Alarcon JB, Waine GW, McManus DP. DNA vaccines: technology and application as anti-parasite and anti-microbial agents.
ADVANCES IN PARASITOLOGY 1999;
42:343-410. [PMID:
10050276 DOI:
10.1016/s0065-308x(08)60152-9]
[Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
DNA vaccines have been termed The Third Generation of Vaccines. The recent successful immunization of experimental animals against a range of infectious agents and several tumour models of disease with plasmid DNA testifies to the powerful nature of this revolutionary approach in vaccinology. Among numerous advantages, a major attraction of DNA vaccines over conventional vaccines is that they are able to induce protective cytotoxic T-cell responses as well as helper T-cell and humoral immunity. Here we review the current state of nucleic acid vaccines and cover a wide range of topics including delivery mechanisms, uptake and expression of plasmid DNA, and the types of immune responses generated. Further, we discuss safety issues, and document the use of nucleic acid vaccines against viral, bacterial and parasitic diseases, and cancer. The early potential promise of DNA vaccination has been fully substantiated with recent, exciting developments including the movement from testing DNA vaccines in laboratory models to non-human primates and initial human clinical trials. These advances and the emerging voluminous literature on DNA vaccines highlight the rapid progress that has been made in the DNA immunization field. It will be of considerable interest to see whether the progress and optimism currently prevailing can be maintained, and whether the approach can indeed fulfil the medical and commerical promise anticipated.
Collapse