1
|
Trivedi A, Miratsky JA, Henderson EC, Singharoy A, Shrivastava A. A membrane-associated conveyor belt controls the rotational direction of the bacterial type 9 secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614571. [PMID: 39386584 PMCID: PMC11463627 DOI: 10.1101/2024.09.23.614571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Many bacteria utilize the type 9 secretion system (T9SS) for gliding motility, surface colonization, and pathogenesis. This dual-function motor supports both gliding motility and protein secretion, where rotation of the T9SS plays a central role. Fueled by the energy of the stored proton motive force and transmitted through the torque of membrane-anchored stator units, the rotary T9SS propels an adhesin-coated conveyor belt along the bacterial outer membrane like a molecular snowmobile, thereby enabling gliding motion. However, the mechanisms controlling the rotational direction and gliding motility of T9SS remain elusive. Shedding light on this mechanism, we find that in the gliding bacterium Flavobacterium johnsoniae , deletion of the C-terminus of a conveyor belt protein controls, and in fact, reverses the rotational direction of T9SS from counterclockwise (CCW) to clockwise (CW). Largescale conformational changes at the interface of the T9SS ring with the C-terminus of the conveyer belt, as well as those of the ring protein themselves, in concert with a CW bias of the stators general rotation brings forth a 'tri-component gearset' model: the conveyor belt controls the conformation of the T9SS ring, and thereby its rotational direction. Consequently, the CW rotating stator either push the outer edge of the T9SS rings, causing its CCW rotation or press against the inner surface of the rings, resulting in CW rotation. This regulatory mechanism exemplifies how an outer membrane associated conveyor belt adjusts the rotational direction of its driver, the T9SS, thus providing adaptive sensory feedback to control the motility of a molecular snowmobile.
Collapse
|
2
|
Hayashida N, Urano-Tashiro Y, Horie T, Saiki K, Yamanaka Y, Takahashi Y. Transcriptome and metabolome analyses of Streptococcus gordonii DL1 under acidic conditions. J Oral Biosci 2024; 66:112-118. [PMID: 38135272 DOI: 10.1016/j.job.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES Streptococcus gordonii is associated with the formation of biofilms, especially those that comprise dental plaque. Notably, S. gordonii DL1 causes infective endocarditis (IE). Colonization of this bacterium requires a mechanism that can tolerate a drop in environmental pH by producing acid via its own sugar metabolism. The ability to survive acidic environmental conditions might allow the bacterium to establish vegetative colonization even in the endocardium due to inflammation-induced lowering of pH, increasing the risk of IE. At present, the mechanism by which S. gordonii DL1 survives under acidic conditions is not thoroughly elucidated. The present study was thus conducted to elucidate the mechanism(s) by which S. gordonii DL1 survives under acidic conditions. METHODS We analyzed dynamic changes in gene transcription and intracellular metabolites in S. gordonii DL1 exposed to acidic conditions, using transcriptome and metabolome analyses. RESULTS Transcriptome analysis revealed upregulation of genes involved in heat shock response and glycolysis, and down regulation of genes involved in phosphotransferase systems and biosynthesis of amino acids. The most upregulated genes were a beta-strand repeat protein of unknown function (SGO_RS06325), followed by copper-translocating P-type ATPase (SGO_RS09470) and malic enzyme (SGO_RS01850). The latter two of these contribute to cytoplasmic alkalinization. S. gordonii mutant strains lacking each of these genes showed significantly reduced survival under acidic conditions. Metabolome analysis revealed that cytoplasmic levels of several amino acids were reduced. CONCLUSIONS S. gordonii survives the acidic conditions by recovering the acidic cytoplasm using the various activities, which are regulated at the transcriptional level.
Collapse
Affiliation(s)
- Naoto Hayashida
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Yumiko Urano-Tashiro
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Tetsuro Horie
- Research Center for Odontology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Keitarou Saiki
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Yuki Yamanaka
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Yukihiro Takahashi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| |
Collapse
|
3
|
Riemerella anatipestifer GldG is necessary for secretion of effectors by type IX secretion system. Vet Microbiol 2023; 276:109628. [PMID: 36508857 DOI: 10.1016/j.vetmic.2022.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Riemerella anatipestifer secretes proteins through the type IX secretion system (T9SS). Recent studies have shown that the R. anatipestifer T9SS component proteins GldM and GldK also act as crucial virulence factors. In our previous study, the disruption of AS87_RS00460 gene, which encodes the predicted protein GldG, significantly reduced the bacterial virulence of R. anatipestifer wild-type strain Yb2, but the mechanism was unclear. In this study, we investigated the function of the GldG in bacterial virulence and protein secretion using the mutant strain Yb2ΔgldG and complementation strain cYb2ΔgldG. Our results demonstrate that the gldG gene encodes a gliding-motility-associated ABC transporter substrate-binding protein GldG, which was localized to the bacterial membrane in an immunoblotting analysis, and functions in the bacterium's adherence to and invasion of host cells and its survival in host blood. The resistance of mutant strain Yb2ΔgldG to complement-dependent killing was significantly reduced. Yb2ΔgldG displayed reduced gliding motility and deficient protein secretion. Label-free quantification (LFQ) with liquid chromatography-mass spectrometry (LC-MS) showed that 10 proteins with a conserved T9SS C-terminal domain were differentially secreted by Yb2ΔgldG and Yb2. The secretion levels of those 10 proteins were determined with immunoblotting, and the results were consistent with the LFQ LC-MS data. All of these effects were rescued by complementation with a plasmid encoding Yb2 gldG. Our results demonstrate that the R. anatipestifer gldG gene encodes the protein GldG, which is involved in bacterial virulence and protein secretion.
Collapse
|
4
|
Astafyeva Y, Gurschke M, Streit WR, Krohn I. Interplay between the microalgae Micrasterias radians and its symbiont Dyadobacter sp. HH091. Front Microbiol 2022; 13:1006609. [PMID: 36312980 PMCID: PMC9606717 DOI: 10.3389/fmicb.2022.1006609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Based on previous research, related to detailed insight into mutualistic collaboration of microalga and its microbiome, we established an artificial plant-bacteria system of the microalga Micrasterias radians MZCH 672 and the bacterial isolate Dyadobacter sp. HH091. The bacteria, affiliated with the phylum Bacteroidota, strongly stimulated growth of the microalga when it was added to axenic algal cultures. For further advances, we studied the isolate HH091 and its interaction with the microalga M. radians using transcriptome and extensive genome analyses. The genome of HH091 contains predicted polysaccharide utilizing gene clusters co-working with the type IX secretion system (T9SS) and conceivably involved in the algae-bacteria liaison. Here, we focus on characterizing the mechanism of T9SS, implementing the attachment and invasion of microalga by Dyadobacter sp. HH091. Omics analysis exposed T9SS genes: gldK, gldL, gldM, gldN, sprA, sprE, sprF, sprT, porU and porV. Besides, gld genes not considered as the T9SS components but required for gliding motility and protein secretion (gldA, gldB, gldD, gldF, gldG, gldH, gldI, gldJ), were also identified at this analysis. A first model of T9SS apparatus of Dyadobacter was proposed in a course of this research. Using the combination of fluorescence labeling of Dyadobacter sp. HH091, we examined the bacterial colonisation and penetration into the cell wall of the algal host M. radians MZCH 672.
Collapse
|
5
|
Saiki K, Urano-Tashiro Y, Yamanaka Y, Takahashi Y. Calcium ions and vitamin B 12 are growth factors for Porphyromonas gingivalis. J Oral Biosci 2022; 64:445-451. [PMID: 36103977 DOI: 10.1016/j.job.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Porphyromonas gingivalis is a causative agent of chronic periodontitis. Standard strains of P. gingivalis, such as W83 and ATCC 33277, proliferate in minimal medium when protein is added as the energy source and hemin and menadione are added as growth factors. Nevertheless, minimal medium containing bovine serum albumin sometimes fails to support growth. HIGHLIGHTS The proliferation of two W83 strains and seven ATCC 33277 strains in various minimal media was investigated. Previously, we determined that calcium chloride (CaCl2) was a growth factor for W83NM, a W83 strain. In this study, we found that vitamin B12 enhanced the proliferation of W83NM in a minimal medium with cultures from the fourth passage but not from the first to the third passage. Therefore, using fourth-passage cultures, we assessed the proliferation of two W83 and seven ATCC 33277 strains in minimal media and the effects of CaCl2 and vitamin B12. Surprisingly, the nine P. gingivalis strains all differed with respect to their proliferation in minimal media, and protein products used as energy sources showed product-to-product and lot-to-lot heterogeneity. Even though strains or protein products were different, we found CaCl2-dependent growth in nine strains and vitamin B12-dependent growth in seven strains. CONCLUSION These results suggest that calcium ions and vitamin B12 are novel growth factors for P. gingivalis.
Collapse
Affiliation(s)
- Keitarou Saiki
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yumiko Urano-Tashiro
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yuki Yamanaka
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yukihiro Takahashi
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Song W, Zhuang X, Tan Y, Qi Q, Lu X. The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii. ENGINEERING MICROBIOLOGY 2022; 2:100038. [PMID: 39629027 PMCID: PMC11611037 DOI: 10.1016/j.engmic.2022.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/06/2024]
Abstract
The recently discovered type IX secretion system (T9SS) is limited to the Bacteroidetes phylum. Cytophaga hutchinsonii, a member of the Bacteroidetes phylum widely spread in soil, has complete orthologs of T9SS components and many T9SS substrates. C. hutchinsonii can efficiently degrade crystalline cellulose using a novel strategy, in which bacterial cells must be in direct contact with cellulose. It can rapidly glide over surfaces via unclear mechanisms. Studies have shown that T9SS plays an important role in cellulose degradation, gliding motility, and ion assimilation in C. hutchinsonii. As reported recently, T9SS substrates are N- or O-glycosylated at their C-terminal domains (CTDs), with N-glycosylation being related to the translocation and outer membrane anchoring of these proteins. These findings have deepened our understanding of T9SS in C. hutchinsonii. In this review, we focused on the research progress on diverse substrates and functions of T9SS in C. hutchinsonii and the glycosylation of its substrates. A model of T9SS functions and the glycosylation of its substrates was proposed.
Collapse
Affiliation(s)
- Wenxia Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xueke Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Astafyeva Y, Gurschke M, Qi M, Bergmann L, Indenbirken D, de Grahl I, Katzowitsch E, Reumann S, Hanelt D, Alawi M, Streit WR, Krohn I. Microalgae and Bacteria Interaction-Evidence for Division of Diligence in the Alga Microbiota. Microbiol Spectr 2022; 10:e0063322. [PMID: 35913168 PMCID: PMC9430724 DOI: 10.1128/spectrum.00633-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Microalgae are one of the most dominant forms of life on earth that is tightly associated with a distinct and specialized microbiota. We have previously shown that the microbiota of Scenedesmus quadricauda harbors less than 10 distinct microbial species. Here, we provide evidence that dominant species are affiliated with the genera of Variovorax, Porphyrobacter, and Dyadobacter. Experimental and transcriptome-based evidence implies that within this multispecies interaction, Dyadobacter is a key to alga growth and fitness and is highly adapted to live in the phycosphere. While presumably under light conditions the alga provides the energy source to the bacteria, Dyadobacter produces and releases mainly a large variety of polysaccharides modifying enzymes. This is coherent with high-level expression of the T9SS in alga cocultures. The transcriptome data further imply that quorum-quenching proteins (QQ) and biosynthesis of vitamins B1, B2, B5, B6, and B9 are expressed by Dyadobacter at high levels in comparison to Variovorax and Porphyrobacter. Notably, Dyadobacter produces a significant number of leucine-rich repeat (LRR) proteins and enzymes involved in bacterial reactive oxygen species (ROS) tolerance. Complementary to this, Variovorax expresses the genes of the biosynthesis of vitamins B2, B5, B6, B7, B9, and B12, and Porphyrobacter is specialized in the production of vitamins B2 and B6. Thus, the shared currency between partners are vitamins, microalgae growth-promoting substances, and dissolved carbon. This work significantly enlarges our knowledge on alga-bacteria interaction and demonstrates physiological investigations of microalgae and associated bacteria, using microscopy observations, photosynthetic activity measurements, and flow cytometry. IMPORTANCE The current study gives a detailed insight into mutualistic collaboration of microalgae and bacteria, including the involvement of competitive interplay between bacteria. We provide experimental evidence that Gram-negative bacteria belonging to the Dyadobacter, Porphyrobacter, and Variovorax are the key players in a Scenedesmus quadricauda alga-bacteria interaction. We impart strong evidence that Dyadobacter produces and releases polysaccharides degradation enzymes and leucine-rich repeat proteins; Variovorax supplies the consortium with auxins and vitamin B12, while Porphyrobacter produces a broad spectrum of B vitamins. We show not only that the microalgae collaborate with the bacteria and vice versa but also that the bacteria interact with each other via quorum-sensing and secretion system mechanisms. The shared currency between partners appears to be vitamins, microalgae growth-promoting substances, and dissolved carbon.
Collapse
Affiliation(s)
- Yekaterina Astafyeva
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Microbiology and Biotechnology, Hamburg, Germany
| | - Marno Gurschke
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Microbiology and Biotechnology, Hamburg, Germany
| | - Minyue Qi
- University Medical Center Hamburg-Eppendorf, Bioinformatics Core, Hamburg, Germany
| | - Lutgardis Bergmann
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Microbiology and Biotechnology, Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Virus Genomics, Hamburg, Germany
| | - Imke de Grahl
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Plant Biochemistry and Infection Biology, Hamburg, Germany
| | - Elena Katzowitsch
- University of Würzburg, Core Unit Systems Medicine, Würzburg, Germany
| | - Sigrun Reumann
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Plant Biochemistry and Infection Biology, Hamburg, Germany
| | - Dieter Hanelt
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Aquatic Ecophysiology and Phycology, Hamburg, Germany
| | - Malik Alawi
- University Medical Center Hamburg-Eppendorf, Bioinformatics Core, Hamburg, Germany
| | - Wolfgang R. Streit
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Microbiology and Biotechnology, Hamburg, Germany
| | - Ines Krohn
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Microbiology and Biotechnology, Hamburg, Germany
| |
Collapse
|
8
|
Genome-Wide Analysis and Characterization of the Riemerella anatipestifer Putative T9SS Secretory Proteins with a Conserved C-Terminal Domain. J Bacteriol 2022; 204:e0007322. [PMID: 35670588 DOI: 10.1128/jb.00073-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) acts as a crucial virulence factor. We previously identified two T9SS component proteins, GldK and GldM, and one T9SS effector metallophosphoesterase, which play important roles in bacterial virulence. In this study, 19 T9SS-secreted proteins that contained a conserved T9SS C-terminal domain (CTD) were predicted in R. anatipestifer strain Yb2 by searching for CTD-encoding sequences in the whole genome. The proteins were confirmed with a liquid chromatography-tandem mass spectrometry analysis of the bacterial culture supernatant. Nine of them were reported in our previous study. We generated recombinant proteins and mouse antisera for the 19 predicted proteins to confirm their expression in the bacterial culture supernatant and in bacterial cells. Western blotting indicated that the levels of 14 proteins were significantly reduced in the T9SS mutant Yb2ΔgldM culture medium but were increased in the bacterial cells. RT-qPCR indicated that the expression of these genes did not differ between the wild-type strain Yb2 and the T9SS mutant Yb2ΔgldM. Nineteen mutant strains were successfully constructed to determine their virulence and proteolytic activity, which indicated that seven proteins are associated with bacterial virulence, and two proteins, AS87_RS04190 and AS87_RS07295, are protease-activity-associated virulence factors. In summary, we have identified at least 19 genes encoding T9SS-secreted proteins in the R. anatipestifer strain Yb2 genome, which encode multiple functions associated with the bacterium's virulence and proteolytic activity. IMPORTANCE Riemerella anatipestifer T9SS plays an important role in bacterial virulence. We have previously reported nine R. anatipestifer T9SS-secreted proteins and clarified the function of the metallophosphoesterase. In this study, we identified 10 more secreted proteins associated with the R. anatipestifer T9SS, in addition to the nine previously reported. Of these, 14 proteins showed significantly reduced secretion into the bacterial culture medium but increased expression in the bacterial cells of the T9SS mutant Yb2ΔgldM; seven proteins were shown to be associated with bacterial virulence; and two proteins, AS87_RS04190 and AS87_RS07295, were shown to be protease-activity-associated virulence factors. Thus, we have demonstrated that multiple R. anatipestifer T9SS-secreted proteins function in virulence and proteolytic activity.
Collapse
|
9
|
Trivedi A, Gosai J, Nakane D, Shrivastava A. Design Principles of the Rotary Type 9 Secretion System. Front Microbiol 2022; 13:845563. [PMID: 35620107 PMCID: PMC9127263 DOI: 10.3389/fmicb.2022.845563] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 01/05/2023] Open
Abstract
The Fo ATP synthase, the bacterial flagellar motor, and the bacterial type 9 secretion system (T9SS) are the three known proton motive force driven biological rotary motors. In this review, we summarize the current information on the nuts and bolts of T9SS. Torque generation by T9SS, its role in gliding motility of bacteria, and the mechanism via which a T9SS-driven swarm shapes the microbiota are discussed. The knowledge gaps in our current understanding of the T9SS machinery are outlined.
Collapse
Affiliation(s)
- Abhishek Trivedi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Jitendrapuri Gosai
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Daisuke Nakane
- Department of Engineering Science, The University of Electro-Communications, Tokyo, Japan
| | - Abhishek Shrivastava
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
10
|
Ishikawa Y, Urano-Tashiro Y, Yamanaka Y, Saiki K, Hayashida N, Takahashi Y. Hemagglutinating properties of a Streptococcus gordonii strain expressing sialic acid-binding adhesin homolog with low binding site similarity to that of strain DL1. J Oral Biosci 2022; 64:253-258. [DOI: 10.1016/j.job.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/02/2022] [Accepted: 02/08/2022] [Indexed: 10/18/2022]
|
11
|
Gao L, Tan Y, Zhang W, Qi Q, Lu X. Cytophaga hutchinsonii SprA and SprT Are Essential Components of the Type IX Secretion System Required for Ca 2+ Acquisition, Cellulose Degradation, and Cell Motility. Front Microbiol 2021; 12:628555. [PMID: 33643255 PMCID: PMC7906972 DOI: 10.3389/fmicb.2021.628555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The type IX secretion system (T9SS) is a novel protein secretion system, which is found in and confined to the phylum Bacteroidetes. T9SS is involved in the secretion of virulence factors, cell surface adhesins, and complex biopolymer degrading enzymes to the cell surface or extracellular medium. Cytophaga hutchinsonii is a widely distributed bacterium, which is able to efficiently digest cellulose and rapidly glide along the solid surfaces. C. hutchinsonii has a full set of orthologs of T9SS components. However, the functions of most homologous proteins have not been verified. In C. hutchinsonii, CHU_0029 and CHU_2709 are similar in sequence to Flavobacterium johnsoniae T9SS components SprA and SprT, respectively. In this study, the single deletion mutants of chu_0029 (sprA) and chu_2709 (sprT) were obtained using a complex medium with the addition of Ca2+ and Mg2+. Single deletion of sprA or sprT resulted in defects in cellulose utilization and gliding motility. Moreover, the ΔsprA and ΔsprT mutants showed growth defects in Ca2+- and Mg2+-deficient media. The results of ICP-MS test showed that both the whole cell and intracellular concentrations of Ca2+ were dramatically reduced in the ΔsprA and ΔsprT mutants, indicating that SprA and SprT are both important for the assimilation of trace amount of Ca2+. While the assimilation of Mg2+ was not obviously influenced in the ΔsprA and ΔsprT mutants. Through proteomics analysis of the cell surface proteins of the wild type and mutants, we found that the ΔsprA and ΔsprT mutants were defective in secretion of the majority of T9SS substrates. Together, these results indicate that SprA and SprT are both essential components of C. hutchinsonii T9SS, which is required for protein secretion, Ca2+ acquisition, cellulose degradation, and gliding motility in C. hutchinsonii. Our study shed more light on the functions of SprA and SprT in T9SS, and further proved the link between the T9SS and Ca2+ uptake system.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
12
|
Lunar Silva I, Cascales E. Molecular Strategies Underlying Porphyromonas gingivalis Virulence. J Mol Biol 2021; 433:166836. [PMID: 33539891 DOI: 10.1016/j.jmb.2021.166836] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
The anaerobic Gram-negative bacterium Porphyromonas gingivalis is considered the keystone of periodontitis diseases, a set of inflammatory conditions that affects the tissues surrounding the teeth. In the recent years, the major virulence factors exploited by P. gingivalis have been identified and characterized, including a cocktail of toxins, mainly proteases called gingipains, which promote gingival tissue invasion. These effectors use the Sec pathway to cross the inner membrane and are then recruited and transported across the outer membrane by the type IX secretion system (T9SS). In P. gingivalis, most secreted effectors are attached to anionic lipopolysaccharides (A-LPS), and hence form a virulence coat at the cell surface. P. gingivalis produces additional virulence factors to evade host immune responses, such as capsular polysaccharide, fimbriae and outer membrane vesicles. In addition to periodontitis, it is proposed that this broad repertoire of virulence factors enable P. gingivalis to be involved in diverse human diseases such as rheumatoid arthritis, and neurodegenerative, Alzheimer, and cardiovascular disorders. Here, we review the major virulence determinants of P. gingivalis and discuss future directions to better understand their mechanisms of action.
Collapse
Affiliation(s)
- Ignacio Lunar Silva
- Laboratoire d'Ingénierie des Syst èmes Macromol éculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 Chemin Joseph Aiguier CS7071, 13009 Marseille Cedex 20, France.
| | - Eric Cascales
- Laboratoire d'Ingénierie des Syst èmes Macromol éculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 Chemin Joseph Aiguier CS7071, 13009 Marseille Cedex 20, France.
| |
Collapse
|
13
|
Sato K, Naya M, Hatano Y, Kondo Y, Sato M, Narita Y, Nagano K, Naito M, Nakayama K, Sato C. Colony spreading of the gliding bacterium Flavobacterium johnsoniae in the absence of the motility adhesin SprB. Sci Rep 2021; 11:967. [PMID: 33441737 PMCID: PMC7807042 DOI: 10.1038/s41598-020-79762-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Colony spreading of Flavobacterium johnsoniae is shown to include gliding motility using the cell surface adhesin SprB, and is drastically affected by agar and glucose concentrations. Wild-type (WT) and ΔsprB mutant cells formed nonspreading colonies on soft agar, but spreading dendritic colonies on soft agar containing glucose. In the presence of glucose, an initial cell growth-dependent phase was followed by a secondary SprB-independent, gliding motility-dependent phase. The branching pattern of a ΔsprB colony was less complex than the pattern formed by the WT. Mesoscopic and microstructural information was obtained by atmospheric scanning electron microscopy (ASEM) and transmission EM, respectively. In the growth-dependent phase of WT colonies, dendritic tips spread rapidly by the movement of individual cells. In the following SprB-independent phase, leading tips were extended outwards by the movement of dynamic windmill-like rolling centers, and the lipoproteins were expressed more abundantly. Dark spots in WT cells during the growth-dependent spreading phase were not observed in the SprB-independent phase. Various mutations showed that the lipoproteins and the motility machinery were necessary for SprB-independent spreading. Overall, SprB-independent colony spreading is influenced by the lipoproteins, some of which are involved in the gliding machinery, and medium conditions, which together determine the nutrient-seeking behavior.
Collapse
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan.
| | - Masami Naya
- Health and Medical Research Institute, Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yuri Hatano
- Health and Medical Research Institute, Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Mari Sato
- Health and Medical Research Institute, Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yuka Narita
- Department of Functional Bioscience, Infection Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara, Fukuoka, 814-0913, Japan
| | - Keiji Nagano
- Department of Microbiology, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido, 061-0293, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Chikara Sato
- Health and Medical Research Institute, Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
14
|
Liu H, Huang L, Cai Y, Bikker FJ, Wei X, Mei Deng D. A novel gingipain regulatory gene in Porphyromonas gingivalis mediates host cell detachment and inhibition of wound closure. Microbiologyopen 2020; 9:e1128. [PMID: 33047890 PMCID: PMC7755767 DOI: 10.1002/mbo3.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/09/2022] Open
Abstract
The black pigmentation-related genes in Porphyromonas gingivalis are primarily involved in regulating gingipain functions. In this study, we identified a pigmentation-related gene, designated as pgn_0361. To characterize the role of pgn_0361 in regulating P. gingivalis-mediated epithelial cell detachment and inhibition of wound closure, PgΔ0361, an isogenic pgn_0361-defective mutant strain, and PgΔ0361C, a complementation strain, were constructed using P. gingivalis ATCC 33277. The gingipain and hemagglutination activities, as well as biofilm formation, were examined in all three strains. The effect of P. gingivalis strains on epithelial cell detachment was investigated using the HO-1-N-1 and Ca9-22 epithelial cell lines. The inhibition of wound closure by heat-killed P. gingivalis cells and culture supernatant was analyzed using an in vitro wound closure assay. Compared to the wild-type strain, the PgΔ0361 strain did not exhibit gingipain or hemagglutination activity but exhibited enhanced biofilm formation. Additionally, the PgΔ0361 strain exhibited attenuated ability to detach the epithelial cells and to inhibit wound closure in vitro. Contrastingly, the culture supernatant of PgΔ0361 exhibited high gingipain activity and strong inhibition of wound closure. The characteristics of PgΔ0361C and wild-type strains were comparable. In conclusion, the pgn_0361 gene is involved in regulating gingipains. The PGN_0361-defective strain exhibited reduced virulence in terms of epithelial cell detachment and inhibition of wound closure. The culture supernatant of the mutant strain highly inhibited wound closure, which may be due to high gingipain activity.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Huang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Yanling Cai
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Dong Mei Deng
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
15
|
Saiki K, Urano-Tashiro Y, Takahashi Y. Reassessment of minimal media reveals differences in growth among Porphyromonas gingivalis standard strains. J Oral Biosci 2020; 62:315-321. [PMID: 32937181 DOI: 10.1016/j.job.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Porphyromonas gingivalis is one of the etiologic agents of chronic periodontitis. Our previous study showed that the use of minimal media for P. gingivalis allowed to isolate novel inhibitors of P. gingivalis growth. However, growth of P. gingivalis in minimal media was not always reproducible. METHODS To explain this phenomenon, we analyzed the growth of seven wild-type ATCC 33277 strains and two wild-type W83 strains in 10 minimal media and three complex media. RESULTS All nine strains grew in LF (Lactalbumin-Ferric chloride), GC (bovine γ-immunoglobulin G-Calcium chloride), and newly developed mC (milk-Casein) minimal media. Therefore, LF, GC, and mC could be used as minimal media for P. gingivalis. In contrast, other six minimal media containing bovine serum albumin (BSA) supported the growth of several less strains; among these, two media also showed lack of reproducibility in growth among ATCC 33277 strains. On the other hand, four ATCC 33277 strains grew similarly in all 13 media, but two W83 and other three ATCC 33277 strains grew differently in at least one medium. CONCLUSIONS These results suggest that the lack of reproducibility of P. gingivalis growth on minimal media is caused by the presence of BSA, and by differences among the standard strains of P. gingivalis.
Collapse
Affiliation(s)
- Keitarou Saiki
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yumiko Urano-Tashiro
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yukihiro Takahashi
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
Eltigani SA, Eltayeb MM, Bito T, Ichiyanagi T, Ishihara A, Arima J. Argeloside I inhibits the pathogenicity of Porphyromonas gingivalis TDC60. J Biosci Bioeng 2020; 130:644-649. [PMID: 32847740 DOI: 10.1016/j.jbiosc.2020.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023]
Abstract
Porphyromonas gingivalis, a major pathogen associated with chronic periodontitis, produces several virulence agents in the outer cell membrane, including gingipains and hemagglutinins. These virulence factors enable the bacteria to adhere to periodontal tissue and degrade host proteins to obtain the nutrients needed for dental plaque formation. P. gingivalis TDC60 was recently identified as the most aggressive P. gingivalis strain to dates. In this study, we isolated a known pregnane glycoside, argeloside I, from the aqueous extract of Solenostemma argel leaves. Argeloside I completely hindered the growth of P. gingivalis TDC60 and inhibited the production of hemagglutinins as well as Arg- and Lys-specific gingipains. Our results demonstrate a new function of pregnane glycosides. Argeloside I may be a candidate for reducing the risk associated with P. gingivalis TDC60 and its adhesion factors.
Collapse
Affiliation(s)
- Sara A Eltigani
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Mohamed M Eltayeb
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Shambat, Khartoum North 14413, Sudan
| | - Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Tsuyoshi Ichiyanagi
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Atsushi Ishihara
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Jiro Arima
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| |
Collapse
|
17
|
Gorasia DG, Veith PD, Reynolds EC. The Type IX Secretion System: Advances in Structure, Function and Organisation. Microorganisms 2020; 8:microorganisms8081173. [PMID: 32752268 PMCID: PMC7463736 DOI: 10.3390/microorganisms8081173] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
The type IX secretion system (T9SS) is specific to the Bacteroidetes phylum. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilises the T9SS to transport many proteins—including its gingipain virulence factors—across the outer membrane and attach them to the cell surface. Additionally, the T9SS is also required for gliding motility in motile organisms, such as Flavobacterium johnsoniae. At least nineteen proteins have been identified as components of the T9SS, including the three transcription regulators, PorX, PorY and SigP. Although the components are known, the overall organisation and the molecular mechanism of how the T9SS operates is largely unknown. This review focusses on the recent advances made in the structure, function, and organisation of the T9SS machinery to provide further insight into this highly novel secretion system.
Collapse
|
18
|
Benedyk M, Marczyk A, Chruścicka B. Type IX secretion system is pivotal for expression of gingipain-associated virulence of Porphyromonas gingivalis. Mol Oral Microbiol 2019; 34:237-244. [PMID: 31432617 DOI: 10.1111/omi.12268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Porphyromonas gingivalis, a keystone pathogen in periodontitis, secretes an array of virulence factors including gingipains via the type IX secretion system (T9SS). Inactivation of any component of the T9SS leads to the accumulation of secreted proteins in unprocessed and, in the case of progingipains, inactive forms in the periplasm. To cast light on the paradox that active gingipains are essential for P. gingivalis fitness in vivo but a functional T9SS is not (Frontiers in Cellular and Infection Microbiology, 2017, 7:378), we have compared virulence of wild-type P. gingivalis W83 and the gingipain-null strain with isogenic mutants deficient in individual T9SS components. Using an in vivo subcutaneous chamber mouse model of infection, gingipain-null strain secretion mutants showed no virulence, but their pathogenic potential was reconstituted by coinfection with a low number of the parental strain. Apparently the same mechanism compensated fitness of mutants lacking functional T9SS the transposon library. In contrast to the parental strain, all mutants elicited significantly lower but an effective inflammatory immune response, which cleared infection and prevented systemic dissemination of P. gingivalis to organs. There were no significant differences in immune responses to different secretion mutants, which were generally more stimulatory than the gingipain-null strain. Together, these results indicate that functional T9SS is essential for P. gingivalis virulence apparently through delivery of active gingipains to the bacterial surface. Therefore, T9SS is a legitimate target for drug development to treat periodontitis.
Collapse
Affiliation(s)
- Malgorzata Benedyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Marczyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Barbara Chruścicka
- Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
19
|
Eltigani SA, Eltayeb MM, Ishihara A, Arima J. Isolates from Monechma ciliatum seeds' extract hampered Porphyromonas gingivalis hemagglutinins. J Food Biochem 2019; 43:e13029. [PMID: 31465126 DOI: 10.1111/jfbc.13029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
Abstract
Porphyromonas gingivalis is a major periodontitis pathogen that produces several virulence factors including hemagglutinins. These proteins, which are vital molecules, allow P. gingivalis to uptake iron and heme by attaching, aggregating, and lysing erythrocytes. In this study, we evaluated the inhibitory activity of the aqueous extract of Monechma ciliatum seeds against the hemagglutination activity of P. gingivalis. M. ciliatum is a Sudanese medicinal herb that grows in arid and semi-arid lands of tropical Africa. The water extracted from dry powdered seeds was partitioned using ethyl acetate followed by reversed-phase chromatography, thin-layer chromatography, ESI-MS, and NMR analysis resulting in the isolation of four compounds identified as oleic acid, coumarin, 1,2-dioleoylglycerol, and 1,3-dioleoylglycerol with MICs of 15-100 μg/ml against hemagglutination. We believe that the isolation and purification of these compounds will expand the application of M. ciliatum as a natural therapeutic or preventative agent. PRACTICAL APPLICATIONS: Monechma ciliatum or black mahlab is a famous medicinal plant that grows in some parts of arid and semi-arid areas of tropical Africa including western Sudan. Despite its nutritional and traditional medical applications, no studies have evaluated its anti-hemagglutination activity against periodontal pathogens. In this study, four active compounds (oleic acid, coumarin, 1,2-dioleoylglycerol, and 1,3-dioleoylglycerol) were isolated and identified from an aqueous extract of M. ciliatum seeds. The isolated compounds revealed high levels of inhibitory activity against all hemagglutinin agents secreted by Porphyromonas gingivalis. This evidence of inhibitory activity will encourage the application of M. ciliatum effectively as a functional food or therapeutic agent to prevent periodontal diseases in the early stages.
Collapse
Affiliation(s)
- Sara A Eltigani
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Mohamed M Eltayeb
- Arid Land Research Center, Tottori University, Tottori, Japan.,Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khartoum, Sudan
| | - Atsushi Ishihara
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Jiro Arima
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
20
|
Saiki K, Urano-Tashiro Y, Konishi K, Takahashi Y. A screening system using minimal media identifies a flavin-competing inhibitor of Porphyromonas gingivalis growth. FEMS Microbiol Lett 2019; 366:5580286. [PMID: 31578552 DOI: 10.1093/femsle/fnz204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/29/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic periodontitis is caused by dysbiosis of human oral commensals and especially by increase in Porphyromonas gingivalis. Inhibitors of P. gingivalis growth are expected to serve as effective drugs for the periodontal therapy. In the present study, we isolated new growth inhibitors of P. gingivalis using minimal media for P. gingivalis. The minimal media included the previously reported Globulin-Albumin (GA) and the newly developed Lactalbumin-Ferric chloride (LF) and Globulin-Calcium chloride (GC); all supported growth of the wild-type strain of P. gingivalis but did not support the growth of a mutant defective for a type IX secretion system. GC contains CaCl2, indicating that P. gingivalis requires a calcium ion for growth. Using LF and GA, we screened about 100 000 compounds and identified 73 that strongly inhibited the growth of P. gingivalis. More than half of these candidates would not have been obtained if these minimal media had not been used in our screen. One of our candidate inhibitors was diphenyleneiodonium chloride (DPIC), which showed strong bactericidal activity against P. gingivalis. Excess amounts of flavin adenine dinucleotide or flavin mononucleotide suppressed the inhibitory activity of DPIC, suggesting that DPIC would be a novel potent growth inhibitor.
Collapse
Affiliation(s)
- Keitarou Saiki
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Yumiko Urano-Tashiro
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Kiyoshi Konishi
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Yukihiro Takahashi
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| |
Collapse
|
21
|
Chen Z, Wang X, Ren X, Han W, Malhi KK, Ding C, Yu S. Riemerella anatipestifer GldM is required for bacterial gliding motility, protein secretion, and virulence. Vet Res 2019; 50:43. [PMID: 31164171 PMCID: PMC6549377 DOI: 10.1186/s13567-019-0660-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/12/2019] [Indexed: 12/02/2022] Open
Abstract
Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Genetic analyses suggest that this pathogen has a novel protein secretion system, known as the “type IX secretion system” (T9SS). We previously reported that deletion of the AS87_RS08465 gene significantly reduced the bacterial virulence of the R. anatipestifer strain Yb2, but the mechanism remained unclear. The AS87_RS08465 gene is predicted to encode the gliding motility protein GldM (GldM) protein, a key component of the T9SS complex. In this study, Western blotting analysis demonstrated that R. anatipestifer GldM was localized to the cytomembrane. Further study revealed that the adhesion and invasion capacities of the mutant strain RA2281 (designated Yb2ΔgldM) in Vero cells and the bacterial loads in the blood of infected ducks were significantly reduced. RNA-Seq and PCR analyses showed that six genes were upregulated and five genes were downregulated in the mutant strain Yb2ΔgldM and that these genes were mainly involved in the secretion of proteins. Yb2ΔgldM was also found to be defective in gliding motility and protein secretion. Liquid chromatography–tandem mass spectrometry analysis revealed that nine of the proteins had a conserved T9SS C-terminal domain and were differentially secreted by Yb2ΔgldM compared to Yb2. The complementation strain cYb2ΔgldM recovered the adhesion and invasion capacities in Vero cells and the bacterial loads in the blood of infected ducks as well as the bacterial gliding motility and most protein secretion in the mutant strain Yb2ΔgldM to the levels of the wild-type strain Yb2. Taken together, these results indicate that R. anatipestifer GldM is associated with T9SS and is important in bacterial virulence.
Collapse
Affiliation(s)
- Zongchao Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Xiaolan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Xiaomei Ren
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Wenlong Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Kanwar Kumar Malhi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China. .,Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China.
| |
Collapse
|
22
|
Malhi KK, Wang X, Chen Z, Ding C, Yu S. Riemerella anatipestifer gene AS87_08785 encodes a functional component, GldK, of the type IX secretion system. Vet Microbiol 2019; 231:93-99. [PMID: 30955831 DOI: 10.1016/j.vetmic.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022]
Abstract
Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. In our previous study, we demonstrated that the deletion of the AS87_08785 gene significantly reduced the virulence of R. anatipestifer strain Yb2, but the mechanism remained unclear. In this study, R. anatipestifer strains with mutated or complemented AS87_08785 genes were constructed and characterized. A sequence analysis indicated that the AS87_08785 gene encoded a putative GldK protein, which localized to the membrane fraction in a western blotting analysis. The mutant strain Yb2ΔgldK displayed defective gliding motility on agar plates, reduced protease activity, and a reduced capacity for protein secretion. RNA sequencing and quantitative PCR analyses indicated that the transcription of 13 genes was downregulated in mutant Yb2ΔgldK. Animal experiments showed that the bacterial loads in the blood of Yb2ΔgldK-infected ducks were significantly reduced relative to those in wild-type strain Yb2 infected ducks. Most of the defective biological properties of the mutant were restored in complementation strain cYb2ΔgldK. Our results demonstrated that R. anatipestifer gene AS87_08785 encoded a component of the type IX secretion system, GldK, which functioned in bacterial gliding motility, protein secretion, and bacterial virulence.
Collapse
Affiliation(s)
- Kanwar Kumar Malhi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Xiaolan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Zongchao Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China; Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China.
| |
Collapse
|
23
|
Naito M, Tominaga T, Shoji M, Nakayama K. PGN_0297 is an essential component of the type IX secretion system (T9SS) in Porphyromonas gingivalis: Tn-seq analysis for exhaustive identification of T9SS-related genes. Microbiol Immunol 2019; 63:11-20. [PMID: 30599082 PMCID: PMC6590471 DOI: 10.1111/1348-0421.12665] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
Abstract
The type IX secretion system (T9SS) was originally discovered in Porphyromonas gingivalis, one of the pathogenic bacteria associated with periodontal disease and is now known to be present in many members of the phylum Bacteroidetes. The T9SS secretes a number of potent virulence factors, including the highly hydrolytic proteases called gingipains, across the outer membrane in P. gingivalis. To understand the entire machinery of T9SS, an exhaustive search for T9SS‐related genes in P. gingivalis using the mariner family transposon (Tn) and Tn‐seq analysis was performed. Seven hundred and two Tn insertion sites in Tn mutants with no colony pigmentation that is associated with Lys‐gingipain (Kgp) defectiveness were determined, and it was found that the Tn was inserted in the kgp gene and 54 T9SS‐related candidate genes. Thirty‐three out of the 54 genes were already known as T9SS‐related genes. Furthermore, deletion mutant analysis of the remaining 21 genes revealed that they were not related to the T9SS. The 33 T9SS‐related genes include a gene for PGN_0297, which was found to be associated with the T9SS components PorK and PorN. A PGN_0297 gene deletion mutant was constructed, and it was found that the mutant showed no colony pigmentation, hemagglutination or gingipain activities, indicating that PGN_0297 was an essential component of the T9SS. The 33 genes did not include the six genes (gppX, omp17, porY, rfa, sigP and wzx) that were also reported as T9SS‐related genes. gppX deletion and insertion mutants were constructed, and it was found that they did not show deficiency in the T9SS.
Collapse
Affiliation(s)
- Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| | - Takashi Tominaga
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| |
Collapse
|
24
|
McBride MJ. Bacteroidetes Gliding Motility and the Type IX Secretion System. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0002-2018. [PMID: 30767845 PMCID: PMC11588200 DOI: 10.1128/microbiolspec.psib-0002-2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
Members of the phylum Bacteroidetes have many unique features, including gliding motility and the type IX protein secretion system (T9SS). Bacteroidetes gliding and T9SSs are common in, but apparently confined to, this phylum. Most, but not all, members of the phylum secrete proteins using the T9SS, and most also exhibit gliding motility. T9SSs secrete cell surface components of the gliding motility machinery and also secrete many extracellular or cell surface enzymes, adhesins, and virulence factors. The components of the T9SS are novel and are unrelated to those of other bacterial secretion systems. Proteins secreted by the T9SS rely on the Sec system to cross the cytoplasmic membrane, and they use the T9SS for delivery across the outer membrane. Secreted proteins typically have conserved C-terminal domains that target them to the T9SS. Some of the T9SS components were initially identified as proteins required for gliding motility. Gliding does not involve flagella or pili and instead relies on the rapid movement of motility adhesins, such as SprB, along the cell surface by the gliding motor. Contact of the adhesins with the substratum provides the traction that results in cell movement. SprB and other motility adhesins are delivered to the cell surface by the T9SS. Gliding and the T9SS appear to be intertwined, and components of the T9SS that span the cytoplasmic membrane may energize both gliding and protein secretion. The functions of the individual proteins in each process are the subject of ongoing investigations.
Collapse
Affiliation(s)
- Mark J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201
| |
Collapse
|
25
|
Type 9 secretion system structures reveal a new protein transport mechanism. Nature 2018; 564:77-82. [PMID: 30405243 DOI: 10.1038/s41586-018-0693-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022]
Abstract
The type 9 secretion system (T9SS) is the protein export pathway of bacteria of the Gram-negative Fibrobacteres-Chlorobi-Bacteroidetes superphylum and is an essential determinant of pathogenicity in severe periodontal disease. The central element of the T9SS is a so-far uncharacterized protein-conducting translocon located in the bacterial outer membrane. Here, using cryo-electron microscopy, we provide structural evidence that the translocon is the T9SS protein SprA. SprA forms an extremely large (36-strand) single polypeptide transmembrane β-barrel. The barrel pore is capped on the extracellular end, but has a lateral opening to the external membrane surface. Structures of SprA bound to different components of the T9SS show that partner proteins control access to the lateral opening and to the periplasmic end of the pore. Our results identify a protein transporter with a distinctive architecture that uses an alternating access mechanism in which the two ends of the protein-conducting channel are open at different times.
Collapse
|
26
|
Sato K, Kakuda S, Yukitake H, Kondo Y, Shoji M, Takebe K, Narita Y, Naito M, Nakane D, Abiko Y, Hiratsuka K, Suzuki M, Nakayama K. Immunoglobulin‐like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system. Mol Microbiol 2018; 110:64-81. [DOI: 10.1111/mmi.14083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Shinji Kakuda
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Hideharu Yukitake
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Katsuki Takebe
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Yuka Narita
- Department of Functional Bioscience, Infection Biology Fukuoka Dental College Matsudo, Tamura, Sawara, Fukuoka 814‐0913Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Daisuke Nakane
- Department of Physics, Faculty of Science Gakushuin University Toshima‐ku, Tokyo 171‐8588Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Mamoru Suzuki
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| |
Collapse
|
27
|
Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Front Cell Infect Microbiol 2017. [PMID: 28603700 DOI: 10.3389/fcimb.2017.00215.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS), a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility) for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM). Proteins destined for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo proteins is constantly growing. The actual structure of the translocon, situated in the OM of bacteria, remains the least explored area; however, new technical approaches and increasing scientific attention have resulted in a growing body of data. Therefore, we present a compact up-to-date review of this topic.
Collapse
Affiliation(s)
- Anna M Lasica
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Miroslaw Ksiazek
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
28
|
Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Front Cell Infect Microbiol 2017; 7:215. [PMID: 28603700 PMCID: PMC5445135 DOI: 10.3389/fcimb.2017.00215] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS), a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility) for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM). Proteins destined for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo proteins is constantly growing. The actual structure of the translocon, situated in the OM of bacteria, remains the least explored area; however, new technical approaches and increasing scientific attention have resulted in a growing body of data. Therefore, we present a compact up-to-date review of this topic.
Collapse
Affiliation(s)
- Anna M Lasica
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Miroslaw Ksiazek
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
29
|
Diverse C-Terminal Sequences Involved in Flavobacterium johnsoniae Protein Secretion. J Bacteriol 2017; 199:JB.00884-16. [PMID: 28396348 DOI: 10.1128/jb.00884-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/24/2017] [Indexed: 12/26/2022] Open
Abstract
Flavobacteriumjohnsoniae and many related bacteria secrete proteins across the outer membrane using the type IX secretion system (T9SS). Proteins secreted by T9SSs have amino-terminal signal peptides for export across the cytoplasmic membrane by the Sec system and carboxy-terminal domains (CTDs) targeting them for secretion across the outer membrane by the T9SS. Most but not all T9SS CTDs belong to the family TIGR04183 (type A CTDs). We functionally characterized diverse CTDs for secretion by the F. johnsoniae T9SS. Attachment of the CTDs from F. johnsoniae RemA, AmyB, and ChiA to the foreign superfolder green fluorescent protein (sfGFP) that had a signal peptide at the amino terminus resulted in secretion across the outer membrane. In each case, approximately 80 to 100 amino acids from the extreme carboxy termini were needed for efficient secretion. Several type A CTDs from distantly related members of the phylum Bacteroidetes functioned in F. johnsoniae, supporting the secretion of sfGFP by the F. johnsoniae T9SS. F. johnsoniae SprB requires the T9SS for secretion but lacks a type A CTD. It has a conserved C-terminal domain belonging to the family TIGR04131, which we refer to as a type B CTD. The CTD of SprB was required for its secretion, but attachment of C-terminal regions of SprB of up to 1,182 amino acids to sfGFP failed to result in secretion. Additional features outside the C-terminal region of SprB may be required for its secretion.IMPORTANCE Type IX protein secretion systems (T9SSs) are common in but limited to members of the phylum Bacteroidetes Most proteins that are secreted by T9SSs have conserved carboxy-terminal domains that belong to the protein domain family TIGR04183 (type A CTDs) or TIGR04131 (type B CTDs). Here, we identify features of T9SS CTDs of F. johnsoniae that are required for protein secretion and demonstrate that type A CTDs from distantly related members of the phylum function with the F. johnsoniae T9SS to secrete the foreign protein sfGFP. In contrast, type B CTDs failed to target sfGFP for secretion, suggesting a more complex association with the T9SS.
Collapse
|
30
|
Godlewska U, Brzoza P, Sroka A, Majewski P, Jentsch H, Eckert M, Eick S, Potempa J, Zabel BA, Cichy J. Antimicrobial and Attractant Roles for Chemerin in the Oral Cavity during Inflammatory Gum Disease. Front Immunol 2017; 8:353. [PMID: 28424689 PMCID: PMC5372799 DOI: 10.3389/fimmu.2017.00353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/13/2017] [Indexed: 01/10/2023] Open
Abstract
Periodontal inflammation is one of the most common chronic inflammatory conditions in humans. Despite recent advances in identifying and characterizing oral microbiota dysbiosis in the pathogenesis of gum disease, just how host factors maintain a healthy homeostatic oral microbial community or prevent the development of a pathogenic oral microbiota remains poorly understood. An important determinant of microbiota fate is local antimicrobial proteins. Here, we report that chemoattractant protein chemerin, which we recently identified as a potent endogenous antimicrobial agent in body barriers such as the skin, is present in the oral cavity under homeostatic and inflammatory conditions. Chemerin and a chemerin-derived antimicrobial peptide are bactericidal against select bacteria strategically positioned in dental biofilm. Gingival crevicular samples from patients with gingivitis but not periodontitis contain abundant bioactive chemerin capable of inducing CMKLR1-dependent leukocyte migration. Gingipains secreted by the periodontopathogen P. gingivalis inactivate chemerin. Together, these data suggest that as an antimicrobial agent and leukocyte chemoattractant, chemerin likely contributes to antimicrobial immune defense in the oral cavity.
Collapse
Affiliation(s)
- Urszula Godlewska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Kraków, Poland
| | - Piotr Brzoza
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Kraków, Poland
| | - Aneta Sroka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Jagiellonian University, Kraków, Poland
| | - Pawel Majewski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Kraków, Poland
| | - Holger Jentsch
- Centre for Periodontology, Department of Cariology, Endodontology and Periodontology, University Hospital of Leipzig, Leipzig, Germany
| | - Martin Eckert
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Jagiellonian University, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Brian A Zabel
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Joanna Cichy
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
31
|
Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic Porphyromonas gingivalis. Sci Rep 2016; 6:37708. [PMID: 27883039 PMCID: PMC5121618 DOI: 10.1038/srep37708] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/03/2016] [Indexed: 12/30/2022] Open
Abstract
Porphyromonas gingivalis is a member of the human oral microbiome abundant in dysbiosis and implicated in the pathogenesis of periodontal (gum) disease. It employs a newly described type-IX secretion system (T9SS) for secretion of virulence factors. Cargo proteins destined for secretion through T9SS carry a recognition signal in the conserved C-terminal domain (CTD), which is removed by sortase PorU during translocation. Here, we identified a novel component of T9SS, PorZ, which is essential for surface exposure of PorU and posttranslational modification of T9SS cargo proteins. These include maturation of enzyme precursors, CTD removal and attachment of anionic lipopolysaccharide for anchorage in the outer membrane. The crystal structure of PorZ revealed two β-propeller domains and a C-terminal β-sandwich domain, which conforms to the canonical CTD architecture. We further documented that PorZ is itself transported to the cell surface via T9SS as a full-length protein with its CTD intact, independently of the presence or activity of PorU. Taken together, our results shed light on the architecture and possible function of a novel component of the T9SS. Knowledge of how T9SS operates will contribute to our understanding of protein secretion as part of host-microbiome interactions by dysbiotic members of the human oral cavity.
Collapse
|
32
|
PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System. PLoS One 2016; 11:e0164313. [PMID: 27711252 PMCID: PMC5053529 DOI: 10.1371/journal.pone.0164313] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/22/2016] [Indexed: 01/10/2023] Open
Abstract
Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a β-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS.
Collapse
|
33
|
Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System. PLoS Pathog 2016; 12:e1005820. [PMID: 27509186 PMCID: PMC4980022 DOI: 10.1371/journal.ppat.1005820] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/20/2016] [Indexed: 01/19/2023] Open
Abstract
The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.
Collapse
|
34
|
The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain. Sci Rep 2016; 6:23123. [PMID: 27005013 PMCID: PMC4804311 DOI: 10.1038/srep23123] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
In the recently characterized Type IX Secretion System (T9SS), the conserved C-terminal domain (CTD) in secreted proteins functions as an outer membrane translocation signal for export of virulence factors to the cell surface in the Gram-negative Bacteroidetes phylum. In the periodontal pathogen Porphyromonas gingivalis, the CTD is cleaved off by PorU sortase in a sequence-independent manner, and anionic lipopolysaccharide (A-LPS) is attached to many translocated proteins, thus anchoring them to the bacterial surface. Here, we solved the atomic structure of the CTD of gingipain B (RgpB) from P. gingivalis, alone and together with a preceding immunoglobulin-superfamily domain (IgSF). The CTD was found to possess a typical Ig-like fold encompassing seven antiparallel β-strands organized in two β-sheets, packed into a β-sandwich structure that can spontaneously dimerise through C-terminal strand swapping. Small angle X-ray scattering (SAXS) revealed no fixed orientation of the CTD with respect to the IgSF. By introducing insertion or substitution of residues within the inter-domain linker in the native protein, we were able to show that despite the region being unstructured, it nevertheless is resistant to general proteolysis. These data suggest structural motifs located in the two adjacent Ig-like domains dictate the processing of CTDs by the T9SS secretion pathway.
Collapse
|
35
|
Flavobacterium gliding motility and the type IX secretion system. Curr Opin Microbiol 2015; 28:72-7. [PMID: 26461123 DOI: 10.1016/j.mib.2015.07.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/14/2015] [Accepted: 07/19/2015] [Indexed: 11/21/2022]
Abstract
Cells of Flavobacterium johnsoniae crawl rapidly over surfaces in a process called gliding motility. These cells do not have flagella or pili but instead rely on a novel motility machine composed of proteins that are unique to the phylum Bacteroidetes. The motility adhesins SprB and RemA are propelled along the cell surface by the still poorly-defined gliding motor. Interaction of these adhesins with a surface results in translocation of the cell. SprB and RemA are delivered to the cell surface by the type IX secretion system (T9SS). T9SSs are confined to but common in the phylum Bacteroidetes. Transmembrane components of the T9SS may perform roles in both secretion and gliding motility.
Collapse
|
36
|
Gorasia DG, Veith PD, Chen D, Seers CA, Mitchell HA, Chen YY, Glew MD, Dashper SG, Reynolds EC. Porphyromonas gingivalis Type IX Secretion Substrates Are Cleaved and Modified by a Sortase-Like Mechanism. PLoS Pathog 2015; 11:e1005152. [PMID: 26340749 PMCID: PMC4560394 DOI: 10.1371/journal.ppat.1005152] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/14/2015] [Indexed: 12/11/2022] Open
Abstract
The type IX secretion system (T9SS) of Porphyromonas gingivalis secretes proteins possessing a conserved C-terminal domain (CTD) to the cell surface. The C-terminal signal is essential for these proteins to translocate across the outer membrane via the T9SS. On the surface the CTD of these proteins is cleaved prior to extensive glycosylation. It is believed that the modification on these CTD proteins is anionic lipopolysaccharide (A-LPS), which enables the attachment of CTD proteins to the cell surface. However, the exact site of modification and the mechanism of attachment of CTD proteins to the cell surface are unknown. In this study we characterized two wbaP (PG1964) mutants that did not synthesise A-LPS and accumulated CTD proteins in the clarified culture fluid (CCF). The CTDs of the CTD proteins in the CCF were cleaved suggesting normal secretion, however, the CTD proteins were not glycosylated. Mass spectrometric analysis of CTD proteins purified from the CCF of the wbaP mutants revealed the presence of various peptide/amino acid modifications from the growth medium at the C-terminus of the mature CTD proteins. This suggested that modification occurs at the C-terminus of T9SS substrates in the wild type P. gingivalis. This was confirmed by analysis of CTD proteins from wild type, where a 648 Da linker was identified to be attached at the C-terminus of mature CTD proteins. Importantly, treatment with proteinase K released the 648 Da linker from the CTD proteins demonstrating a peptide bond between the C-terminus and the modification. Together, this is suggestive of a mechanism similar to sortase A for the cleavage and modification/attachment of CTD proteins in P. gingivalis. PG0026 has been recognized as the CTD signal peptidase and is now proposed to be the sortase-like protein in P. gingivalis. To our knowledge, this is the first biochemical evidence suggesting a sortase-like mechanism in Gram-negative bacteria.
Collapse
Affiliation(s)
- Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, and The Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, and The Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Dina Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, and The Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, and The Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Helen A. Mitchell
- Oral Health Cooperative Research Centre, Melbourne Dental School, and The Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Yu-Yen Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, and The Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Michelle D. Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, and The Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, and The Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, and The Bio21 Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Nakayama K. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility. J Periodontal Res 2014; 50:1-8. [PMID: 25546073 PMCID: PMC4674972 DOI: 10.1111/jre.12255] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/22/2022]
Abstract
Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria.
Collapse
Affiliation(s)
- K Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
38
|
Saiki K, Konishi K. Assembly and function of PG27/LptO, PG0026, and HagA in the secretion and modification system of C-terminal domain proteins. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Flavobacterium johnsoniae PorV is required for secretion of a subset of proteins targeted to the type IX secretion system. J Bacteriol 2014; 197:147-58. [PMID: 25331433 DOI: 10.1128/jb.02085-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Flavobacterium johnsoniae exhibits gliding motility and digests many polysaccharides, including chitin. A novel protein secretion system, the type IX secretion system (T9SS), is required for gliding and chitin utilization. The T9SS secretes the cell surface motility adhesins SprB and RemA and the chitinase ChiA. Proteins involved in secretion by the T9SS include GldK, GldL, GldM, GldN, SprA, SprE, and SprT. Porphyromonas gingivalis has orthologs for each of these that are required for secretion of gingipain protease virulence factors by its T9SS. P. gingivalis porU and porV have also been linked to T9SS-mediated secretion, and F. johnsoniae has orthologs of these. Mutations in F. johnsoniae porU and porV were constructed to determine if they function in secretion. Cells of a porV deletion mutant were deficient in chitin utilization and failed to secrete ChiA. They were also deficient in secretion of the motility adhesin RemA but retained the ability to secrete SprB. SprB is involved in gliding motility and is needed for formation of spreading colonies on agar, and the porV mutant exhibited gliding motility and formed spreading colonies. However, the porV mutant was partially deficient in attachment to glass, apparently because of the absence of RemA and other adhesins on the cell surface. The porV mutant also appeared to be deficient in secretion of numerous other proteins that have carboxy-terminal domains associated with targeting to the T9SS. PorU was not required for secretion of ChiA, RemA, or SprB, indicating that it does not play an essential role in the F. johnsoniae T9SS.
Collapse
|
40
|
Wang X, Liu W, Zhu D, Yang L, Liu M, Yin S, Wang M, Jia R, Chen S, Sun K, Cheng A, Chen X. Comparative genomics of Riemerella anatipestifer reveals genetic diversity. BMC Genomics 2014; 15:479. [PMID: 24935762 PMCID: PMC4103989 DOI: 10.1186/1471-2164-15-479] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 06/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Riemerella anatipestifer is one of the most important pathogens of ducks. However, the molecular mechanisms of R. anatipestifer infection are poorly understood. In particular, the lack of genomic information from a variety of R. anatipestifer strains has proved severely limiting. RESULTS In this study, we present the complete genomes of two R. anatipestifer strains, RA-CH-1 (2,309,519 bp, Genbank accession CP003787) and RA-CH-2 (2,166,321 bp, Genbank accession CP004020). Both strains are from isolates taken from two different sick ducks in the SiChuang province of China. A comparative genomics approach was used to identify similarities and key differences between RA-CH-1 and RA-CH-2 and the previously sequenced strain RA-GD, a clinical isolate from GuangDong, China, and ATCC11845. CONCLUSION The genomes of RA-CH-2 and RA-GD were extremely similar, while RA-CH-1 was significantly different than ATCC11845. RA-CH-1 is 140,000 bp larger than the three other strains and has 16 unique gene families. Evolutionary analysis shows that RA-CH-1 and RA-CH-2 are closed and in a branch with ATCC11845, while RA-GD is located in another branch. Additionally, the detection of several iron/heme-transport related proteins and motility mechanisms will be useful in elucidating factors important in pathogenicity. This information will allow a better understanding of the phenotype of different R. anatipestifer strains and molecular mechanisms of infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - MingShu Wang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan 625014, P,R, China.
| | | | | | | | | | | |
Collapse
|
41
|
Saiki K, Konishi K. Porphyromonas gingivalisC-terminal signal peptidase PG0026 and HagA interact with outer membrane protein PG27/LptO. Mol Oral Microbiol 2014; 29:32-44. [DOI: 10.1111/omi.12043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2013] [Indexed: 12/18/2022]
Affiliation(s)
- K. Saiki
- Department of Microbiology; Nippon Dental University School of Life Dentistry at Tokyo; Tokyo Japan
| | | |
Collapse
|
42
|
Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell surface gliding motility adhesins SprB and RemA. J Bacteriol 2013; 195:3201-12. [PMID: 23667240 DOI: 10.1128/jb.00333-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium johnsoniae cells move rapidly over surfaces by gliding motility. Gliding results from the movement of adhesins such as SprB and RemA along the cell surface. These adhesins are delivered to the cell surface by a Bacteroidetes-specific secretion system referred to as the type IX secretion system (T9SS). GldN, SprE, SprF, and SprT are involved in secretion by this system. Here we demonstrate that GldK, GldL, GldM, and SprA are each also involved in secretion. Nonpolar deletions of gldK, gldL, or gldM resulted in the absence of gliding motility and in T9SS defects. The mutant cells produced SprB and RemA proteins but failed to secrete them to the cell surface. The mutants were resistant to phages that use SprB or RemA as a receptor, and they failed to attach to glass, presumably because of the absence of cell surface adhesins. Deletion of sprA resulted in similar but slightly less dramatic phenotypes. sprA mutant cells failed to secrete SprB and RemA, but cells remained susceptible to some phages and retained some limited ability to glide. The phenotype of the sprA mutant was similar to those previously described for sprE and sprT mutants. SprA, SprE, and SprT are needed for secretion of SprB and RemA but may not be needed for secretion of other proteins targeted to the T9SS. Genetic and molecular experiments demonstrate that gldK, gldL, gldM, and gldN form an operon and suggest that the proteins encoded by these genes may interact to form part of the F. johnsoniae T9SS.
Collapse
|
43
|
Veillard F, Sztukowska M, Mizgalska D, Ksiazek M, Houston J, Potempa B, Enghild JJ, Thogersen IB, Gomis-Rüth FX, Nguyen KA, Potempa J. Inhibition of gingipains by their profragments as the mechanism protecting Porphyromonas gingivalis against premature activation of secreted proteases. Biochim Biophys Acta Gen Subj 2013; 1830:4218-28. [PMID: 23583629 DOI: 10.1016/j.bbagen.2013.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/20/2013] [Accepted: 04/02/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND Arginine-specific (RgpB and RgpA) and lysine-specific (Kgp) gingipains are secretory cysteine proteinases of Porphyromonas gingivalis that act as important virulence factors for the organism. They are translated as zymogens with both N- and C-terminal extensions, which are proteolytically cleaved during secretion. In this report, we describe and characterize inhibition of the gingipains by their N-terminal prodomains to maintain latency during their export through the cellular compartments. METHODS Recombinant forms of various prodomains (PD) were analyzed for their interaction with mature gingipains. The kinetics of their inhibition of proteolytic activity along with the formation of stable inhibitory complexes with native gingipains was studied by gel filtration, native PAGE and substrate hydrolysis. RESULTS PDRgpB and PDRgpA formed tight complexes with arginine-specific gingipains (Ki in the range from 6.2nM to 0.85nM). In contrast, PDKgp showed no inhibitory activity. A conserved Arg-102 residue in PDRgpB and PDRgpA was recognized as the P1 residue. Mutation of Arg-102 to Lys reduced inhibitory potency of PDRgpB by one order of magnitude while its substitutions with Ala, Gln or Gly totally abolished the PD inhibitory activity. Covalent modification of the catalytic cysteine with tosyl-l-Lys-chloromethylketone (TLCK) or H-D-Phe-Arg-chloromethylketone did not affect formation of the stable complex. CONCLUSION Latency of arginine-specific progingipains is efficiently exerted by N-terminal prodomains thus protecting the periplasm from potentially damaging effect of prematurely activated gingipains. GENERAL SIGNIFICANCE Blocking progingipain activation may offer an attractive strategy to attenuate P. gingivalis pathogenicity.
Collapse
Affiliation(s)
- Florian Veillard
- University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shoji M, Yukitake H, Sato K, Shibata Y, Naito M, Aduse-Opoku J, Abiko Y, Curtis MA, Nakayama K. Identification of an O-antigen chain length regulator, WzzP, in Porphyromonas gingivalis. Microbiologyopen 2013; 2:383-401. [PMID: 23509024 PMCID: PMC3684754 DOI: 10.1002/mbo3.84] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/11/2013] [Accepted: 02/19/2013] [Indexed: 01/22/2023] Open
Abstract
The periodontal pathogen Porphyromonas gingivalis has two different lipopolysaccharides (LPSs) designated O-LPS and A-LPS, which are a conventional O-antigen polysaccharide and an anionic polysaccharide that are both linked to lipid A-cores, respectively. However, the precise mechanisms of LPS biosynthesis remain to be determined. In this study, we isolated a pigment-less mutant by transposon mutagenesis and identified that the transposon was inserted into the coding sequence PGN_2005, which encodes a hypothetical protein of P. gingivalis ATCC 33277. We found that (i) LPSs purified from the PGN_2005 mutant were shorter than those of the wild type; (ii) the PGN_2005 protein was located in the inner membrane fraction; and (iii) the PGN_2005 gene conferred Wzz activity upon an Escherichia coli wzz mutant. These results indicate that the PGN_2005 protein, which was designated WzzP, is a functional homolog of the Wzz protein in P. gingivalis. Comparison of amino acid sequences among WzzP and conventional Wzz proteins indicated that WzzP had an additional fragment at the C-terminal region. In addition, we determined that the PGN_1896 and PGN_1233 proteins and the PGN_1033 protein appear to be WbaP homolog proteins and a Wzx homolog protein involved in LPS biosynthesis, respectively.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gliding motility and Por secretion system genes are widespread among members of the phylum bacteroidetes. J Bacteriol 2012; 195:270-8. [PMID: 23123910 DOI: 10.1128/jb.01962-12] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, "Gramella forsetii," Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility.
Collapse
|
46
|
Saiki K, Konishi K. Strategies for targeting the gingipain secretion system of Porphyromonas gingivalis. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Glew MD, Veith PD, Peng B, Chen YY, Gorasia DG, Yang Q, Slakeski N, Chen D, Moore C, Crawford S, Reynolds EC. PG0026 is the C-terminal signal peptidase of a novel secretion system of Porphyromonas gingivalis. J Biol Chem 2012; 287:24605-17. [PMID: 22593568 DOI: 10.1074/jbc.m112.369223] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein substrates of a novel secretion system of Porphyromonas gingivalis contain a conserved C-terminal domain (CTD) of ∼70-80 amino acid residues that is essential for their secretion and attachment to the cell surface. The CTD itself has not been detected in mature substrates, suggesting that it may be removed by a novel signal peptidase. More than 10 proteins have been shown to be essential for the proper functioning of the secretion system, and one of these, PG0026, is a predicted cysteine proteinase that also contains a CTD, suggesting that it may be a secreted component of the secretion system and a candidate for being the CTD signal peptidase. A PG0026 deletion mutant was constructed along with a PG0026C690A targeted mutant encoding an altered catalytic Cys residue. Analysis of clarified culture fluid fractions by SDS-PAGE and mass spectrometry revealed that the CTD was released intact into the surrounding medium in the wild type strain, but not in the PG0026 mutant strains. Western blot experiments revealed that the maturation of a model substrate was stalled at the CTD-removal step specifically in the PG0026 mutants, and whole cell ELISA experiments demonstrated partial secretion of substrates to the cell surface. The CTD was also shown to be accessible at the cell surface in the PG0026 mutants, suggesting that the CTD was secreted but could not be cleaved. The data indicate that PG0026 is responsible for the cleavage of the CTD signal after substrates are secreted across the OM.
Collapse
Affiliation(s)
- Michelle D Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, and Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ishiguro I, Saiki K, Konishi K. Analysis of Porphyromonas gingivalis PG27 by deletion and intragenic suppressor mutation analyses. Mol Oral Microbiol 2011; 26:321-35. [DOI: 10.1111/j.2041-1014.2011.00620.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Mutations in Flavobacterium johnsoniae sprE result in defects in gliding motility and protein secretion. J Bacteriol 2011; 193:5322-7. [PMID: 21784937 DOI: 10.1128/jb.05480-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces. Transposon mutagenesis was used to identify sprE, which is involved in gliding. Mutations in sprE resulted in the formation of nonspreading colonies on agar. sprE mutant cells in wet mounts were almost completely deficient in attachment to and movement on glass, but a small percentage of cells exhibited slight movements, indicating that the motility machinery was not completely disrupted. SprE is a predicted lipoprotein with a tetratricopeptide repeat domain. SprE is similar in sequence to Porphyromonas gingivalis PorW, which is required for secretion of gingipain protease virulence factors. Disruption of F. johnsoniae sprE resulted in decreased extracellular chitinase activity and decreased secretion of the cell surface motility protein SprB. Reduced secretion of cell surface components of the gliding machinery, such as SprB, may account for the defects in gliding. Orthologs of sprE are found in many gliding and nongliding members of the phylum Bacteroidetes, suggesting that similar protein secretion systems are common among members of this large and diverse group of bacteria.
Collapse
|
50
|
Shoji M, Sato K, Yukitake H, Kondo Y, Narita Y, Kadowaki T, Naito M, Nakayama K. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35. PLoS One 2011; 6:e21372. [PMID: 21731719 PMCID: PMC3120885 DOI: 10.1371/journal.pone.0021372] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/26/2011] [Indexed: 01/22/2023] Open
Abstract
The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS), which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps) and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs) in their C-termini. Hemin-binding protein 35 (HBP35), which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS) revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keiko Sato
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideharu Yukitake
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuka Narita
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoko Kadowaki
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Global COE Program at Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|