Kawakami Y, Wang X, Shofuda T, Sumimoto H, Tupesis J, Fitzgerald E, Rosenberg S. Isolation of a new melanoma antigen, MART-2, containing a mutated epitope recognized by autologous tumor-infiltrating T lymphocytes.
JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001;
166:2871-7. [PMID:
11160356 DOI:
10.4049/jimmunol.166.4.2871]
[Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using cDNA expression cloning, a cDNA encoding a novel human melanoma Ag, MART-2 (melanoma Ag recognized by T cells-2), recognized by HLA-A1-restricted CD8(+) T cells from tumor-infiltrating lymphocytes (TIL1362) was isolated from an autologous melanoma cell line, 1362 mel. Homologous sequences to the cDNA had been registered in the EST database. This gene encoded an uncharacterized protein expressed ubiquitously in most normal and cancer cells. A mutation (A to G transition) was found in the cDNA obtained from the1362 mel melanoma cell line in the sequences encoding the phosphate binding loop (P-loop) that resulted in loss of the ability to bind GTP. Transfection of NIH-3T3 with the mutated MART-2 did not result in the development of significant foci. By screening 36 various cancer cell lines using single-strand conformation polymorphism, a possible mutation in the P-loop of MART-2 was found in one squamous cell lung cancer cell line, EBC1. The T cell epitope for TIL1362, FLEGNEVGKTY, was identified to be encoded by the mutated sequence of the MART-2 Ag. The mutation substituted glycine in the normal peptide with glutamic acid at the third amino acid of the epitope, which is an important primary anchor amino acid for HLA-A1 peptide binding. The normal peptide, FLGGNEVGKTY, was not recognized by TIL1362, suggesting that this T cell response was specific for the autologous tumor. Although transforming activity was not detected in the NIH-3T3 assay, MART-2 with the mutation in the P-loop may be involved in the generation of melanoma through a loss of GTP binding activity.
Collapse