1
|
Antibiotic resistance of Helicobacter pylori isolated from children in Chongqing, China. Eur J Pediatr 2022; 181:2715-2722. [PMID: 35469031 DOI: 10.1007/s00431-022-04456-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
The resistance of Helicobacter pylori (H. pylori) to antibiotics has been increasing worldwide and varies across different geographic areas and times. Limited studies reported the prevalence of antibiotic resistance and its related gene mutations in children in Chongqing, a city located in southwest China. We collected 112 H. pylori strains isolated from gastric biopsies of 156 children at Children's Hospital of Chongqing Medical University and calculated resistance rates of these strains to six antibiotics. The A2143G and A2142G mutations in 23S rRNA gene, which are related to clarithromycin resistance, and Asn87 and Asp91 mutations in gyrA gene, which are related to levofloxacin resistance, were investigated in 102 strains. The resistance rates to clarithromycin, metronidazole, and levofloxacin were 47.3% (53/112), 88.4% (99/112), and 18.8% (21/112), respectively. No resistance to amoxicillin, tetracycline, and furazolidone was observed. Dual and triple resistance percentages were 37.5% (42/112) and 10.7% (12/112), respectively. The detection rate of A2143G mutation in 23S rRNA gene was 83.3% (40/48). The detection rates of mutations of Asn87 and Asp91 in gyrA gene were 52.6% (10/19) and 36.8% (7/19), respectively. Conclusion: The prevalence of H. pylori resistance to clarithromycin, metronidazole, and levofloxacin was high in children in Chongqing, China. The A2143G mutation was detected in most clarithromycin-resistant strains, and Asn87 and Asp91 of gyrA mutation points were common in levofloxacin-resistant strains. In clinical practice, anti-H. pylori therapy should be individualized based on a susceptibility test. What is Known: • The resistance of H. pylori to antibiotics changes with the geographic areas and that in Asia the resistance rate is high. • Mutation plays a vital role in antibiotics resistance of H. pylori. What is New: • High resistance rates to single and multiple antibiotics in children of Chongqing, a city located in southwest China, were observed. • Molecular assays showed good conformance with susceptibility test results to direct antibiotic resistance of H. pylori.
Collapse
|
2
|
Wen X, Cao J, Mi J, Huang J, Liang J, Wang Y, Ma B, Zou Y, Liao X, Liang JB, Wu Y. Metabonomics reveals an alleviation of fitness cost in resistant E. coli competing against susceptible E. coli at sub-MIC doxycycline. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124215. [PMID: 33109407 DOI: 10.1016/j.jhazmat.2020.124215] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
High concentrations of antibiotics may induce bacterial resistance mutations and further lead to fitness costs by reducing growth of resistant bacteria. However, antibiotic concentrations faced by bacteria are usually low in common environments, which leads to questions about how resistant bacteria with fitness costs regulate metabolism to coexist or compete with susceptible bacteria during sublethal challenge. Our study revealed that a low proportion (< 15%) of resistant bacteria coexisted with susceptible bacteria due to the fitness cost without doxycycline. However, the cost for the resistant strain decreased at a doxycycline concentration of 1 mg/L and even disappeared when the doxycycline concentration was 2 mg/L. Metabonomics analysis revealed that bypass carbon metabolism and biosynthesis of secondary metabolites were the primary metabolic pathways enriching various upregulated metabolites in resistant bacteria without doxycycline. Moreover, the alleviation of fitness cost for resistant bacteria competed with susceptible bacteria at 1 mg/L doxycycline was correlated with the downregulation of the biomarkers pyruvate and pilocarpine. Our study offered new insight into the metabolic mechanisms by which the fitness cost of resistant mutants was reduced at doxycycline concentrations as low as 1 mg/L and identified various potential metabolites to limit the spread of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Junchao Cao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Jielan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiadi Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Juan Boo Liang
- Laboratory of Animal Production, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China.
| |
Collapse
|
3
|
Windham IH, Merrell DS. Analysis of fitness costs associated with metronidazole and amoxicillin resistance in Helicobacter pylori. Helicobacter 2020; 25:e12724. [PMID: 32677105 DOI: 10.1111/hel.12724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Increasing rates of antibiotic resistance are a major concern for all pathogens, including H. pylori. However, increased resistance often coincides with a decrease in relative fitness of the pathogen in the absence of the antibiotic, raising the possibility that increased resistance can be mitigated for some antibiotics by improved antibiotic husbandry. Therefore, a greater understanding of which types of antibiotic resistance create fitness defects in H. pylori may aid rational treatment strategies. MATERIALS AND METHODS While a wealth of H. pylori literature reports mutations that correlate with increased resistance, few studies demonstrate causation for these same mutations. Herein, we examined fitness costs associated with metronidazole and amoxicillin resistance. Isogenic strains bearing literature reported point mutations in the rdxA and pbp1 genes were engineered and tested in in vitro competition assays to assess relative fitness. RESULTS None of the metronidazole resistance mutations resulted in a fitness cost under the tested conditions. In contrast, amoxicillin-resistant mutant strains demonstrated a defect in competition by 24 hours. This change in fitness was further enhanced by moderate osmotic stress. However, under extreme osmotic stress, the amoxicillin-resistant N562Y PBP1 mutant strain showed enhanced fitness, suggesting that there are some pbp1 mutations that can give a conditional fitness advantage. CONCLUSIONS Our results demonstrate the role of specific point mutations in rdxA and pbp1 in antibiotic resistance and suggest that amoxicillin-resistant strains of H. pylori show environmentally dictated changes in fitness. These later finding may be responsible for the relatively low rates of amoxicillin resistance seen in the United States.
Collapse
Affiliation(s)
- Ian H Windham
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
4
|
Arakawa Y. Systematic research to overcome newly emerged multidrug-resistant bacteria. Microbiol Immunol 2020; 64:231-251. [PMID: 32068266 DOI: 10.1111/1348-0421.12781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/05/2020] [Accepted: 02/08/2020] [Indexed: 11/30/2022]
Abstract
In the 1980s, I found that the chromosomal β-lactamase of Klebsiella pneumoniae LEN-1 showed a very high similarity to the R-plasmid-mediated penicillinase TEM-1 on the amino acid sequence level, and this strongly suggested the origination of TEM-1 from the chromosomal penicillinases of K. pneumoniae or related bacteria. Moreover, the chromosomal K1 β-lactamase (KOXY) of Klebsiella oxytoca was found to belong to the class A β-lactamases that include LEN-1 and TEM-1, although KOXY can hydrolyze cefoperazone (CPZ) like the chromosomal AmpC-type cephalosporinases of various Enterobacteriaceae that can hydrolyze several cephalosporins including CPZ. Furthermore, my collaborators and I found plural novel serine-type β-lactamases, such as MOX-1, SHV-24, TEM-91, CTX-M-64, CMY-9, CMY-19, GES-3, GES-4, and TLA-3, mediated by plasmids. Besides these serine-type β-lactamases, we also first identified exogenously acquired metallo-β-lactamases (MBLs), IMP-1 and SMB-1, in imipenem-resistant Serratia marcescens, and the IMP-1-producing S. marcescens TN9106 became the index case for carbapenemase-producing Enterobacteriaceae. I developed the sodium mercaptoacetic acid (SMA)-disk test for the simple identification of MBL-producing bacteria. We were also the first to identify a variety of plasmid-mediated 16S ribosomal RNA methyltransferases, RmtA, RmtB, RmtC, and NpmA, from various Gram-negative bacteria that showed very high levels of resistance to a wide range of aminoglycosides. Furthermore, we first found plasmid-mediated quinolone efflux pump (QepA) and fosfomycin-inactivating enzymes (FosA3 and FosK). We also first characterized penicillin reduced susceptible Streptococcus agalactiae, macrolide-resistant Mycoplasma pneumoniae, as well as Campylobacter jejuni, and Helicobacter pylori, together with carbapenem-resistant Haemophilus influenzae. We constructed a PCR-based open reading frame typing method for rapid identification of Acinetobacter baumannii international clones.
Collapse
Affiliation(s)
- Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Aguilera-Correa JJ, Urruzuno P, Barrio J, Martinez MJ, Agudo S, Somodevilla A, Llorca L, Alarcón T. Detection of Helicobacter pylori and the genotypes of resistance to clarithromycin and the heterogeneous genotype to this antibiotic in biopsies obtained from symptomatic children. Diagn Microbiol Infect Dis 2016; 87:150-153. [PMID: 27863951 DOI: 10.1016/j.diagmicrobio.2016.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
The aim of this study was to use a commercially available kit (GenoType® HelicoDR; Hain Life Science, Germany) to detect Helicobacter pylori infection and clarithromycin resistance genotype in biopsies obtained from symptomatic children. RESULTS 111 out of 136 (81.6%) biopsies were H. pylori positive by genotype: 47 (42.3%) showed wild-type genotype, 53 resistant genotype (47.7%) and 11 heterogeneous genotype (9.9%). Culture was negative in 27 out of the 111 genotyped biopsies. Mutation A2143G (87.5%), followed by A2142G (7.5%) and double mutant A2142C-A2143G (5%) were found. The 11 heterogeneous genotype biopsies showed wild-type plus A2143G in 9 and plus A2142G in 2. CONCLUSIONS This kit is a rapid, culture-independent method for routine application in biopsies from the pediatric population that allows detection of clarithromycin resistance and heterogeneous genotypes. It is important to know the clinical impact of infection with this type of strains as well as the role in treatment success.
Collapse
Affiliation(s)
- John Jairo Aguilera-Correa
- Department of Microbiology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Department of Preventive Medicine, Public Health and Microbiology, Medical School, Autonomous University of Madrid, Madrid, Spain
| | - Pedro Urruzuno
- Unidad de Gastroenterologia Pediátrica, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Josefa Barrio
- Unidad de Gastroenterologia Pediátrica, Hospital Universitario Fuenlabrada, Madrid, Spain
| | - María José Martinez
- Unidad de Gastroenteologia Pediátrica, Hospital Universitario Niño Jesus, Madrid, Spain
| | - Sonia Agudo
- Department of Microbiology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Angela Somodevilla
- Department of Microbiology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Laura Llorca
- Department of Microbiology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Teresa Alarcón
- Department of Microbiology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Department of Preventive Medicine, Public Health and Microbiology, Medical School, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
6
|
Impaired fitness and transmission of macrolide-resistant Campylobacter jejuni in its natural host. Antimicrob Agents Chemother 2011; 56:1300-8. [PMID: 22183170 DOI: 10.1128/aac.05516-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is a major zoonotic pathogen transmitted to humans via the food chain and is prevalent in chickens, a natural reservoir for this pathogenic organism. Due to the importance of macrolide antibiotics in clinical therapy of human campylobacteriosis, development of macrolide resistance in Campylobacter has become a concern for public health. To facilitate the control of macrolide-resistant Campylobacter, it is necessary to understand if macrolide resistance affects the fitness and transmission of Campylobacter in its natural host. In this study we conducted pairwise competitions and comingling experiments in chickens using clonally related and isogenic C. jejuni strains, which are either susceptible or resistant to erythromycin (Ery). In every competition pair, Ery-resistant (Ery(r)) Campylobacter was consistently outcompeted by the Ery-susceptible (Ery(s)) strain. In the comingling experiments, Ery(r) Campylobacter failed to transmit to chickens precolonized by Ery(s) Campylobacter, while isogenic Ery(s) Campylobacter was able to transmit to and establish dominance in chickens precolonized by Ery(r) Campylobacter. The fitness disadvantage was linked to the resistance-conferring mutations in the 23S rRNA. These findings clearly indicate that acquisition of macrolide resistance impairs the fitness and transmission of Campylobacter in chickens, suggesting that the prevalence of macrolide-resistant C. jejuni will likely decrease in the absence of antibiotic selection pressure.
Collapse
|
7
|
Garbeva P, Tyc O, Remus-Emsermann MNP, van der Wal A, Vos M, Silby M, de Boer W. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1. PLoS One 2011; 6:e27266. [PMID: 22110622 PMCID: PMC3217935 DOI: 10.1371/journal.pone.0027266] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/13/2011] [Indexed: 11/18/2022] Open
Abstract
Background Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures. Methodology and Principal Findings We measured the possible cost of antibiotic production for Pseudomonas fluorescens Pf0-1 by monitoring changes in growth rate with and without induction of antibiotic production by supernatant of a bacterial competitor, namely Pedobacter sp.. Experiments were performed in liquid as well as on semi-solid media under nutrient-limited conditions that are expected to most clearly reveal fitness costs. Our results did not reveal any significant costs for production of antibiotics by Pseudomonas fluorescens Pf0-1. Comparison of growth rates of the antibiotic-producing wild-type cells with those of non-antibiotic producing mutants did not reveal costs of antibiotic production either. Significance Based on our findings we propose that the facultative production of antibiotics might not be selected to mitigate metabolic costs, but instead might be advantageous because it limits the risk of competitors evolving resistance, or even the risk of competitors feeding on the compounds produced.
Collapse
Affiliation(s)
- Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
8
|
Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 2010; 8:260-71. [PMID: 20208551 DOI: 10.1038/nrmicro2319] [Citation(s) in RCA: 1448] [Impact Index Per Article: 103.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most antibiotic resistance mechanisms are associated with a fitness cost that is typically observed as a reduced bacterial growth rate. The magnitude of this cost is the main biological parameter that influences the rate of development of resistance, the stability of the resistance and the rate at which the resistance might decrease if antibiotic use were reduced. These findings suggest that the fitness costs of resistance will allow susceptible bacteria to outcompete resistant bacteria if the selective pressure from antibiotics is reduced. Unfortunately, the available data suggest that the rate of reversibility will be slow at the community level. Here, we review the factors that influence the fitness costs of antibiotic resistance, the ways by which bacteria can reduce these costs and the possibility of exploiting them.
Collapse
Affiliation(s)
- Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BOX 582, SE-751 23, Uppsala, Sweden.
| | | |
Collapse
|
9
|
Hao H, Dai M, Wang Y, Peng D, Liu Z, Yuan Z. 23S rRNA mutation A2074C conferring high-level macrolide resistance and fitness cost in Campylobacter jejuni. Microb Drug Resist 2010; 15:239-44. [PMID: 19857128 DOI: 10.1089/mdr.2009.0008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To examine the development of macrolide resistance in Campylobacter jejuni and assess the fitness of the macrolide-resistant mutants, two macrolide-susceptible C. jejuni strains, American Type Culture Collection (ATCC) 33291 and H1, from different geographic areas were exposed to tylosin in vitro. Multiple mutant strains were obtained from the selection. Most of the high-level macrolide-resistant strains derived from the selection exhibited the A2074C transversion in all three copies of 23S rRNA and displayed strong stability in the absence of antibiotic selection pressure. The competition experiments demonstrated that the strains containing the A2074C transversion imposed a fitness cost in competition mixtures. In addition, the fitness cost of the mutation was not ameliorated after approximately 500 generations of evolution under laboratory conditions. These findings indicate that the A2074C transversion in C. jejuni is not only correlated with stable and high-level macrolide resistance but also associated with a fitness cost.
Collapse
Affiliation(s)
- Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues/MOA Key Laboratory of Food Safety Evaluation, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Andersson DI. The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 2006; 9:461-5. [PMID: 16890008 DOI: 10.1016/j.mib.2006.07.002] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
A key parameter influencing the rate and trajectory of the evolution of antibiotic resistance is the fitness cost of resistance. Recent studies have demonstrated that antibiotic resistance, whether caused by target alteration or by other mechanisms, generally confers a reduction in fitness expressed as reduced growth, virulence or transmission. These findings imply that resistance might be reversible, provided antibiotic use is reduced. However, several processes act to stabilize resistance, including compensatory evolution where the fitness cost is ameliorated by additional mutation without loss of resistance, the rare occurrence of cost-free resistance mechanisms and genetic linkage or co-selection between the resistance markers and other selected markers. Conceivably we can use this knowledge to rationally choose and design targets and drugs where the costs of resistance are the highest, and where the likelihood of compensation is the lowest.
Collapse
Affiliation(s)
- Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, S-751 23 Uppsala, Sweden.
| |
Collapse
|
11
|
Zhang Q, Sahin O, McDermott PF, Payot S. Fitness of antimicrobial-resistant Campylobacter and Salmonella. Microbes Infect 2006; 8:1972-8. [PMID: 16714138 DOI: 10.1016/j.micinf.2005.12.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 12/28/2005] [Indexed: 11/26/2022]
Abstract
Campylobacter and Salmonella are the most commonly reported bacterial causes of human foodborne infections, and increasing proportions of these pathogens become resistant to medically important antimicrobial agents, imposing a burden on public health. Acquisition of resistance to antibiotics affects the adaptation and evolution of Salmonella and Campylobacter in various environments. Many resistance-conferring mutations entail a biological fitness cost, while others (e.g. fluoroquinolone resistance in Campylobacter) have no cost or even enhanced fitness. In Salmonella, the fitness disadvantage due to antimicrobial resistance can be restored by acquired compensatory mutations, which occur both in vitro and in vivo. The compensated or even enhanced fitness associated with antibiotic resistance may facilitate the spread and persistence of antimicrobial-resistant Salmonella and Campylobacter in the absence of selection pressure, creating a significant barrier for controlling antibiotic-resistant foodborne pathogens.
Collapse
Affiliation(s)
- Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
A large number of studies on diagnostic tests have been published this year. New tests were proposed for the detection of Helicobacter pylori antigens in stools and new molecular methods (real-time polymerase chain reaction) to look for antimicrobial susceptibility. The other standard tests have been applied in different situations to improve the diagnosis of the infection.
Collapse
Affiliation(s)
- Karen A Krogfelt
- Department of Gastrointestinal Infections, Statens Serum Institut, Copenhagen, Denmark
| | | | | |
Collapse
|