawa N, Morimoto K, Takeuchi K, Eriguchi Y, Toriumi H, Kawai A. Studies on the rabies virus RNA polymerase: 2. Possible relationships between the two forms of the non-catalytic subunit (P protein). Microbiol Immunol 1999; 42:761-71. [PMID: 9886149 DOI: 10.1111/j.1348-0421.1998.tb02350.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the relationship between the two forms of rabies virus P protein, a non-catalytic subunit of rabies virus RNA polymerase. The two displayed different electrophoretic mobilities as 37- and 40-kDa polypeptides, hence termed as p37 and p40, respectively. Double labeling experiments with [3H]leucine and [32P]orthophosphate demonstrated that p40 was much more phosphorylated than p37. Treatment of the virion proteins with alkaline phosphatase eliminated only p40, and not 37-kDa polypeptide. The p37 was a major product of the P gene, and was accumulated in the infected cell and incorporated into the virion. On the other hand, p40 was apparently detected only in the virion, and little detected in the cells. Treatment of infected cells with okadaic acid, however, resulted in significant accumulation of p40 in the cell, suggesting that p40 was continuously produced in the cell but dephosphorylated quickly. We detected both 37- and 40-kDa products in P cDNA-transfected animal cells, while only a 37-kDa product was produced in Escherichia coli. Incubation of 37-kDa products from E. coli with the lysates of animal cells in vitro resulted in the production of a 40-kDa product, which was also shown to be suppressed by the heparin. From these results, it is suggested that p40 is produced by the hyperphosphorylation of a 37-kDa polypeptide, which depends on certain heparin-sensitive cellular enzyme(s) and occurs even in the absence of the other viral gene products, and that p40 is reverted quickly to p37 in the infected cells, probably being dependent on some virus-induced factor(s).
Collapse
Affiliation(s)
- F Takamatsu
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Morimoto K, Akamine T, Takamatsu F, Kawai A. Studies on rabies virus RNA polymerase: 1. cDNA cloning of the catalytic subunit (L protein) of avirulent HEP-flury strain and its expression in animal cells. Microbiol Immunol 1998; 42:485-96. [PMID: 9719101 DOI: 10.1111/j.1348-0421.1998.tb02314.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To investigate the RNA polymerase of rabies virus, we cloned a cDNA of the catalytic subunit (called L protein because of its large molecular size) of the HEP-Flury strain, an avirulent strain obtained by high frequencies of serial embryonated hen egg passages. Nucleotide sequencing showed that the cDNA encodes a long polypeptide of 2,127 amino acids (Mr. 242,938). A comparison of the deduced amino acid sequence with that of other strains (PV and SAD B19) indicated that the sequence was highly conserved, except for several amino acid substitutions which were accumulated in some limited regions. A fragment of the cDNA was used for expression in Escherichia coli (E. coli) to prepare the L antigen for raising the antibodies in rabbits. Immunoprecipitation studies with the rabbit antiserum showed that the polypeptides produced in the L cDNA-transfected COS-7 cells displayed almost the same electrophoretic mobility as that of authentic L protein. Immunofluorescence studies indicated that both L and P (another subunit of RNA polymerase) proteins displayed colocalized distribution with the nucleocapsid antigen (N) in the cytoplasmic inclusion bodies, where envelope proteins (G and M) were absent. On the other hand, expression of the L protein alone did not cause inclusion body-like granular distribution, suggesting that the inclusion body-like accumulation depends on certain interaction(s) with other viral gene products, probably with the ribonucleoproteins comprising the inclusion bodies.
Collapse
Affiliation(s)
- K Morimoto
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
12
|
Sagara J, Tochikura TS, Tanaka H, Baba Y, Tsukita S, Tsukita S, Kawai A. The 21-kDa polypeptide (VAP21) in the rabies virion is a CD99-related host cell protein. Microbiol Immunol 1998; 42:289-97. [PMID: 9623916 DOI: 10.1111/j.1348-0421.1998.tb02285.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In our monoclonal antibody (MAb) stocks prepared against the BHK-21 cell antigens, two (#11875 and 28276) recognized a 21-kDa polypeptide (referred to as VAP21) which is efficiently incorporated into the rabies virion. By using these MAbs, we isolated the cDNA clones that encoded a polypeptide of 144 amino acids from our BHK-21 cell cDNA library. Based on the following evidence, the cDNA was assumed to encode a full-length sequence of VAP21 antigen: i) expression of the cDNA in animal cells resulted in the production of a polypeptide recognized by the two MAbs, and its electrophoretic mobility was the same as that of authentic VAP21 antigen; and ii) immunization with the products from the cDNA-transformed E. coli cells raised specific antibodies in rabbits that recognized a 21-kDa polypeptide in the virion. From the deduced amino acid sequence, it is suggested that the VAP21 antigen has a molecular structure of type-I transmembrane protein containing characteristic proline-rich and glycine-rich regions in its ectodomain. Homology searches resulted in finding homologous sequences (totally about 40% homology) in the human MIC2 gene product (CD99; 32-kDa) of T lymphocytes. These results suggest that the VAP21 antigen in the rabies virion is a cellular CD99-related transmembrane protein.
Collapse
Affiliation(s)
- J Sagara
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|