1
|
Koh CY, Schaff UY, Piccini M, Stanker L, Cheng LW, Ravichandran E, Singh BR, Sommer GJ, Singh AK. Centrifugal microfluidic platform for ultrasensitive detection of botulinum toxin. Anal Chem 2015; 87:922-8. [PMID: 25521812 PMCID: PMC4303339 DOI: 10.1021/ac504054u] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023]
Abstract
We present an innovative centrifugal microfluidic immunoassay platform (SpinDx) to address the urgent biodefense and public health need for ultrasensitive point-of-care/incident detection of botulinum toxin. The simple, sample-to-answer centrifugal microfluidic immunoassay approach is based on binding of toxins to antibody-laden capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by laser-induced fluorescence. A blind, head-to-head comparison study of SpinDx versus the gold-standard mouse bioassay demonstrates 100-fold improvement in sensitivity (limit of detection = 0.09 pg/mL), while achieving total sample-to-answer time of <30 min with 2-μL required volume of the unprocessed sample. We further demonstrate quantification of botulinum toxin in both exogeneous (human blood and serum spiked with toxins) and endogeneous (serum from mice intoxicated via oral, intranasal, and intravenous routes) samples. SpinDx can analyze, without any sample preparation, multiple sample types including whole blood, serum, and food. It is readily expandable to additional analytes as the assay reagents (i.e., the capture beads and detection antibodies) are disconnected from the disk architecture and the reader, facilitating rapid development of new assays. SpinDx can also serve as a general-purpose immunoassay platform applicable to diagnosis of other conditions and diseases.
Collapse
Affiliation(s)
- Chung-Yan Koh
- Sandia National
Laboratories, 7011 East Avenue, Livermore, California 94551, United States
| | - Ulrich Y. Schaff
- Sandia National
Laboratories, 7011 East Avenue, Livermore, California 94551, United States
| | - Matthew
E. Piccini
- Sandia National
Laboratories, 7011 East Avenue, Livermore, California 94551, United States
| | - Larry
H. Stanker
- Western Regional
Research Center, Foodborne Contaminants Research Unit, U.S. Department
of Agriculture − Agricultural Research Service, Albany, California 94710, United States
| | - Luisa W. Cheng
- Western Regional
Research Center, Foodborne Contaminants Research Unit, U.S. Department
of Agriculture − Agricultural Research Service, Albany, California 94710, United States
| | - Easwaran Ravichandran
- University
of Massachusetts Dartmouth, North
Dartmouth, Massachusetts 02747, United States
| | - Bal-Ram Singh
- University
of Massachusetts Dartmouth, North
Dartmouth, Massachusetts 02747, United States
| | - Greg J. Sommer
- Sandia National
Laboratories, 7011 East Avenue, Livermore, California 94551, United States
| | - Anup K. Singh
- Sandia National
Laboratories, 7011 East Avenue, Livermore, California 94551, United States
| |
Collapse
|
2
|
Dorner MB, Schulz KM, Kull S, Dorner BG. Complexity of Botulinum Neurotoxins: Challenges for Detection Technology. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Hill BJ, Skerry JC, Smith TJ, Arnon SS, Douek DC. Universal and specific quantitative detection of botulinum neurotoxin genes. BMC Microbiol 2010; 10:267. [PMID: 20961439 PMCID: PMC2973968 DOI: 10.1186/1471-2180-10-267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 10/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clostridium botulinum, an obligate anaerobic spore-forming bacterium, produces seven antigenic variants of botulinum toxin that are distinguished serologically and termed "serotypes". Botulinum toxin blocks the release of acetylcholine at neuromuscular junctions resulting in flaccid paralysis. The potential lethality of the disease warrants a fast and accurate means of diagnosing suspected instances of food contamination or human intoxication. Currently, the Food and Drug Administration (FDA)-accepted assay to detect and type botulinum neurotoxins (BoNTs) is the mouse protection bioassay. While specific and sensitive, this assay requires the use of laboratory animals, may take up to four days to achieve a diagnosis, and is unsuitable for high-throughput analysis. We report here a two-step PCR assay that identifies all toxin types, that achieves the specificity of the mouse bioassay while surpassing it in equivalent sensitivity, that has capability for high-throughput analysis, and that provides quantitative results within hours. The first step of our assay consists of a conventional PCR that detects the presence of C. botulinum regardless of the neurotoxin type. The second step uses quantitative PCR (qPCR) technology to determine the specific serotype of the neurotoxin. RESULTS We assayed purified C. botulinum DNA and crude toxin preparations, as well as food and stool from healthy individuals spiked with purified BoNT DNA, and one stool sample from a case of infant botulism for the presence of the NTNH gene, which is part of the BoNT gene cluster, and for the presence of serotype-specific BoNT genes. The PCR surpassed the mouse bioassay both in specificity and sensitivity, detecting positive signals in BoNT preparations containing well below the 1 LD50 required for detection via the mouse bioassay. These results were type-specific and we were reliably able to quantify as few as 10 genomic copies. CONCLUSIONS While other studies have reported conventional or quantitative PCR-based assays for the detection of C. botulinum genes, our procedure's high-throughput capability and its portability allows most laboratories to quickly assess the possible presence of BoNTs either in food processing samples or in suspected cases of botulism. Thus, this assay provides rapid and specific detection of BoNT and toxin complex genes and would enable the targeting of appropriate therapeutics to infected individuals in a timely manner.
Collapse
Affiliation(s)
- Brenna J Hill
- Human Immunology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
4
|
Lindberg A, Skarin H, Knutsson R, Blomqvist G, Båverud V. Real-time PCR for Clostridium botulinum type C neurotoxin (BoNTC) gene, also covering a chimeric C/D sequence--application on outbreaks of botulism in poultry. Vet Microbiol 2010; 146:118-23. [PMID: 20537470 DOI: 10.1016/j.vetmic.2010.04.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/31/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
Abstract
In recent years, botulism type C has become a serious problem in poultry flocks in Sweden. A real-time PCR assay for Clostridium botulinum (C. botulinum) type C neurotoxin (BoNTC) gene was developed as an alternative to the mouse bioassay for detection and identification of C. botulinum type C. The complete method consists of an optimized enrichment protocol followed by automated DNA extraction prior to real-time PCR. The sensitivity of the PCR assay was determined with purified DNA to approximately 50 copies per PCR reaction. The specificity of the PCR assay was evaluated on a panel of about thirty relevant bacteria and on samples of caecum from birds collected in connection with botulism outbreaks on Swedish poultry farms. The PCR assay also covers a previously reported chimeric C/D sequence of the gene. Caecum samples from the outbreaks were positive by real-time PCR. Some of these samples were also examined with a set of conventional PCR methods, to distinguish the gene for the chimeric form from the conserved type C gene. Interestingly, the caecum samples were found to be positive for the chimeric C/D sequence. This is the first study in Europe demonstrating the chimeric C/D sequence. When the toxin gene in two of the samples was sequenced, it was closely identical (99-100%) with several previously reported C/D chimeric sequences. DNA extraction and the real-time PCR assay were both performed in a 96-well format, facilitating for future large-scale detection in outbreak situations and prevalence studies.
Collapse
Affiliation(s)
- A Lindberg
- National Veterinary Institute, Department of Bacteriology, SE-751 89 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
5
|
Pentaplexed quantitative real-time PCR assay for the simultaneous detection and quantification of botulinum neurotoxin-producing clostridia in food and clinical samples. Appl Environ Microbiol 2010; 76:4387-95. [PMID: 20435756 DOI: 10.1128/aem.02490-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxins are produced by the anaerobic bacterium Clostridium botulinum and are divided into seven distinct serotypes (A to G) known to cause botulism in animals and humans. In this study, a multiplexed quantitative real-time PCR assay for the simultaneous detection of the human pathogenic C. botulinum serotypes A, B, E, and F was developed. Based on the TaqMan chemistry, we used five individual primer-probe sets within one PCR, combining both minor groove binder- and locked nucleic acid-containing probes. Each hydrolysis probe was individually labeled with distinguishable fluorochromes, thus enabling discrimination between the serotypes A, B, E, and F. To avoid false-negative results, we designed an internal amplification control, which was simultaneously amplified with the four target genes, thus yielding a pentaplexed PCR approach with 95% detection probabilities between 7 and 287 genome equivalents per PCR. In addition, we developed six individual singleplex real-time PCR assays based on the TaqMan chemistry for the detection of the C. botulinum serotypes A, B, C, D, E, and F. Upon analysis of 42 C. botulinum and 57 non-C. botulinum strains, the singleplex and multiplex PCR assays showed an excellent specificity. Using spiked food samples we were able to detect between 10(3) and 10(5) CFU/ml, respectively. Furthermore, we were able to detect C. botulinum in samples from several cases of botulism in Germany. Overall, the pentaplexed assay showed high sensitivity and specificity and allowed for the simultaneous screening and differentiation of specimens for C. botulinum A, B, E, and F.
Collapse
|
6
|
Takahashi H, Takakura C, Kimura B. A quantitative real-time PCR method for monitoring Clostridium botulinum type A in rice samples. J Food Prot 2010; 73:688-94. [PMID: 20377957 DOI: 10.4315/0362-028x-73.4.688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A quantitative real-time PCR using SYBR Green dye was developed to target the neurotoxin type A (boNT/A) gene of Clostridium botulinum type A. Primer specificity was confirmed by analyzing 63 strains including 5 strains of C. botulinum type A and 11 of non-type A C. botulinum. The highly similar amplification efficiencies of the real-time PCR assay were observed for 5 strains of C. botulinum type A. The DNA extraction with NucliSENS miniMAG provided sufficient performance to obtain the purified DNA from steamed rice samples and to develop the standard curve for the enumeration of C. botulinum in steamed rice samples. The real-time PCR assay could detect 10 cells per milliliter of 10 x rice homogenate, thus indicating that more than 100 C. botulinum cells per g of rice sample was quantifiable by the real-time PCR assay. The inoculation of aseptic rice samples with low numbers of C. botulinum type A cells revealed that the fate of inoculated C. botulinum type A cells in rice samples could be monitored accurately by the real-time PCR assay. These results indicate that the real-time PCR assay developed in this study provides rapid, effective, and quantitative monitoring of C. botulinum in steamed rice samples.
Collapse
Affiliation(s)
- Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
7
|
Satterfield BA, Stewart AF, Lew CS, Pickett DO, Cohen MN, Moore EA, Luedtke PF, O'Neill KL, Robison RA. A quadruplex real-time PCR assay for rapid detection and differentiation of the Clostridium botulinum toxin genes A, B, E and F. J Med Microbiol 2010; 59:55-64. [DOI: 10.1099/jmm.0.012567-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium botulinum is the aetiological agent of botulism, a disease marked by flaccid paralysis that can progress to asphyxiation and death. This species is defined by the production of one of the botulinum neurotoxins (BoNTs), which are the most potent toxins known. Because of their potency, these toxins have the potential to be used as biological weapons, and therefore C. botulinum has been classified as a category A select agent. There are four related but antigenically distinct BoNT types that cause disease in humans, A, B, E and F. The mouse bioassay is the current gold standard by which BoNTs are confirmed. However, this method is expensive, slow and labour-intensive. Although PCR-based assays have been used extensively for the detection of BoNT-producing bacteria in food, animals and faecal samples, and recently to help diagnose disease in humans, no real-time quantitative PCR (qPCR) assay has yet been developed that can identify and differentiate all four BoNTs that cause disease in humans. This report describes the development of a qPCR single-tube assay that uniquely identifies these four BoNTs responsible for human disease. A total of 79 C. botulinum isolates with varying toxin types was evaluated in this study, as well as numerous near-neighbours and other bacterial species. The results showed that this quadruplex assay was capable of detecting any of the four toxin genes in a given sample at a sensitivity of about 130–840 fg genomic DNA and could detect the presence of up to all four BoNT genes simultaneously in a given sample. The assay was also functional in the presence of extraneous organic matter commonly found in various environmental samples.
Collapse
Affiliation(s)
- Benjamin A. Satterfield
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Alvin F. Stewart
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Cynthia S. Lew
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - David O. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Marissa N. Cohen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Emily A. Moore
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | | | - Kim L. O'Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
8
|
Huang J, Wu J, Li C, Xiao C, Wang G. Specific and sensitive detection of Ralstonia solanacearum in soil with quantitative, real-time PCR assays. J Appl Microbiol 2009; 107:1729-39. [PMID: 19486215 DOI: 10.1111/j.1365-2672.2009.04364.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this study was to develop a sensitive and an effective method suitable for large-scale detection and quantification of Ralstonia solanacearum in soil. METHODS AND RESULTS Based on the specific sequence of R. solanacearum strain G1000, the primer pair R.sol1-R.sol2 and the TaqMan probe Rs-pro were designed, and specific and sensitive PCR detection methods were successfully established. The detection limit was 100 fg microl(-1) DNA in conventional PCR and 1.2 fg microl(-1) in real-time PCR. By combining real-time PCR with the modified protocols to extract DNA from soil, it was possible to achieve real-time detection of R. solanacearum in soil, and the degree of sensitivity was 100 fg microl(-1). To detect inhibition in soil samples, an exogenous internal positive control (IPC) was included preventing false negative results, and IPC was successfully amplified from all samples tested. The methodology developed was used to detect the presence of R. solanacearum in tobacco fields in China. CONCLUSIONS The real-time PCR combined with the protocol to extract DNA from soil led to the development of a specific, sensitive and rapid detection method for R. solanacearum in soil. SIGNIFICANCE AND IMPACT OF THE STUDY The real-time PCR improves the detection sensitivity and specificity and provides an important tool for routine detection of R. solanacearum in soil samples and for epidemiological and ecological studies.
Collapse
Affiliation(s)
- J Huang
- College of Biological Engineering, Chongqing University, Chongqing, China.
| | | | | | | | | |
Collapse
|
9
|
Sakuma T, Kurosaki Y, Fujinami Y, Takizawa T, Yasuda J. Rapid and simple detection of Clostridium botulinum types A and B by loop-mediated isothermal amplification. J Appl Microbiol 2009; 106:1252-9. [PMID: 19187148 DOI: 10.1111/j.1365-2672.2008.04084.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To develop a convenient and rapid detection method for toxigenic Clostridium botulinum types A and B using a loop-mediated isothermal amplification (LAMP) method. METHODS AND RESULTS The LAMP primer sets for the type A or B botulinum neurotoxin gene, BoNT/A or BoNT/B, were designed. To determine the specificity of the LAMP assay, a total of 14 C. botulinum strains and 17 other Clostridium strains were tested. The assays for the BoNT/A or BoNT/B gene detected only type A or B C. botulinum strains, respectively, but not other types of C. botulinum or strains of other Clostridium species. Using purified chromosomal DNA, the sensitivity of LAMP for the BoNT/A or BoNT/B gene was 1 pg or 10 pg of DNA per assay, respectively. The assay times needed to detect 1 ng of DNA were only 23 and 22 min for types A and B, respectively. In food samples, the detection limit per reaction was one cell for type A and 10 cells for type B. CONCLUSIONS The LAMP is a sensitive, specific and rapid detection method for C. botulinum types A and B. SIGNIFICANCE AND IMPACT OF THE STUDY The LAMP assay would be useful for detection of C. botulinum in environmental samples.
Collapse
Affiliation(s)
- T Sakuma
- First Department of Forensic Science, National Research Institute of Police Science, Kashiwa, Japan
| | | | | | | | | |
Collapse
|
10
|
Artin I, Björkman P, Cronqvist J, Rådström P, Holst E. First case of type E wound botulism diagnosed using real-time PCR. J Clin Microbiol 2007; 45:3589-94. [PMID: 17881556 PMCID: PMC2168498 DOI: 10.1128/jcm.01192-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wound botulism is a growing problem among injecting drug users. The condition is often difficult to diagnose, with laboratory confirmation in only 50% of the cases. Here we present a real-time PCR-based method for the diagnosis of wound botulism caused by Clostridium botulinum. The assay includes an internal amplification control which is amplified simultaneously with the genes encoding neurotoxin types A, B, and E. This method was used to detect the first case of wound botulism in an injecting drug user in Sweden. In addition, to the best of our knowledge, this is the first reported case of wound botulism caused by C. botulinum type E.
Collapse
Affiliation(s)
- Ingrid Artin
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, SE-223 62, Lund, Sweden
| | | | | | | | | |
Collapse
|
11
|
Fenicia L, Anniballi F, De Medici D, Delibato E, Aureli P. SYBR green real-time PCR method to detect Clostridium botulinum type A. Appl Environ Microbiol 2007; 73:2891-6. [PMID: 17369349 PMCID: PMC1892887 DOI: 10.1128/aem.02234-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botulinum toxins (BoNTs) are classically produced by Clostridium botulinum but rarely also from neurotoxigenic strains of Clostridium baratii and Clostridium butyricum. BoNT type A (BoNT/A), BoNT/B, BoNT/E, and very rarely BoNT/F are mainly responsible for human botulism. Standard microbiological methods take into consideration only the detection of C. botulinum. The presumptive identification of the toxigenic strains together with the typing of BoNT has to be performed by mouse bioassay. The development of PCR-based methods for the detection and typing of BoNT-producing clostridia would be an ideal alternative to the mouse bioassay. The objective of this study was to develop a rapid and robust real-time PCR method for detecting C. botulinum type A. Four different techniques for the extraction and purification of DNA from cultured samples were initially compared. Of the techniques used, Chelex 100, DNeasy tissue kit, InstaGene matrix DNA, and boiling, the boiling technique was significantly less efficient than the other three. These did not give statistically different results, and Chelex 100 was chosen because it was less expensive than the others. In order to eliminate any false-negative results, an internal amplification control was synthesized and included in the amplification mixture according to ISO 22174. The specificity of the method was tested against 75 strains of C. botulinum type A, 4 strains of C. botulinum type Ab, and 101 nontarget strains. The detection limit of the reaction was less than 6 x 10(1) copies of C. botulinum type A DNA. The robustness of the method was confirmed using naturally contaminated stool specimens to evaluate the tolerance of inhibitor substances. SYBR green real-time PCR showed very high specificity for the detection of C. botulinum types A and Ab (inclusivity and exclusivity, 100%).
Collapse
Affiliation(s)
- Lucia Fenicia
- National Reference Centre for Botulism, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
12
|
Kasai Y, Kimura B, Tajima Y, Fujii T. Quantitative Duplex PCR of Clostridium botulinum Types A and B Neurotoxin Genes. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2007; 48:19-26. [PMID: 17370613 DOI: 10.3358/shokueishi.48.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A duplex quantitative polymerase chain reaction (PCR) assay for Clostridium botulinum types A and B was developed. The sensitivity and specificity of the assay were verified by using 6 strains of type A, 7 strains of type B, and 14 genera of 42 non-C. botulinum types A and B strains, including C. botulinum types C, D, E, F, and G. In pure culture, the detection limit was 10(2) CFU/ mL for type A and 10(3) CFU/mL for type B. In mushroom broth, increases in the amounts of C. botulinum types A and B could be monitored separately (the quantifiable range was 10(2) to 10(6) for type A and 10(2) to 10(7) for type B) from each sample that contained a large number of background bacteria, and toxin could be detected much earlier than with mouse assay. These results suggest that duplex quantitative PCR methods are useful to detect and quantify C. botulinum types A and/ or B toxin genes.
Collapse
Affiliation(s)
- Yoshiaki Kasai
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology: 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | |
Collapse
|
13
|
Abstract
Botulism is a potentially lethal paralytic disease caused by botulinum neurotoxin. Human pathogenic neurotoxins of types A, B, E, and F are produced by a diverse group of anaerobic spore-forming bacteria, including Clostridium botulinum groups I and II, Clostridium butyricum, and Clostridium baratii. The routine laboratory diagnostics of botulism is based on the detection of botulinum neurotoxin in the patient. Detection of toxin-producing clostridia in the patient and/or the vehicle confirms the diagnosis. The neurotoxin detection is based on the mouse lethality assay. Sensitive and rapid in vitro assays have been developed, but they have not yet been appropriately validated on clinical and food matrices. Culture methods for C. botulinum are poorly developed, and efficient isolation and identification tools are lacking. Molecular techniques targeted to the neurotoxin genes are ideal for the detection and identification of C. botulinum, but they do not detect biologically active neurotoxin and should not be used alone. Apart from rapid diagnosis, the laboratory diagnostics of botulism should aim at increasing our understanding of the epidemiology and prevention of the disease. Therefore, the toxin-producing organisms should be routinely isolated from the patient and the vehicle. The physiological group and genetic traits of the isolates should be determined.
Collapse
Affiliation(s)
- Miia Lindström
- Department of Food and Environmental Hygiene, University of Helsinki, P.O. Box 66, 00014 University of Helsinki, Finland.
| | | |
Collapse
|