1
|
Zádori ZS, Király K, Al-Khrasani M, Gyires K. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacol Ther 2023; 241:108327. [PMID: 36473615 DOI: 10.1016/j.pharmthera.2022.108327] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The composition of intestinal microbiota is influenced by a number of factors, including medications, which may have a substantial impact on host physiology. Nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics are among those widely used medications that have been shown to alter microbiota composition in both animals and humans. Although much effort has been devoted to identify microbiota signatures associated with these medications, much less is known about the underlying mechanisms. Mucosal inflammation, changes in intestinal motility, luminal pH and bile acid metabolism, or direct drug-induced inhibitory effect on bacterial growth are all potential contributors to NSAID- and opioid-induced dysbiosis, however, only a few studies have addressed directly these issues. In addition, there is a notable overlap between the microbiota signatures of these drugs and certain diseases in which they are used, such as spondyloarthritis (SpA), rheumatoid arthritis (RA) and neuropathic pain associated with type 2 diabetes (T2D). The aims of the present review are threefold. First, we aim to provide a comprehensive up-to-date summary on the bacterial alterations caused by NSAIDs and opioids. Second, we critically review the available data on the possible underlying mechanisms of dysbiosis. Third, we review the current knowledge on gut dysbiosis associated with SpA, RA and neuropathic pain in T2D, and highlight the similarities between them and those caused by NSAIDs and opioids. We posit that drug-induced dysbiosis may contribute to the persistence of these diseases, and may potentially limit the therapeutic effect of these medications by long-term use. In this context, we will review the available literature data on the effect of probiotic supplementation and fecal microbiota transplantation on the therapeutic efficacy of NSAIDs and opioids in these diseases.
Collapse
Affiliation(s)
- Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Le Bastard Q, Berthelot L, Soulillou JP, Montassier E. Impact of non-antibiotic drugs on the human intestinal microbiome. Expert Rev Mol Diagn 2021; 21:911-924. [PMID: 34225544 DOI: 10.1080/14737159.2021.1952075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The gut microbiota is composed of trillions of microbial cells and viruses that interact with hosts. The composition of the gut microbiota is influenced by several factors including age, diet, diseases, or medications. The impact of drugs on the microbiota is not limited to antibiotics and many non-antibiotic molecules significantly alter the composition of the intestinal microbiota. AREAS COVERED This review focuses on the impact of four of the most widely prescribed non-antibiotic drugs in the world: Proton-pump inhibitors, metformin, statins, and non-steroidal anti-inflammatory. We conducted a systematic review by searching online databases including Medline, Web of science, and Scopus for indexed articles published in English until February 2021. We included studies assessing the intestinal microbiome alterations associated with proton pump inhibitors (PPIs), metformin, statins, and nonsteroidal anti-inflammatory drugs (NSAIDs). Only studies using culture-independent molecular techniques were included. EXPERT OPINION The taxonomical signature associated with non-antibiotic drugs are not yet fully described, especially in the field of metabolomic. The identification of taxonomic profiles associated a specific molecule provides information on its mechanism of action through interaction with the intestinal microbiota. Many side effects could be related to the dysbiosis induced by these molecules.
Collapse
Affiliation(s)
- Quentin Le Bastard
- Microbiota Hosts Antibiotics and Bacterial Resistances (Mihar), Université De Nantes, Nantes, France.,Service Des Urgences, CHU De Nantes, Nantes, France
| | - Laureline Berthelot
- Centre De Recherche En Transplantation Et Immunologie UMR 1064, INSERM, Université De Nantes, Nantes, France.,Institut De Transplantation Urologie Néphrologie (ITUN), CHU De Nantes, Nantes, France
| | - Jean-Paul Soulillou
- Centre De Recherche En Transplantation Et Immunologie UMR 1064, INSERM, Université De Nantes, Nantes, France.,Institut De Transplantation Urologie Néphrologie (ITUN), CHU De Nantes, Nantes, France
| | - Emmanuel Montassier
- Microbiota Hosts Antibiotics and Bacterial Resistances (Mihar), Université De Nantes, Nantes, France.,Service Des Urgences, CHU De Nantes, Nantes, France
| |
Collapse
|
3
|
Tsujimoto H, Hirata Y, Ueda Y, Kinoshita N, Tawa H, Tanaka Y, Koshiba R, Ota K, Kojima Y, Kakimoto K, Takeuchi T, Miyazaki T, Nakamura S, Higuchi K. Effect of a proton-pump inhibitor on intestinal microbiota in patients taking low-dose aspirin. Eur J Clin Pharmacol 2021; 77:1639-1648. [PMID: 34085115 DOI: 10.1007/s00228-021-03167-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Low-dose aspirin (LDA) administration prevents cerebral infarction and myocardial infarction, but many studies found an association with mucosal injury. Proton-pump inhibitors (PPIs) can prevent gastric and duodenal mucosal damage, but they may exacerbate small-intestinal mucosal injury by altering the microbiota. We aimed to assess the effect of PPIs on the intestinal flora of LDA users. METHODS Thirty-two recruited patients, who received LDA (100 mg/day) but did not take PPIs, were divided into 15 patients additionally receiving esomeprazole (20 mg/day) and 17 patients additionally receiving vonoprazan (10 mg/day). On days 0, 30, 90, and 180, the microbiota of each patient was examined by terminal restriction fragment length polymorphism analysis, and the serum gastrin, hemoglobin, and hematocrit levels were measured. RESULTS Additional PPI administration increased the proportion of Lactobacillales in the microbiota of LDA users. This trend was more prevalent in the vonoprazan group (p < 0.0001) than in the esomeprazole group (p = 0.0024). The Lactobacillales proportion was positively correlated with the gastrin level (r = 0.5354). No significant hemoglobin or hematocrit level reduction was observed in subjects receiving LDA with additional PPI. CONCLUSIONS Additional PPI administration increased the Lactobacillales proportion in the microbiota of LDA users. The positive correlation between the gastrin level and the proportion of Lactobacillales suggested that the change in the intestinal flora was associated with the degree of suppression of gastric acid secretion. Additional oral PPI did not significantly promote anemia, but the risk of causing PPI-induced small-intestinal mucosal injury in LDA users should be considered.
Collapse
Affiliation(s)
- Hiroyuki Tsujimoto
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Yuki Hirata
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan.
| | - Yasuhiro Ueda
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Naohiko Kinoshita
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Hideki Tawa
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Yasuyoshi Tanaka
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Ryoji Koshiba
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kazuhiro Ota
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Yuichi Kojima
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kazuki Kakimoto
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Toshihisa Takeuchi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Takako Miyazaki
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Shiro Nakamura
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka, 569-8686, Japan
| |
Collapse
|
4
|
Guo CG, Leung WK. Potential Strategies in the Prevention of Nonsteroidal Anti-inflammatory Drugs-Associated Adverse Effects in the Lower Gastrointestinal Tract. Gut Liver 2021; 14:179-189. [PMID: 31547642 PMCID: PMC7096237 DOI: 10.5009/gnl19201] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022] Open
Abstract
With the increasing use of nonsteroidal anti-inflammatory drugs (NSAIDs), the incidence of lower gastrointestinal (GI) complications is expected to increase. However, unlike upper GI complications, the burden, pathogenesis, prevention and treatment of NSAID-associated lower GI complications remain unclear. To date, no cost-effective and safe protective agent has been developed that can completely prevent or treat NSAID-related lower GI injuries. Selective COX-2 inhibitors, misoprostol, intestinal microbiota modulation, and some mucoprotective agents have been reported to show protective effects on NSAID-induced lower GI injuries. This review aims to provide an overview of the current evidence on the prevention of NSAID-related lower GI injuries.
Collapse
Affiliation(s)
- Chuan-Guo Guo
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Wai K Leung
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Hsieh SY, Lian YZ, Lin IH, Yang YC, Tinkov AA, Skalny AV, Chao JCJ. Combined Lycium babarum polysaccharides and C-phycocyanin increase gastric Bifidobacterium relative abundance and protect against gastric ulcer caused by aspirin in rats. Nutr Metab (Lond) 2021; 18:4. [PMID: 33407626 PMCID: PMC7789774 DOI: 10.1186/s12986-020-00538-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs such as aspirin are used for the treatment of cardiovascular disease. Chronic use of low-dose aspirin is associated with the occurrence of gastric ulcer. The aim of this study was to investigate the healing potential of Lycium barbarum polysaccharides (LBP) from Chinese Goji berry and C-phycocyanin (CPC) from Spirulina platensis on gastric ulcer in rats. METHODS Male Sprague-Dawley rats were divided into five groups: normal, aspirin (700 mg/kg bw), LBP (aspirin + 100 mg/kg bw/d LBP), CPC (aspirin + 50 mg/kg bw/d CPC), and MIX (aspirin + 50 mg/kg bw/d LBP + 25 mg/kg bw/d CPC) groups. Gastric ulcer was developed by daily oral feeding of aspirin for 8 weeks. Treatments were given orally a week before ulcer induction for 9 weeks. RESULTS The MIX group elevated gastric cyclooxygenase-1, prostaglandin E2, and total nitrite and nitrate levels by 139%, 86%, and 66%, respectively, compared with the aspirin group (p < 0.05). Moreover, the MIX group reduced lipid peroxides malondialdehyde levels by 78% (p < 0.05). The treatment of LBP and/or CPC increased gastric Bifidobacterium relative abundance by 2.5-4.0 times compared with the aspirin group (p < 0.05). CONCLUSIONS We conclude that combined LBP and CPC enhance gastroprotective factors, inhibit lipid peroxidation, and increase gastric Bifidobacterium relative abundance. Combined LBP and CPC have protective potential against gastric ulcer caused by aspirin in rats.
Collapse
Affiliation(s)
- Shu-Yu Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, 11031, Taiwan
| | - Yu Zhi Lian
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, 11031, Taiwan
| | - I-Hsuan Lin
- Research Center of Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chen Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan
| | - Alexey A Tinkov
- Sechenov First Moscow State Medical University, Moscow, Russia
- K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Anatoly V Skalny
- Sechenov First Moscow State Medical University, Moscow, Russia
- K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Jane C-J Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, 11031, Taiwan.
- Master Program in Global Health and Development, Taipei Medical University, Taipei 110, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
6
|
Wang X, Tang Q, Hou H, Zhang W, Li M, Chen D, Gu Y, Wang B, Hou J, Liu Y, Cao H. Gut Microbiota in NSAID Enteropathy: New Insights From Inside. Front Cell Infect Microbiol 2021; 11:679396. [PMID: 34295835 PMCID: PMC8290187 DOI: 10.3389/fcimb.2021.679396] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
As a class of the commonly used drugs in clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) can cause a series of adverse events including gastrointestinal injuries. Besides upper gastrointestinal injuries, NSAID enteropathy also attracts attention with the introduction of capsule endoscopy and double balloon enteroscopy. However, the pathogenesis of NSAID enteropathy remains to be entirely clarified. Growing evidence from basic and clinical studies presents that gut microbiota is a critical factor in NSAID enteropathy progress. We have reviewed the recent data about the interplay between gut microbiota dysbiosis and NSAID enteropathy. The chronic medication of NSAIDs could change the composition of the intestinal bacteria and aggravate bile acids cytotoxicity. Meanwhile, NSAIDs impair the intestinal barrier by inhibiting cyclooxygenase and destroying mitochondria. Subsequently, intestinal bacteria translocate into the mucosa, and then lipopolysaccharide released from gut microbiota combines to Toll-like receptor 4 and induce excessive production of nitric oxide and pro-inflammatory cytokines. Intestinal injuries present in the condition of intestinal inflammation and oxidative stress. In this paper, we also have reviewed the possible strategies of regulating gut microbiota for the management of NSAID enteropathy, including antibiotics, probiotics, prebiotics, mucosal protective agents, and fecal microbiota transplant, and we emphasized the adverse effects of proton pump inhibitors on NSAID enteropathy. Therefore, this review will provide new insights into a better understanding of gut microbiota in NSAID enteropathy.
Collapse
Affiliation(s)
- Xianglu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiang Tang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| |
Collapse
|
7
|
Roberts JL, Liu G, Darby TM, Fernandes LM, Diaz-Hernandez ME, Jones RM, Drissi H. Bifidobacterium adolescentis supplementation attenuates fracture-induced systemic sequelae. Biomed Pharmacother 2020; 132:110831. [PMID: 33022534 PMCID: PMC9979243 DOI: 10.1016/j.biopha.2020.110831] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is an important contributor to both health and disease. While previous studies have reported on the beneficial influences of the gut microbiota and probiotic supplementation on bone health, their role in recovery from skeletal injury and resultant systemic sequelae remains unexplored. This study aimed to determine the extent to which probiotics could modulate bone repair by dampening fracture-induced systemic inflammation. Our findings demonstrate that femur fracture induced an increase in gut permeability lasting up to 7 days after trauma before returning to basal levels. Strikingly, dietary supplementation with Bifidobacterium adolescentis augmented the tightening of the intestinal barrier, dampened the systemic inflammatory response to fracture, accelerated fracture callus cartilage remodeling, and elicited enhanced protection of the intact skeleton following fracture. Together, these data outline a mechanism whereby dietary supplementation with beneficial bacteria can be therapeutically targeted to prevent the systemic pathologies induced by femur fracture.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA,Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA
| | - Guanglu Liu
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Trevor M. Darby
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Rheinallt M. Jones
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Flowers SA, Bhat S, Lee JC. Potential Implications of Gut Microbiota in Drug Pharmacokinetics and Bioavailability. Pharmacotherapy 2020; 40:704-712. [DOI: 10.1002/phar.2428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Stephanie A. Flowers
- Department of Pharmacy Practice University of Illinois at Chicago Chicago Illinois USA
| | - Shubha Bhat
- Department of Pharmacy Practice Boston Medical Center Boston Massachusetts USA
| | - James C. Lee
- Department of Pharmacy Practice University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
9
|
Maseda D, Ricciotti E. NSAID-Gut Microbiota Interactions. Front Pharmacol 2020; 11:1153. [PMID: 32848762 PMCID: PMC7426480 DOI: 10.3389/fphar.2020.01153] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAID)s relieve pain, inflammation, and fever by inhibiting the activity of cyclooxygenase isozymes (COX-1 and COX-2). Despite their clinical efficacy, NSAIDs can cause gastrointestinal (GI) and cardiovascular (CV) complications. Moreover, NSAID use is characterized by a remarkable individual variability in the extent of COX isozyme inhibition, therapeutic efficacy, and incidence of adverse effects. The interaction between the gut microbiota and host has emerged as a key player in modulating host physiology, gut microbiota-related disorders, and metabolism of xenobiotics. Indeed, host-gut microbiota dynamic interactions influence NSAID disposition, therapeutic efficacy, and toxicity. The gut microbiota can directly cause chemical modifications of the NSAID or can indirectly influence its absorption or metabolism by regulating host metabolic enzymes or processes, which may have consequences for drug pharmacokinetic and pharmacodynamic properties. NSAID itself can directly impact the composition and function of the gut microbiota or indirectly alter the physiological properties or functions of the host which may, in turn, precipitate in dysbiosis. Thus, the complex interconnectedness between host-gut microbiota and drug may contribute to the variability in NSAID response and ultimately influence the outcome of NSAID therapy. Herein, we review the interplay between host-gut microbiota and NSAID and its consequences for both drug efficacy and toxicity, mainly in the GI tract. In addition, we highlight progress towards microbiota-based intervention to reduce NSAID-induced enteropathy.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, and Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Emanuela Ricciotti,
| |
Collapse
|
10
|
Mortensen B, Murphy C, O'Grady J, Lucey M, Elsafi G, Barry L, Westphal V, Wellejus A, Lukjancenko O, Eklund AC, Nielsen HB, Baker A, Damholt A, van Hylckama Vlieg JET, Shanahan F, Buckley M. Bifidobacteriumbreve Bif195 Protects Against Small-Intestinal Damage Caused by Acetylsalicylic Acid in Healthy Volunteers. Gastroenterology 2019; 157:637-646.e4. [PMID: 31095949 DOI: 10.1053/j.gastro.2019.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Enteropathy and small-intestinal ulcers are common adverse effects of nonsteroidal anti-inflammatory drugs such as acetylsalicylic acid (ASA). Safe, cytoprotective strategies are needed to reduce this risk. Specific bifidobacteria might have cytoprotective activities, but little is known about these effects in humans. We used serial video capsule endoscopy (VCE) to assess the efficacy of a specific Bifidobacterium strain in healthy volunteers exposed to ASA. METHODS We performed a single-site, double-blind, parallel-group, proof-of-concept analysis of 75 heathy volunteers given ASA (300 mg) daily for 6 weeks, from July 31 through October 24, 2017. The participants were randomly assigned (1:1) to groups given oral capsules of Bifidobacterium breve (Bif195) (≥5 × 1010 colony-forming units) or placebo daily for 8 weeks. Small-intestinal damage was analyzed by serial VCE at 6 visits. The area under the curve (AUC) for intestinal damage (Lewis score) and the AUC value for ulcers were the primary and first-ranked secondary end points of the trial, respectively. RESULTS Efficacy data were obtained from 35 participants given Bif195 and 31 given placebo. The AUC for Lewis score was significantly lower in the Bif195 group (3040 ± 1340 arbitrary units) than the placebo group (4351 ± 3195) (P = .0376). The AUC for ulcer number was significantly lower in the Bif195 group (50.4 ± 53.1 arbitrary units) than in the placebo group (75.2 ± 85.3 arbitrary units) (P = .0258). Twelve adverse events were reported from the Bif195 group and 20 from the placebo group. None of the events was determined to be related to Bif195 intake. CONCLUSIONS In a randomized, double-blind trial of healthy volunteers, we found oral Bif195 to safely reduce the risk of small-intestinal enteropathy caused by ASA. ClinicalTrials.gov no: NCT03228589.
Collapse
Affiliation(s)
| | - Clodagh Murphy
- APC Microbiome Ireland, Cork, Ireland; Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - John O'Grady
- APC Microbiome Ireland, Cork, Ireland; Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Mary Lucey
- Centre for Gastroenterology, Mercy University Hospital, Cork, Ireland
| | - Gafer Elsafi
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Lillian Barry
- Centre for Gastroenterology, Mercy University Hospital, Cork, Ireland
| | - Vibeke Westphal
- Chr. Hansen A/S, Human Health Innovation, Hoersholm, Denmark
| | - Anja Wellejus
- Chr. Hansen A/S, Human Health Innovation, Hoersholm, Denmark
| | | | | | | | - Adam Baker
- Chr. Hansen A/S, Human Health Innovation, Hoersholm, Denmark
| | - Anders Damholt
- Chr. Hansen A/S, Human Health Innovation, Hoersholm, Denmark
| | | | - Fergus Shanahan
- APC Microbiome Ireland, Cork, Ireland; Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland.
| | - Martin Buckley
- APC Microbiome Ireland, Cork, Ireland; Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland; Centre for Gastroenterology, Mercy University Hospital, Cork, Ireland
| |
Collapse
|
11
|
Jia L, Chopp M, Wang L, Lu X, Szalad A, Zhang ZG. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy. FASEB J 2018; 32:fj201800597R. [PMID: 29932869 PMCID: PMC6219828 DOI: 10.1096/fj.201800597r] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Schwann cells actively interact with axons of dorsal root ganglia (DRG) neurons. Exosomes mediate intercellular communication by transferring their biomaterials, including microRNAs (miRs) into recipient cells. We hypothesized that exosomes derived from Schwann cells stimulated by high glucose (HG) exosomes accelerate development of diabetic peripheral neuropathy and that exosomal cargo miRs contribute to this process. We found that HG exosomes contained high levels of miR-28, -31a, and -130a compared to exosomes derived from non-HG-stimulated Schwann cells. In vitro, treatment of distal axons with HG exosomes resulted in reduction of axonal growth, which was associated with elevation of miR-28, -31a, and -130a and reduction of their target proteins of DNA methyltransferase-3α, NUMB (an endocytic adaptor protein), synaptosome associated protein 25, and growth-associated protein-43 in axons. In vivo, administration of HG exosomes to sciatic nerves of diabetic db/db mice at 7 wk of age promoted occurrence of peripheral neuropathy characterized by impairment of nerve conduction velocity and induction of mechanic and thermal hypoesthesia, which was associated with substantial decreases in intraepidermal nerve fibers. Our findings demonstrate a functional role of exosomes derived from HG-stimulated Schwann cells in mediating development of diabetic peripheral neuropathy.-Jia, L., Chopp, M., Wang, L., Lu, X., Szalad, A., Zhang, Z. G. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Longfei Jia
- Inovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Lei Wang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Xuerong Lu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| |
Collapse
|
12
|
Edogawa S, Peters SA, Jenkins GD, Gurunathan SV, Sundt WJ, Johnson S, Lennon RJ, Dyer RB, Camilleri M, Kashyap PC, Farrugia G, Chen J, Singh RJ, Grover M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota. FASEB J 2018; 32:fj201800560R. [PMID: 29897814 PMCID: PMC6219825 DOI: 10.1096/fj.201800560r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Intestinal barrier function and microbiota are integrally related and play critical roles in maintenance of host physiology. Sex is a key biologic variable for several disorders. Our aim was to determine sex-based differences in response to perturbation and subsequent recovery of intestinal barrier function and microbiota in healthy humans. Twenty-three volunteers underwent duodenal biopsies, mucosal impedance, and in vivo permeability measurement. Permeability testing was repeated after administration of indomethacin, then 4 to 6 wk after its discontinuation. Duodenal and fecal microbiota composition was determined using 16S rRNA amplicon sequencing. Healthy women had lower intestinal permeability and higher duodenal and fecal microbial diversity than healthy men. Intestinal permeability increases after indomethacin administration in both sexes. However, only women demonstrated decreased fecal microbial diversity, including an increase in Prevotella abundance, after indomethacin administration. Duodenal microbiota composition did not show sex-specific changes. The increase in permeability and microbiota changes normalized after discontinuation of indomethacin. In summary, women have lower intestinal permeability and higher microbial diversity. Intestinal permeability is sensitive to perturbation but recovers to baseline. Gut microbiota in women is sensitive to perturbation but appears to be more stable in men. Sex-based differences in intestinal barrier function and microbiome should be considered in future studies.-Edogawa, S., Peters, S. A., Jenkins, G. D., Gurunathan, S. V., Sundt, W. J., Johnson, S., Lennon, R. J., Dyer, R. B., Camilleri, M., Kashyap, P. C., Farrugia, G., Chen, J., Singh, R. J., Grover, M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.
Collapse
Affiliation(s)
- Shoko Edogawa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephanie A. Peters
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory D. Jenkins
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Wendy J. Sundt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan J. Lennon
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Roy B. Dyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Purna C. Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravinder J. Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Grattagliano I, Ubaldi E, Portincasa P. Drug-induced enterocolitis: Prevention and management in primary care. J Dig Dis 2018; 19:127-135. [PMID: 29417737 DOI: 10.1111/1751-2980.12585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
Drug-induced enterocolitis is a condition diagnosed with increasing frequency. It includes a variety of morphological and functional alterations of the small and large intestine as a consequence of exposure to pharmacological active compounds. A number of factors play a key role in this condition or participate in the onset of enterocolitis, which is the result of an interplay between the effect of the drug molecule and the tolerance of the bowel to damaging insults. The patient's age, gender, dose of drug, time of exposure, pharmaceutical preparation, drug-drug and drug-food interactions, gut barrier integrity, underlying intestinal conditions, and gut microbiota composition are all involved in the occurrence and extent of the injury. This review approaches the topic from the viewpoint of primary care, and focuses on epidemiology, mechanisms of damage, protective systems and diagnostic tools. Although the first-line therapeutic measure is the discontinuation of the drug, some options for prevention and treatment are discussed.
Collapse
Affiliation(s)
| | - Enzo Ubaldi
- Italian College of General Practitioners and Primary Care, Florence, Italy
| | - Piero Portincasa
- Division of Internal Medicine, Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University Medical School of Bari, Bari, Italy
| |
Collapse
|
14
|
Le Bastard Q, Al-Ghalith GA, Grégoire M, Chapelet G, Javaudin F, Dailly E, Batard E, Knights D, Montassier E. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment Pharmacol Ther 2018; 47:332-345. [PMID: 29205415 DOI: 10.1111/apt.14451] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/04/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Global prescription drug use has been increasing continuously for decades. The gut microbiome, a key contributor to health status, can be altered by prescription drug use, as antibiotics have been repeatedly described to have both short-term and long-standing effects on the intestinal microbiome. AIM To summarise current findings on non-antibiotic prescription-induced gut microbiome changes, focusing on the most frequently prescribed therapeutic drug categories. METHODS We conducted a systematic review by first searching in online databases for indexed articles and abstracts in accordance with PRISMA guidelines. Studies assessing the intestinal microbiome alterations associated with proton pump inhibitors (PPIs), metformin, nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, statins and antipsychotics were included. We only included studies using culture-independent molecular techniques. RESULTS Proton pump inhibitors and antipsychotic medications are associated with a decrease in α diversity in the gut microbiome, whereas opioids were associated with an increase in α diversity. Metformin and NSAIDs were not associated with significant changes in α diversity. β diversity was found to be significantly altered with all drugs, except for NSAIDs. PPI use was linked to a decrease in Clotridiales and increase in Actinomycetales, Micrococcaceae and Streptococcaceae, which are changes previously implicated in dysbiosis and increased susceptibility to Clostridium difficile infection. Consistent results showed that PPIs, metformin, NSAIDs, opioids and antipsychotics were either associated with increases in members of class Gammaproteobacteria (including Enterobacter, Escherichia, Klebsiella and Citrobacter), or members of family Enterococcaceae, which are often pathogens isolated from bloodstream infections in critically ill patients. We also found that antipsychotic treatment, usually associated with an increase in body mass index, was marked by a decreased ratio of Bacteroidetes:Firmicutes in the gut microbiome, resembling trends seen in obese patients. CONCLUSIONS Non-antibiotic prescription drugs have a notable impact on the overall architecture of the intestinal microbiome. Further explorations should seek to define biomarkers of dysbiosis induced by specific drugs, and potentially tailor live biotherapeutics to counter this drug-induced dysbiosis. Many other frequently prescribed drugs should also be investigated to better understand the link between these drugs, the microbiome and health status.
Collapse
Affiliation(s)
- Q Le Bastard
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - G A Al-Ghalith
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, USA.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - M Grégoire
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - G Chapelet
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - F Javaudin
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - E Dailly
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - E Batard
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - D Knights
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, USA.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - E Montassier
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| |
Collapse
|
15
|
Shin SJ, Noh CK, Lim SG, Lee KM, Lee KJ. Non-steroidal anti-inflammatory drug-induced enteropathy. Intest Res 2017; 15:446-455. [PMID: 29142512 PMCID: PMC5683975 DOI: 10.5217/ir.2017.15.4.446] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/18/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are well known to be associated with serious upper gastrointestinal complications, such as peptic ulcer, bleeding, perforation, and obstruction. Recently, attention has been mainly focused on the small bowel injuries caused by NSAIDs, and new endoscopic techniques such as capsule endoscopy and double balloon endoscopy can help in detecting such injuries. This article reviewed the epidemiology, pathogenesis, clinical manifestations, diagnosis, and treatment of small bowel injuries caused by NSAIDs. Small bowel injures by NSAIDs might occur with a similar frequency and extent as those observed in the upper gastrointestinal tract. The pathogenesis of NSAID-induced enteropathy is complex and not clearly understood. The various lesions observed in the small bowel, including petechiae, reddened folds, loss of villi, erosions, and ulcers can be detected by capsule endoscopy. A drug that could prevent or treat NSAID-induced enteropathy has not yet been developed. Therefore, further investigations should be performed to elucidate the pathogenesis of such enteropathy and develop suitable preventive and treatment strategies.
Collapse
Affiliation(s)
- Sung Jae Shin
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Choong-Kyun Noh
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Sun Gyo Lim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Kee Myung Lee
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Kwang Jae Lee
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
16
|
Xiao X, Nakatsu G, Jin Y, Wong S, Yu J, Lau JYW. Gut Microbiota Mediates Protection Against Enteropathy Induced by Indomethacin. Sci Rep 2017; 7:40317. [PMID: 28067296 PMCID: PMC5220306 DOI: 10.1038/srep40317] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) can cause significant small bowel injuries. The role of gut microbiota in this NSAID-induced enteropathy is poorly understood. We studied the dynamic changes in gut microbiota following indomethacin administration in mice, and investigated the effects of these adaptive changes on subsequent NSAID-induced enteropathy. The changes in gut microbiota were studied using 16S rRNA sequencing, and the effects of such changes were investigated using antibiotics and a faecal transplantation model. After indomethacin treatment, significant adaptive changes in gut microbiota were observed, including increased abundance of Firmicutes and decreased abundance in that of Bacteroidetes. Depletion of gut microbiota with antibiotics led to a higher mortality (P = 0.0021) in mice compared to controls. Mice pre-transplanted with adaptively changed microbiota showed less small bowel injury and lower levels of pro-inflammatory cytokines when exposed to indomethacin. In summary, this study identifies adaptive changes in the gut microbiota upon indomethacin administration, which can in turn ameliorate further NSAID-induced injury. The heightened mortality with antibiotic depletion of the adaptively changed microbiota suggests its important role in protecting against such injury. This study provides insight for future efforts to target the microbiota as a therapeutic strategy.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.,Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Geicho Nakatsu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ye Jin
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Sunny Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - James Y W Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.,Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
Byun S, Lim T, Lim Y, Seo J, Chung M. In vivo effects of s-pantoprazole, polaprenzinc, and probiotic blend on chronic small intestinal injury induced by indomethacin. Benef Microbes 2016; 7:731-737. [DOI: 10.3920/bm2016.0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Treatment and prevention methods for non-steroidal anti-inflammatory drug-induced enteropathy have not yet been established. We tested the preventive effects of s-pantoprazole sodium trihydrate (PAN), polaprezinc (PZ), and probiotics on an indomethacin (Indo)-induced small intestinal injury in a rat model. Rats were randomised into 6 groups to receive: normal saline (control), Indo (6 mg/kg), PZ plus Indo, PAN plus Indo, or probiotics plus Indo (at 108 and 109 cfu/head) for 2 weeks. We measured body weight, food intake, severity of small intestinal damage, haemoglobin (Hb) levels in the small intestinal fluid, intestinal inflammatory cytokines, and a few groups of faecal bacteria. The experimental groups were found to have the following survival rates: 0% for the Indo, PZ, and PAN groups; 50% for both probiotic groups; and 100% for control. Treatment with probiotics of different concentrations reduced small intestinal lesion scores and intestinal fluid Hb as compared with the Indo group, while these parameters did not reduce in the PZ and PAN groups. The anti-inflammatory marker interleukin 10 increased in both probiotic groups. Analysis of a few groups of faecal bacteria revealed that Indo-induced a significant increase in Gram-negative bacteria and decreases in Bifidobacterium and Lactobacillus. Similar changes were also observed in the PZ and PAN groups. However, opposite effects were found in both probiotic groups. The use of probiotics appeared to be beneficial in preventing Indo-induced chronic small intestinal injury.
Collapse
Affiliation(s)
- S.J. Byun
- Department of Internal Medicine, Ilsan Hospital, College of Medicine, Dongguk University, Goyang 410-773, Republic of Korea
| | - T.J. Lim
- Research and Development Center, Cell Biotech Co. Ltd., Gimpo, Gyeonggi 157-030, Republic of Korea
| | - Y.J. Lim
- Department of Internal Medicine, Ilsan Hospital, College of Medicine, Dongguk University, Goyang 410-773, Republic of Korea
| | - J.G. Seo
- Research and Development Center, Cell Biotech Co. Ltd., Gimpo, Gyeonggi 157-030, Republic of Korea
| | - M.J. Chung
- Research and Development Center, Cell Biotech Co. Ltd., Gimpo, Gyeonggi 157-030, Republic of Korea
| |
Collapse
|
18
|
Liang X, Bittinger K, Li X, Abernethy DR, Bushman FD, FitzGerald GA. Bidirectional interactions between indomethacin and the murine intestinal microbiota. eLife 2015; 4:e08973. [PMID: 26701907 PMCID: PMC4755745 DOI: 10.7554/elife.08973] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022] Open
Abstract
The vertebrate gut microbiota have been implicated in the metabolism of xenobiotic compounds, motivating studies of microbe-driven metabolism of clinically important drugs. Here, we studied interactions between the microbiota and indomethacin, a nonsteroidal anti-inflammatory drug (NSAID) that inhibits cyclooxygenases (COX) -1 and -2. Indomethacin was tested in both acute and chronic exposure models in mice at clinically relevant doses, which suppressed production of COX-1- and COX-2-derived prostaglandins and caused small intestinal (SI) damage. Deep sequencing analysis showed that indomethacin exposure was associated with alterations in the structure of the intestinal microbiota in both dosing models. Perturbation of the intestinal microbiome by antibiotic treatment altered indomethacin pharmacokinetics and pharmacodynamics, which is probably the result of reduced bacterial β-glucuronidase activity. Humans show considerable inter-individual differences in their microbiota and their responses to indomethacin - thus, the drug-microbe interactions described here provide candidate mediators of individualized drug responses.
Collapse
Affiliation(s)
- Xue Liang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Kyle Bittinger
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Xuanwen Li
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Darrell R Abernethy
- Office of Clinical Pharmacology, Food and Drug Administration, Silver Spring, United States
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
19
|
NSAID enteropathy and bacteria: a complicated relationship. J Gastroenterol 2015; 50:387-93. [PMID: 25572030 DOI: 10.1007/s00535-014-1032-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 02/04/2023]
Abstract
The clinical significance of small intestinal damage caused by nonsteroidal anti-inflammatory drugs (NSAIDs) remains under-appreciated. It occurs with greater frequency than the damage caused by these drugs in the upper gastrointestinal tract, but is much more difficult to diagnose and treat. Although the pathogenesis of NSAID enteropathy remains incompletely understood, it is clear that bacteria, bile, and the enterohepatic circulation of NSAIDs are all important factors. However, they are also interrelated with one another. Bacterial enzymes can affect the cytotoxicity of bile and are essential for enterohepatic circulation of NSAIDs. Gram-negative bacteria appear to be particularly important in the pathogenesis of NSAID enteropathy, possibly through release of endotoxin. Inhibitors of gastric acid secretion significantly aggravate NSAID enteropathy, and this effect is due to significant changes in the intestinal microbiome. Treatment with antibiotics can, in some circumstances, reduce the severity of NSAID enteropathy, but published results are inconsistent. Specific antibiotic-induced changes in the microbiota have not been causally linked to prevention of intestinal damage. Treatment with probiotics, particularly Bifidobacterium, Lactobacillus, and Faecalibacteriaum prausnitzii, has shown promising effects in animal models. Our studies suggest that these beneficial effects are due to colonization by the bacteria, rather than to products released by the bacteria.
Collapse
|
20
|
Syer SD, Wallace JL. Environmental and NSAID-enteropathy: dysbiosis as a common factor. Curr Gastroenterol Rep 2014; 16:377. [PMID: 24532193 DOI: 10.1007/s11894-014-0377-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
At first sight, environmental enteropathy and NSAID enteropathy may appear to have little in common. One occurs almost exclusively in poor countries and the other primarily in rich countries. One is the consequence of unhygienic living conditions, while the other is a consequence of use of a drug for relief of pain and inflammation. However, there may be a common pathogenic link between these two conditions, namely a significant alteration in the microbiome (dysbiosis), and this raises the possibility of common approaches to treatment. Correction of the dysbiosis that is central to the intestinal tissue injury and dysfunction observed in environmental and nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathies is a logical approach to bringing about restoration of intestinal function. For both conditions, removal of the trigger for dysbiosis is the simplest approach, but is not always feasible. Correcting the underlying dysbiosis through the use of probiotics or prebiotics may be a viable option.
Collapse
Affiliation(s)
- Stephanie D Syer
- Farncombe Family Digestive Health Research Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | | |
Collapse
|
21
|
Chan FKL. Proton pump inhibitors and nonsteroidal anti-inflammatory drug-related lower gastrointestinal adverse events. Clin Gastroenterol Hepatol 2014; 12:904-6. [PMID: 24703863 DOI: 10.1016/j.cgh.2014.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Francis K L Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
22
|
Wallace JL. Polypharmacy of osteoarthritis: the perfect intestinal storm. Dig Dis Sci 2013; 58:3088-93. [PMID: 23884755 DOI: 10.1007/s10620-013-2777-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/25/2013] [Indexed: 12/22/2022]
Abstract
Osteoarthritis is an increasingly prevalent disorder with an incidence rate that rises sharply with age. Unfortunately, the most commonly used medications for providing symptomatic relief, nonsteroidal anti-inflammatory drugs (NSAIDs), can cause significant gastrointestinal (GI) ulceration. There is recent evidence that agents commonly employed to protect the upper GI tract actually increase the incidence and severity of ulceration and bleeding in the lower intestine. Intestinal injury is more difficult to diagnose and treat than upper GI damage, and symptoms correlate poorly with the severity of tissue injury. Moreover, use of low-dose aspirin for cardioprotection (a common co-treatment with the selective cyclooxygenase-2 inhibitors) further augments intestinal damage, particularly when enteric-coated aspirin is used. Thus, by focusing entirely on prevention of NSAID-induced damage to the upper GI tract, physicians may be inadvertently placing their patients at risk of serious, difficult-to-diagnose injury for which there are no proven-effective therapies and are associated with significantly higher rates of morbidity and mortality.
Collapse
Affiliation(s)
- John L Wallace
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada,
| |
Collapse
|
23
|
Kawabata K, Sugiyama Y, Sakano T, Ohigashi H. Flavonols enhanced production of anti-inflammatory substance(s) by Bifidobacterium adolescentis: prebiotic actions of galangin, quercetin, and fisetin. Biofactors 2013; 39:422-9. [PMID: 23554103 DOI: 10.1002/biof.1081] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/09/2012] [Indexed: 01/15/2023]
Abstract
The gut microbiota is capable of the bioconversion of flavonoids whereas influences of probiotic anaerobes on the bioactivities of flavonoids and vice versa are still unclear. Here, we investigated functional interactions with respect to the anti-inflammatory activity between flavonols and probiotic bacteria. Ten enteric (6 probiotic and 4 indigenous) bacteria were incubated with flavonols (galangin, kaempferol, quercetin, myricetin, and fisetin) under anaerobic conditions, and the supernatants were assessed for their effects on nitric oxide (NO) production in lipopolysaccaride-stimulated RAW264 cells. Although the conditioned medium from the flavonol mono-culture and almost all of the tested co-cultures failed to inhibit NO production, the medium from the Bifidobacterium adolescentis/flavonols (galangin, quercetin, and fisetin) co-culture highly suppressed NO production. This activity increased during the 1-6 H incubation in a time-dependent manner and was not observed in the co-culture using heat-inactivated B. adolescentis. Interestingly, when the B. adolescentis cell number was increased, the supernatant from the mono-culture of the bacteria showed NO suppression, suggesting that B. adolescentis may produce NO suppressant(s), and flavonols may have a promoting effect. These findings indicate that flavonols have a prebiotic-like effect on the anti-inflammatory activity of B. adolescentis.
Collapse
Affiliation(s)
- Kyuichi Kawabata
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan.
| | | | | | | |
Collapse
|
24
|
Bifidobacterium animalis ssp. lactis 420 Protects against Indomethacin-Induced Gastric Permeability in Rats. Gastroenterol Res Pract 2012; 2012:615051. [PMID: 22848210 PMCID: PMC3405648 DOI: 10.1155/2012/615051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/30/2012] [Accepted: 05/02/2012] [Indexed: 01/07/2023] Open
Abstract
Gastrointestinal (GI) adverse effects such as erosion and increased permeability are common during the use of nonsteroidal anti-inflammatory drugs (NSAIDs). Our objective was to assess whether Bifidobacterium animalis ssp. lactis 420 protects against NSAID-induced GI side effects in a rat model. A total of 120 male Wistar rats were allocated into groups designated as control, NSAID, and probiotic. The NSAID and probiotic groups were challenged with indomethacin (10 mg/kg(-1); single dose). The probiotic group was also supplemented daily with 10(10) CFU of B. lactis 420 for seven days prior to the indomethacin administration. The control group rats received no indomethacin or probiotic. The permeability of the rat intestine was analysed using carbohydrate probes and the visual damage of the rat stomach mucosa was graded according to severity. B. lactis 420 significantly reduced the indomethacin-induced increase in stomach permeability. However, the protective effect on the visual mucosal damage was not significant. The incidence of severe NSAID-induced lesions was, nevertheless, reduced from 50% to 33% with the probiotic treatment. To conclude, the B. lactis 420 supplementation protected the rats from an NSAID-induced increase in stomach permeability and may reduce the formation of more serious GI mucosal damage and/or enhance the recovery rate of the stomach mucosa.
Collapse
|
25
|
Gonçalves Junior I, Naresse LE, Rodrigues MAM, Kobayasi S. Diclofenac sodium and Imipenem action on rat intestinal mucosa: a biomechanical and histological study. Acta Cir Bras 2012; 27:131-6. [DOI: 10.1590/s0102-86502012000200006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/12/2011] [Indexed: 11/22/2022] Open
Abstract
PURPOSE: To study diclofenac sodium induced histological and mechanical alterations and their prevention with Imipenem in rat intestine. METHODS: Male Wistar rats (n=240) were randomly assigned to four experimental groups: GI: n=60 treated with 0.9% saline IM; GII: n=60 treated with 6mg/kg body weight diclofenac sodium IM for four days; GIII: n=60 treated with 30mg/kg body weight Imipenem IM for four days, and GIV n=60 treated with diclofenac sodium plus Imipenem at the above doses IM for 4 days. Each group was further divided into 4 subgroups of 15 rats each and sacrificed at 4, 7, 14, and 21 days of follow-up, respectively. Abdominal cavity macroscopy and histology, and small bowel breaking strength were analyzed at each sacrifice moment. RESULTS: There were no histological or mechanical alterations in normal control rats throughout the study. Ulcerated lesions in intestinal mucosa were observed and breaking strength decreased in all diclofenac sodium treated rats. Ulcerated lesions in intestinal mucosa were prevented by Imipenem in all rats. CONCLUSION: Diclofenac sodium induced ulcerated lesions in rat intestinal mucosa can be prevented by Imipenem treatment.
Collapse
|
26
|
Iwai T, Ichikawa T, Kida M, Goso Y, Saegusa Y, Okayasu I, Saigenji K, Ishihara K. Vulnerable sites and changes in mucin in the rat small intestine after non-steroidal anti-inflammatory drugs administration. Dig Dis Sci 2010; 55:3369-76. [PMID: 20300842 DOI: 10.1007/s10620-010-1185-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 02/25/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS The location of mucosal damage and changes in mucin content in the rat small intestine following administration of non-steroidal anti-inflammatory drugs (NSAIDs) have not been well elucidated. METHODS After subcutaneous administration of loxoprofen sodium (10-40 mg/kg), the small intestinal mucosa of male Wistar rats was evaluated macroscopically, histologically, and immunohistochemically by measuring the total mucin content and immunoreactivity for anti-mucin monoclonal antibody, HCM31, 1, 3, 7, and 14 days later. Changes in the number of enterobacteria invading the mucosa around the lesions were also determined. RESULTS Loxoprofen sodium induced erosions and ulcers along the mesenteric margin of the distal jejunum. Early (≤6 h) mucosal lesions were small and round, located between the branches of the mesenteric arteries. In the jejunum, there was a transient increase in the total mucin content, and HCM31-positive mucin in the mucosa around the ulcers increased significantly on days 3 and 7, but in the ileum there were no marked changes and few ulcers. Bacterial translocation following loxoprofen sodium administration significantly increased, according to the site of the intestinal lesions. CONCLUSIONS Vascularly compromised sites along the jejunal mesenteric margin are vulnerable to NSAIDs-induced damage and show increased numbers of enterobacteria in the NSAIDs-treated mucosa. Increased sialomucin content in the mucus around the lesions may play an important role in the healing of NSAIDs-induced intestinal lesions.
Collapse
Affiliation(s)
- Tomohisa Iwai
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lactobacilli facilitate maintenance of intestinal membrane integrity during Shigella dysenteriae 1 infection in rats. Nutrition 2008; 25:350-8. [PMID: 19036564 DOI: 10.1016/j.nut.2008.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 08/25/2008] [Accepted: 09/02/2008] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Lactobacilli are used in various dairy products and fermented foods for their potential health beneficial effects. Recently we reported the protective role of Lactobacillus rhamnosus and Lactobacillus acidophilus during Shigella dysenteriae 1 infection. Nevertheless, investigations on the membrane-stabilizing effect of L. rhamnosus and L. acidophilus have not been done. Hence, the present study evaluated the effect of L. rhamnosus and L. acidophilus on the maintenance of intestinal membrane integrity during S. dysenteriae 1-induced diarrhea in rats. METHODS Rats were divided into eight groups (n = 6 in each group). Induced rats received single oral dose of S. dysenteriae (12 x 10(8) colony-forming units [cfu]/mL). Treated rats received L. rhamnosus (1 x 10(7)cfu/mL) or L. acidophilus (1 x 10(7)cfu/mL) orally for 4 d, alone or in combination, followed by Shigella administration. At the end of the experimental period, animals were sacrificed and the assay of membrane-bound adenosine triphosphatases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and total ATPase), immunoblot analysis of tight junctional proteins (claudin-1 and occludin), and transmission electron microscopic studies were performed. RESULTS Induced rats showed a significant (P < 0.05) reduction in the membrane-bound ATPases and reduced expression of tight junction proteins in the membrane, coupled with their increased expression in the cytosol, indicating membrane damage. Transmission electron microscopic studies correlated with biochemical parameters. Pretreatment with combination of L. rhamnosus and L. acidophilus significantly prevented these changes. CONCLUSION Lactobacillus rhamnosus and L. acidophilus synergistically offered better protection to the intestinal membrane when compared with individual treatments with these strains during S. dysenteriae 1 infection.
Collapse
|
28
|
Kataoka K, Ogasa S, Kuwahara T, Bando Y, Hagiwara M, Arimochi H, Nakanishi S, Iwasaki T, Ohnishi Y. Inhibitory effects of fermented brown rice on induction of acute colitis by dextran sulfate sodium in rats. Dig Dis Sci 2008; 53:1601-8. [PMID: 17957470 DOI: 10.1007/s10620-007-0063-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 10/04/2007] [Indexed: 02/06/2023]
Abstract
Although the pathogenic mechanisms of inflammatory bowel diseases are not fully understood, colonic microbiota may affect the induction of colonic inflammation, and some probiotics and prebiotics have been reported to suppress colitis. The inhibitory effects of brown rice fermented by Aspergillus oryzae (FBRA), a fiber-rich food, on the induction of acute colitis by dextran sulfate sodium (DSS) were examined. Feeding a 5% and 10% FBRA-containing diet significantly decreased the ulcer and erosion area in the rat colon stained with Alcian blue. In another experiment, 10% FBRA feeding decreased the ulcer index (percentage of the total length of ulcers in the full length of the colon) and colitis score, which were determined by macroscopic observation. It also decreased myeloperoxidase activity in the colonic mucosa. Viable cell numbers of Lactobacillus in the feces decreased after DSS administration and was reversely correlated with severity of colitis, while the cell number of Enterobacteriaceae increased after DSS treatment and was positively correlated with colitis severity. These results indicate that FBRA has a suppressive effect on the induction of colitis by DSS and suggest FBRA-mediated modification of colonic microbiota.
Collapse
Affiliation(s)
- Keiko Kataoka
- Department of Molecular Bacteriology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsai CC, Lai CH, Yu B, Tsen HY. Use of specific primers based on the 16S-23S internal transcribed spacer (ITS) region for the screening Bifidobacterium adolescentis in yogurt products and human stool samples. Anaerobe 2008; 14:219-23. [PMID: 18565771 DOI: 10.1016/j.anaerobe.2008.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/17/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
Effective methods for the identification and enumeration of lactic acid producing bacteria (LAB) cells are important for the quality control and assurance of probiotic products. In this study, we designed a polymerase chain reaction (PCR) primer set from the sequence in 16S-23S internal transcribed spacer (ITS) region and used it for the specific detection of Bifidobacterium adolescentis, one of the Bifidobacterium species used in probiotics. Specificity of the PCR primers, i.e., bits-1/bits-2, was assured by assay strains of B. adolescentis, other Bifidobacterium species, and strains of non-Bifidobacterium spp. Coupled with the use of a known primer set specific for Bifidobacterium species, Bifidobacterium strains and B. adolescentis could be identified from LAB strains in fermented dairy products and human fecal samples.
Collapse
Affiliation(s)
- Cheng-Chih Tsai
- Department of Food Science and Nutrition, Hung-Kuang University, No. 34, Chung-Chi Road, Shalu, Taichung County 433, Taiwan, ROC
| | | | | | | |
Collapse
|
30
|
Demirkan A, Orazakunov E, Savas B, Kuzu MA, Melli M. Enteral glutamine pretreatment does not decrease plasma endotoxin level induced by ischemia-reperfusion injury in rats. World J Gastroenterol 2008; 14:463-8. [PMID: 18200671 PMCID: PMC2679137 DOI: 10.3748/wjg.14.463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether oral glutamine pretreatment prevents impairment of intestinal mucosal integrity during ischemia-reperfusion (I/R) in rats.
METHODS: The study was performed as two series with 40 rats in each. Each series of animals was divided into four groups. The first group was used as a control. Animals in the second group were only pretreated with oral glutamine, 1 g/kg for 4 d. The third group received a normal diet, and underwent intestinal I/R, while the fourth group was pretreated with oral glutamine in the same way, and underwent intestinal I/R. Intestinal mucosal permeability to 51Cr-labeled EDTA was measured in urine in the first series of animals. In the second series, histopathological changes in intestinal tissue and plasma endotoxin levels were evaluated.
RESULTS: Intestinal I/R produced a significant increase in intestinal permeability, plasma endotoxin level and worsened histopathological alterations. After intestinal I/R, permeability was significantly lower in glutamine-treated rats compared to those which received a normal diet. However, no significant change was observed in plasma endotoxin levels or histopathological findings.
CONCLUSION: Although glutamine pretreatment seems to be protective of intestinal integrity, upon I/R injury, such an effect was not observable in the histopathological changes or plasma endotoxin level.
Collapse
|
31
|
Kataoka K, Kibe R, Kuwahara T, Hagiwara M, Arimochi H, Iwasaki T, Benno Y, Ohnishi Y. Modifying effects of fermented brown rice on fecal microbiota in rats. Anaerobe 2007; 13:220-7. [PMID: 17826198 DOI: 10.1016/j.anaerobe.2007.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/19/2007] [Accepted: 07/13/2007] [Indexed: 01/07/2023]
Abstract
Brown rice fermented by Aspergillus oryzae (FBRA) is a fiber-rich food. Effects of dietary administration of FBRA on rat fecal microbiota composition were examined. Male Wistar rats were fed a basal diet or a 5% FBRA- or 10% FBRA-containing diet, and fecal microbiota was analyzed by culture and terminal-restriction fragment length polymorphism (T-RFLP) analysis. The viable cell number of lactobacilli significantly increased after feeding 10% FBRA diet for 3 weeks compared with that in the basal diet group and that in the same group at the beginning of the experiment (day 0). An increase in the viable cell number of lactobacilli was also observed after feeding 10% FBRA for 12 weeks compared with the effect of a basal diet. T-RFLP analysis showed an increase in the percentage of lactobacilli cells in feces of rats fed 10% FBRA for 14 weeks. Lactobacilli strains isolated from rat feces were divided into six types based on their randomly amplified polymorphic DNA (RAPD) patterns, and they were identified as Lactobacillus reuteri, L. intestinalis and lactobacilli species based on homology of the partial sequence of 16S rDNA. FBRA contains lactic acid bacteria, but their RAPD patterns and identified species were different from those in rat feces. These results indicated that dietary FBRA increases the number of lactobacilli species already resident in the rat intestine.
Collapse
Affiliation(s)
- Keiko Kataoka
- Department of Molecular Bacteriology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770 8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Moorthy G, Murali MR, Devaraj SN. Protective role of lactobacilli in Shigella dysenteriae 1–induced diarrhea in rats. Nutrition 2007; 23:424-33. [PMID: 17483010 DOI: 10.1016/j.nut.2007.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Studies on lactic acid bacteria exemplify their use against various enteropathogens in vitro. Nevertheless, in vivo effects of Lactobacillus during Shigella infection have not been evaluated. The present study evaluated the effect of Lactobacillus rhamnosus and Lactobacillus acidophilus on neutrophil infiltration and lipid peroxidation during Shigella dysenteriae 1-induced diarrhea in rats. METHODS The rats were divided into eight groups (n = 6 in each group). Induced rats received single oral dose of S. dysenteriae (12 x 10(8) colony-forming units [cfu]/mL). Treated rats received L. rhamnosus (1 x 10(7) cfu/mL) or L. acidophilus (1 x 10(7) cfu/mL) orally for 4 d, alone or in combination, followed by Shigella administration. At the end of the experimental period, animals were sacrificed and the assay of the activity of alkaline phosphatase, myeloperoxidase, and antioxidants and the estimation of lipid peroxides were performed. Activity staining of superoxide dismutase and catalase was done in addition to gelatin zymography for matrix metalloproteinase (MMP; MMP-2 and MMP-9) activity. A portion of the intestinal tissue was fixed in 10% formalin for histologic studies. RESULTS Administration of S. dysenteriae 1 alone resulted in increased levels of myeloperoxidase, lipid peroxidation, alkaline phosphatase, and the expression of MMP-2 and MMP-9 with concomitant decrease in the antioxidant levels. Pretreatment with the combination of L. rhamnosus (1 x 10(7) cfu/mL) and L. acidophilus (1 x 10(7) cfu/mL) significantly attenuated these changes when compared with the diseased group. Histologic observations were in correlation with biochemical parameters. CONCLUSION Lactobacillus rhamnosus plus L. acidophilus offered better protection when compared with individual treatment with these strains during Shigella infection.
Collapse
Affiliation(s)
- Guhapriya Moorthy
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, India
| | | | | |
Collapse
|
33
|
Lam EKY, Yu L, Wong HPS, Wu WKK, Shin VY, Tai EKK, So WHL, Woo PCY, Cho CH. Probiotic Lactobacillus rhamnosus GG enhances gastric ulcer healing in rats. Eur J Pharmacol 2007; 565:171-9. [PMID: 17395175 DOI: 10.1016/j.ejphar.2007.02.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 02/09/2007] [Accepted: 02/13/2007] [Indexed: 12/19/2022]
Abstract
Probiotics are widely used as functional foods which have been advocated for the maintenance of gastrointestinal microflora equilibrium and treatment of gastrointestinal disorders. However, studying the role of probiotics in peptic ulcer disease is limited. The aim of the present study is to investigate the effect of a probiotic strain Lactobacillus rhamnosus GG on gastric ulcer and to elucidate the mechanisms involved. Gastric kissing ulcers were induced in rats by acetic acid (60% v/v). L. rhamnosus GG was given intragastrically at 10(8) cfu/day or 10(9) cfu/day for three consecutive days after ulcer induction. L. rhamnosus GG successfully colonized in the gastric mucosa especially at the ulcer margin. It also significantly and dose-dependently reduced gastric ulcer area. Cell apoptosis to cell proliferation ratio was strongly decreased and accompanied by significant up-regulation of ornithine decarboxylase (ODC) and B-cell lymphoma 2 (Bcl-2) protein expression at the ulcer margin. Angiogenesis was also significantly stimulated together with the induction of vascular endothelial growth factor (VEGF) expression. Furthermore, L. rhamnosus GG up-regulated the phosphorylation level of epidermal growth factor receptor (EGF receptor) without altering the total EGF receptor expression. These findings suggested that L. rhamnosus GG enhanced gastric ulcer healing via the attenuation of cell apoptosis to cell proliferation ratio and increase in angiogenesis. Regulators of these processes such as ODC, Bcl-2, VEGF and EGF receptor are likely to be involved in the healing action of L. rhamnosus GG for gastric ulcer.
Collapse
Affiliation(s)
- Emily K Y Lam
- Department of Pharmacology, The University of Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Scarpignato C, Pelosini I. Rifaximin, a poorly absorbed antibiotic: pharmacology and clinical potential. Chemotherapy 2005; 51 Suppl 1:36-66. [PMID: 15855748 DOI: 10.1159/000081990] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rifaximin (4-deoxy-4'-methylpyrido[1',2'-1,2]imidazo- [5,4-c]-rifamycin SV) is a synthetic antibiotic designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal (GI) absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a nonsystemic antibiotic with a broad spectrum of antibacterial action covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually nonabsorbed, its bioavailability within the GI tract is rather high with intraluminal and fecal drug concentrations that largely exceed the minimal inhibitory concentration values observed in vitro against a wide range of pathogenic organisms. The GI tract represents, therefore, the primary therapeutic target and GI infections the main indication. The appreciation of the pathogenic role of gut bacteria in several organic and functional GI diseases has increasingly broadened its clinical use, which is now extended to hepatic encephalopathy, small intestine bacterial overgrowth, inflammatory bowel disease and colonic diverticular disease. Potential indications include the irritable bowel syndrome and chronic constipation, Clostridium difficile infection and bowel preparation before colorectal surgery. Because of its antibacterial activity against the microorganism and the lack of strains with primary resistance, some preliminary studies have explored the rifaximin potential for Helicobacter pylori eradication. Oral administration of this drug, by getting rid of enteric bacteria, could also be employed to achieve selective bowel decontamination in acute pancreatitis, liver cirrhosis (thus preventing spontaneous bacterial peritonitis) and nonsteroidal anti-inflammatory drug (NSAID) use (lessening in that way NSAID enteropathy). This antibiotic has, therefore, little value outside the enteric area and this will minimize both antimicrobial resistance and systemic adverse events. Indeed, the drug proved to be safe in all patient populations, including young children. Although rifaximin has stood the test of time, it still attracts the attention of both basic scientists and clinicians. As a matter of fact, with the advancement of the knowledge on microbial-gut interactions in health and disease novel indications and new drug regimens are being explored. Besides widening the clinical use, the research on rifaximin is also focused on the synthesis of new derivatives and on the development of original formulations designed to expand the spectrum of its clinical use.
Collapse
Affiliation(s)
- Carmelo Scarpignato
- Laboratory of Clinical Pharmacology, Department of Human Anatomy, Pharmacology and Forensic Sciences, School of Medicine and Dentistry, University of Parma, Parma, Italy.
| | | |
Collapse
|
35
|
Hagiwara M, Kataoka K, Arimochi H, Kuwahara T, Nakayama H, Ohnishi Y. Inhibitory effect of fluvastatin on ileal ulcer formation in rats induced by nonsteroidal antiinflammatory drug. World J Gastroenterol 2005; 11:1040-3. [PMID: 15742411 PMCID: PMC4250768 DOI: 10.3748/wjg.v11.i7.1040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Nonsteroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal damage as one of their side effects in humans and experimental animals. Lipid peroxidation plays an important role in NSAID-induced ulceration. The aim of this study was to investigate the inhibitory effect of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors on the ulceration in small intestines of rats.
METHODS: The effects of three HMG-CoA reductase inhibitors, fluvastatin, pravastatin and atorvastatin on ileal ulcer formation in 5-bromo-2-(4-fluorophenyl)-3-(4- methylsulfonylphenyl) thiophene (BFMeT)-treated rats were examined. Antioxidative activity of the inhibitors was measured by a redox-linked colorimetric method.
RESULTS: Fluvastatin, which was reported to have antioxidative activity, repressed the ileal ulcer formation in rats treated with BFMeT an NSAIDs. However, the other HMG-CoA reductase inhibitors (pravastatin and atorvastatin) did not repress the ileal ulcer formation. Among these HMG-CoA reductase inhibitors, fluvastatin showed a significantly stronger reducing power than the others (pravastatin, atorvastatin).
CONCLUSION: Fluvastatin having the antioxidaitive activity suppresses ulcer formation in rats induced by NSAIDs.
Collapse
Affiliation(s)
- Mari Hagiwara
- Department of Molecular Bacteriology, Graduate School of Medicine, The University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Hagiwara M, Kataoka K, Arimochi H, Kuwahara T, Ohnishi Y. Role of unbalanced growth of gram-negative bacteria in ileal ulcer formation in rats treated with a nonsteroidal anti-inflammatory drug. THE JOURNAL OF MEDICAL INVESTIGATION 2004; 51:43-51. [PMID: 15000255 DOI: 10.2152/jmi.51.43] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) induced formation of intestinal ulcers as side effects, in which an unbalanced increase in the number of gram-negative bacteria in the small intestine plays an important role. To clarify how intestinal microflora are influenced by NSAIDs, we examined the effects of 5-bromo-2-(4-fluorophenyl)-3-(4-methylsulfonylphenyl) thiophene (BFMeT), an NSAID, on intestinal motility and on the growth of Escherichia coli and Lactobacillus acidophilus. Transit index, a marker of peristalsis, was not different in BFMeT-treated and solvent-treated rats, indicating that BFMeT increased the number of gram-negative bacteria without suppression of peristalsis. The factors that affect the growth of intestinal bacteria were not found in intestinal contents of BFMeT-treated rats, because the growth of E. coli and that of L. acidophilus in the supernatants of small intestinal contents of BFMeT-treated rats and solvent-treated rats were not different. The mechanism of the increase in the number of gram-negative bacteria is still unclear, but heat-killed E. coli cells and their purified lipopolysaccharide (LPS) caused deterioration of BFMeT-induced ileal ulcers, while they could not cause the ulcers by themselves without the NSAID. Concentration of LPS and myeloperoxidase activity level were elevated correlatively in the intestinal mucosa of rats treated with LPS and BFMeT. These results suggest that an increase in the number of gram-negative bacteria and their LPS in the mucosa induces activation of neutrophils together with the help of NSAID action and causes ulcer formation.
Collapse
Affiliation(s)
- Mari Hagiwara
- Department of Molecular Bacteriology, Graduate School of Medicine, The University of Tokushima, Tokushima, Japan
| | | | | | | | | |
Collapse
|
37
|
Kim JM, Kim YJ, Cho YJ. Synergy of Bacteroides fragilis and Escherichia coli in the induction of KC gene expression in mouse peritoneal tissues. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2002; 32:643-9. [PMID: 11200375 DOI: 10.1080/003655400459568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
B. fragilis induces cytokine expression, which can serve as a host signal leading to inflammatory reaction and abscess formation in the peritoneal cavity. We assessed the hypothesis that enteric bacteria may alter the B. fragilis-induced expression of KC genes in mouse peritoneal tissues (MPT). After C57BL/6 mice were inoculated with abscess-forming mixture containing B. fragilis in the presence or absence of E. coli, RNA was extracted from MPT. Expression of KC mRNA was quantified using reverse-transcription polymerase chain reaction and standard RNA. KC and TNFalpha proteins were measured by enzyme-linked immunosorbent assay. KC mRNA in MPT was upregulated following inoculation of B. fragilis and this was paralleled by increased KC protein secretion. When the mice were co-infected with E. coli and B. fragilis intraperitoneally, there was a synergistic increase in the expression of KC of MPT. Co-infection with L. acidophilus and B. fragilis downregulated KC mRNA expression, but co-infection with E. faecalis and B. fragilis synergistically increased KC expression in the infected MPT. Inhibition of TNFalpha production could downregulate KC expression in mixed infected MPT. These results suggest that enteric bacteria may significantly affect the KC signal produced by the host peritoneal cavity in response to B. fragilis infection.
Collapse
Affiliation(s)
- J M Kim
- Department of Microbiology and Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
38
|
Gotteland M, Cruchet S, Verbeke S. Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indometacin in humans. Aliment Pharmacol Ther 2001; 15:11-7. [PMID: 11136273 DOI: 10.1046/j.1365-2036.2001.00898.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic nonsteroidal anti-inflammatory drug (NSAID) ingestion strongly affects the gastrointestinal mucosa as a first stage before ulceration. Some Lactobacillus strains may stabilize the mucosal barrier by increasing mucin expression, reducing bacterial overgrowth, stimulating mucosal immunity and synthetizing antioxidant substances; these events are altered in NSAID-associated gastroenteropathy. AIM To determine whether ingestion of the probiotic Lactobacillus GG (LGG) protects the gastrointestinal mucosa against indometacin-induced alterations of permeability. SUBJECTS AND METHODS Four gastrointestinal permeability tests were carried out in random order in 16 healthy volunteers: (i) basal; (ii) after indometacin; (iii) after 5 days of living LGG ingestion before indometacin administration; (iv) after 5 days of heat-killed LGG ingestion before indometacin administration. RESULTS Indometacin significantly increased basal sucrose urinary excretion (29.6 mg [17.1-42.1] vs. 108.5 mg [68.2-148.7], P=0.0030) (means [95% CI]) and lactulose/mannitol urinary excretion (1.03% [0.73-1. 32] vs. 2.93% [1.96-3.90], P=0.00012). Heat-killed LGG did not modify the indometacin-induced increase of gastrointestinal permeability, while live bacteria significantly reduced the alteration of gastric (47.8 mg [31.1-64.6], P=0.012) but not intestinal permeability induced by NSAID. CONCLUSIONS Regular ingestion of LGG protects the integrity of the gastric mucosal barrier against indometacin, but has no effect at the intestinal level.
Collapse
Affiliation(s)
- M Gotteland
- Gastroenterology Unit, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.
| | | | | |
Collapse
|
39
|
Bing SR, Kinouchi T, Kataoka K, Kuwahara T, Ohnishi Y. Protective effects of a culture supernatant of Lactobacillus acidophilus and antioxidants on ileal ulcer formation in rats treated with a nonsteroidal antiinflammatory drug. Microbiol Immunol 1999; 42:745-53. [PMID: 9886147 DOI: 10.1111/j.1348-0421.1998.tb02348.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ileal ulcers and thiobarbituric acid (TBA)-reactive substances in the ileal mucosa were induced in rats treated with a nonsteroidal antiinflammatory drug, 5-bromo-2-(4-fluorophenyl)-3-(4-methylsulfonylphenyl)thiophene (BFMeT), at a dose of 1,000 mg/kg administered with tap water as drinking water. However, the formation of ileal ulcers and TBA-reactive substances in the ileal mucosa was repressed by giving the animals a culture supernatant of Lactobacillus acidophilus as drinking water. We measured the antioxidative activity of the culture supernatant and found that the supernatant inhibited the formation of t-butyl hydroperoxide-induced TBA-reactive substances in erythrocyte membrane ghosts. Therefore, the effects of various known antioxidative compounds on the ileal ulcer formation induced by BFMeT were investigated. While alpha-tocopherol, t-butyl-1,4-hydroxyanisole and allopurinol did not repress ulcer formation after BFMeT treatment, ascorbic acid, dimethyl sulfoxide, glutathione and beta-carotene significantly inhibited formation. Among these compounds, ascorbic acid was the most effective. Accumulation of TBA-reactive substances in the ileal mucosa after BFMeT treatment also decreased significantly in rats treated with ascorbic acid. In addition, the percentage of gram-negative rods in the ileal contents of rats treated with BFMeT and tap water was dramatically increased, but it was not increased in rats treated with BFMeT and these antioxidants. A positive correlation between the percentage of gram-negative rods and the number of ileal ulcers was also observed. These results suggest that lipid peroxidation mediated by oxygen radicals plays an important role in the induction of ileal ulcers by BFMeT in rats, and that lipopolysaccharide-activated neutrophils probably produce highly reactive hypochlorous acid and hydrogen peroxide, which are inactivated by ascorbic acid and glutathione, respectively.
Collapse
Affiliation(s)
- S R Bing
- Department of Bacteriology, School of Medicine, The University of Tokushima, Tokushima, Japan
| | | | | | | | | |
Collapse
|