1
|
Conn BN, Wozniak KL. Innate Pulmonary Phagocytes and Their Interactions with Pathogenic Cryptococcus Species. J Fungi (Basel) 2023; 9:617. [PMID: 37367553 PMCID: PMC10299524 DOI: 10.3390/jof9060617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes over 180,000 annual deaths in HIV/AIDS patients. Innate phagocytes in the lungs, such as dendritic cells (DCs) and macrophages, are the first cells to interact with the pathogen. Neutrophils, another innate phagocyte, are recruited to the lungs during cryptococcal infection. These innate cells are involved in early detection of C. neoformans, as well as the removal and clearance of cryptococcal infections. However, C. neoformans has developed ways to interfere with these processes, allowing for the evasion of the host's innate immune system. Additionally, the innate immune cells have the ability to aid in cryptococcal pathogenesis. This review discusses recent literature on the interactions of innate pulmonary phagocytes with C. neoformans.
Collapse
Affiliation(s)
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK 74078, USA;
| |
Collapse
|
2
|
Goughenour KD, Zhao J, Xu J, Zhao ZP, Ganguly A, Freeman CM, Olszewski MA. Murine Inducible Nitric Oxide Synthase Expression Is Essential for Antifungal Defenses in Kidneys during Disseminated Cryptococcus deneoformans Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:2096-2106. [PMID: 34479942 DOI: 10.4049/jimmunol.2100386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Disseminated cryptococcosis has a nearly 70% mortality, mostly attributed to CNS infection, with lesser-known effects on other organs. Immune protection against Cryptococcus relies on Th1 immunity with M1 polarization, rendering macrophages fungicidal. The importance of M1-upregulated inducible NO synthase (iNOS) has been documented in pulmonary anticryptococcal defenses, whereas its role in disseminated cryptococcosis remains controversial. Here we examined the effect of iNOS deletion in disseminated (i.v.) C. deneoformans 52D infection, comparing wild-type (C57BL/6J) and iNOS-/- mice. iNOS-/- mice had significantly reduced survival and nearly 100-fold increase of the kidney fungal burden, without increases in the lungs, spleen, or brain. Histology revealed extensive lesions and almost complete destruction of the kidney cortical area with a loss of kidney function. The lack of fungal control was not due to a failure to recruit immune cells because iNOS-/- mice had increased kidney leukocytes. iNOS-/- mice also showed no defect in T cell polarization. We conclude that iNOS is critically required for local anticryptococcal defenses in the kidneys, whereas it appears to be dispensable in other organs during disseminated infection. This study exemplifies a unique phenotype of local immune defenses in the kidneys and the organ-specific importance of a single fungicidal pathway.
Collapse
Affiliation(s)
- Kristie D Goughenour
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Jessica Zhao
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Jintao Xu
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Ziyin P Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Anutosh Ganguly
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and.,Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Christine M Freeman
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| | - Michal A Olszewski
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI; .,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI; and
| |
Collapse
|
3
|
Gaylord EA, Choy HL, Doering TL. Dangerous Liaisons: Interactions of Cryptococcus neoformans with Host Phagocytes. Pathogens 2020; 9:E891. [PMID: 33121050 PMCID: PMC7692806 DOI: 10.3390/pathogens9110891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen and a leading cause of death in immunocompromised individuals. The interactions of this yeast with host phagocytes are critical to disease outcome, and C. neoformans is equipped with an array of factors to modulate these processes. Cryptococcal infection begins with the deposition of infectious particles into the lungs, where the fungal cells deploy various antiphagocytic factors to resist internalization by host cells. If the cryptococci are still engulfed, they can survive and proliferate within host cells by modulating the phagolysosome environment in which they reside. Lastly, cryptococcal cells may escape from phagocytes by host cell lysis, nonlytic exocytosis, or lateral cell-to-cell transfer. The interactions between C. neoformans and host phagocytes also influence the dissemination of this pathogen to the brain, where it may cross the blood-brain barrier and cause an often-fatal meningoencephalitis. In this review, we highlight key cryptococcal factors involved in various stages of cryptococcal-host interaction and pathogenesis.
Collapse
Affiliation(s)
| | | | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; (E.A.G.); (H.L.C.)
| |
Collapse
|
4
|
Basso AMM, De Castro RJA, de Castro TB, Guimarães HI, Polez VLP, Carbonero ER, Pomin VH, Hoffmann C, Grossi-de-Sa MF, Tavares AH, Bocca AL. Immunomodulatory activity of β-glucan-containing exopolysaccharides from Auricularia auricular in phagocytes and mice infected with Cryptococcus neoformans. Med Mycol 2020; 58:227-239. [PMID: 31095342 DOI: 10.1093/mmy/myz042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
Abstract
Current antifungal drugs present poor effectiveness and there is no available vaccine for fungal infections. Thus, novel strategies to treat or prevent invasive mycosis, such as cryptococcosis, are highly desirable. One strategy is the use of immunomodulators of polysaccharide nature isolated from mushrooms. The purpose of the present work was to evaluate the immunostimulatory activity of β-(1,3)-glucan-containing exopolysaccharides (EPS) from the edible mushrooms Auricularia auricula in phagocytes and mice infected with Cryptococcus neoformans. EPS triggered macrophages and dendritic cell activation upon binding to Dectin-1, a pattern recognition receptor of the C-type lectin receptor family. Engagement of Dectin-1 culminated in pro-inflammatory cytokine production and cell maturation via its canonical Syk-dependent pathway signaling. Furthermore, upon EPS treatment, M2-like phenotype macrophages, known to support intracellular survival and replication of C. neoformans, repolarize to M1 macrophage pattern associated with enhanced production of the microbicidal molecule nitric oxide that results in efficient killing of C. neoformans. Treatment with EPS also upregulated transcript levels of genes encoding products associated with host protection against C. neoformans and Dectin-1 mediated signaling in macrophages. Finally, orally administrated β-glucan-containing EPS from A. auricular enhanced the survival of mice infected with C. neoformans. In conclusion, the results demonstrate that EPS from A. auricula exert immunostimulatory activity in phagocytes and induce host protection against C. neoformans, suggesting that polysaccharides from this mushroom may be promising as an adjuvant for vaccines or antifungal therapy.
Collapse
Affiliation(s)
- A M M Basso
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - R J A De Castro
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - T B de Castro
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - H I Guimarães
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - V L P Polez
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - E R Carbonero
- Department of Chemistry, Federal University of Goiás, Campus Catalão, GO, Brazil
| | - V H Pomin
- Program of Glicobiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University Federal of Rio de Janeiro, RJ, Brazil.,Department of BioMolecular Sciences, Division of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, the University of Mississippi, Oxford, MS 38677-1848, USA
| | - C Hoffmann
- Department of Food Sciences and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Graduated Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF, Brazil
| | - A H Tavares
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - A L Bocca
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| |
Collapse
|
5
|
Subramani A, Griggs P, Frantzen N, Mendez J, Tucker J, Murriel J, Sircy LM, Millican GE, McClelland EE, Seipelt-Thiemann RL, Nelson DE. Intracellular Cryptococcus neoformans disrupts the transcriptome profile of M1- and M2-polarized host macrophages. PLoS One 2020; 15:e0233818. [PMID: 32857777 PMCID: PMC7454990 DOI: 10.1371/journal.pone.0233818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages serve as a first line of defense against infection with the facultative intracellular pathogen, Cryptococcus neoformans (Cn). However, the ability of these innate phagocytic cells to destroy ingested Cn is strongly influenced by polarization state with classically (M1) activated macrophages better able to control cryptococcal infections than alternatively (M2) activated cells. While earlier studies have demonstrated that intracellular Cn minimally affects the expression of M1 and M2 markers, the impact on the broader transcriptome associated with these states remains unclear. To investigate this, an in vitro cell culture model of intracellular infection together with RNA sequencing-based transcriptome profiling was used to measure the impact of Cn infection on gene expression in both polarization states. The gene expression profile of both M1 and M2 cells was extensively altered to become more like naive (M0) macrophages. Gene ontology analysis suggested that this involved changes in the activity of the Janus kinase-signal transducers and activators of transcription (JAK-STAT), p53, and nuclear factor-κB (NF-κB) pathways. Analyses of the principle polarization markers at the protein-level also revealed discrepancies between the RNA- and protein-level responses. In contrast to earlier studies, intracellular Cn was found to increase protein levels of the M1 marker iNos. In addition, common gene expression changes were identified that occurred post-Cn infection, independent of polarization state. This included upregulation of the transcriptional co-regulator Cited1, which was also apparent at the protein level in M1-polarized macrophages. These changes constitute a transcriptional signature of macrophage Cn infection and provide new insights into how Cn impacts gene expression and the phenotype of host phagocytes.
Collapse
Affiliation(s)
- Aarthi Subramani
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Prianca Griggs
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Niah Frantzen
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - James Mendez
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Jamila Tucker
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
- Microbiology, Immunology, and Molecular Genetics Department, University of Kentucky, Lexington, KY, United States of America
| | - Jada Murriel
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Linda M. Sircy
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Grace E. Millican
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Erin E. McClelland
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
- M&P Associates, Inc., Murfreesboro, TN, United States of America
| | | | - David E. Nelson
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
- * E-mail:
| |
Collapse
|
6
|
Dutra FF, Albuquerque PC, Rodrigues ML, Fonseca FL. Warfare and defense: The host response to Cryptococcus infection. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Eastman AJ, Osterholzer JJ, Olszewski MA. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiol 2016; 10:1837-57. [PMID: 26597428 DOI: 10.2217/fmb.15.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review discusses the unique contributions of dendritic cells (DCs) to T-cell priming and the generation of effective host defenses against Cryptococcus neoformans (C.neo) infection. We highlight DC subsets involved in the early and later stages of anticryptococcal immune responses, interactions between C.neo pathogen-associated molecular patterns and pattern recognition receptors expressed by DC, and the influence of DC on adaptive immunity. We emphasize recent studies in mouse models of cryptococcosis that illustrate the importance of DC-derived cytokines and costimulatory molecules and the potential role of DC epigenetic modifications that support maintenance of these signals throughout the immune response to C.neo. Lastly, we stipulate where these advances can be developed into new, immune-based therapeutics for treatment of this global pathogen.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Antifungal Activity of Plasmacytoid Dendritic Cells against Cryptococcus neoformans In Vitro Requires Expression of Dectin-3 (CLEC4D) and Reactive Oxygen Species. Infect Immun 2016; 84:2493-504. [PMID: 27324480 DOI: 10.1128/iai.00103-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/09/2016] [Indexed: 01/08/2023] Open
Abstract
Conventional dendritic cells (cDCs) are critical for protection against pulmonary infection with the opportunistic fungal pathogen Cryptococcus neoformans; however, the role of plasmacytoid dendritic cells (pDCs) is unknown. We show for the first time that murine pDCs have direct activity against C. neoformans via reactive oxygen species (ROS), a mechanism different from that employed to control Aspergillus fumigatus infections. The anticryptococcal activity of murine pDCs is independent of opsonization but appears to require the C-type lectin receptor Dectin-3, a receptor not previously evaluated during cryptococcal infections. Human pDCs can also inhibit cryptococcal growth by a mechanism similar to that of murine pDCs. Experimental pulmonary infection of mice with a C. neoformans strain that induces protective immunity demonstrated that recruitment of pDCs to the lungs is CXCR3 dependent. Taken together, our results show that pDCs inhibit C. neoformans growth in vitro via the production of ROS and that Dectin-3 is required for optimal growth-inhibitory activity.
Collapse
|
9
|
Leopold Wager CM, Hole CR, Wozniak KL, Wormley FL. Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome. Front Microbiol 2016; 7:105. [PMID: 26903984 PMCID: PMC4746234 DOI: 10.3389/fmicb.2016.00105] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
Cryptococcus neoformans and C. gattii are fungal pathogens that cause life-threatening disease. These fungi commonly enter their host via inhalation into the lungs where they encounter resident phagocytes, including macrophages and dendritic cells, whose response has a pronounced impact on the outcome of disease. Cryptococcus has complex interactions with the resident and infiltrating innate immune cells that, ideally, result in destruction of the yeast. These phagocytic cells have pattern recognition receptors that allow recognition of specific cryptococcal cell wall and capsule components. However, Cryptococcus possesses several virulence factors including a polysaccharide capsule, melanin production and secretion of various enzymes that aid in evasion of the immune system or enhance its ability to thrive within the phagocyte. This review focuses on the intricate interactions between the cryptococci and innate phagocytic cells including discussion of manipulation and evasion strategies used by Cryptococcus, anti-cryptococcal responses by the phagocytes and approaches for targeting phagocytes for the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Chrissy M Leopold Wager
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Camaron R Hole
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Karen L Wozniak
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| |
Collapse
|
10
|
Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunol 2014; 7:1023-35. [PMID: 25073676 DOI: 10.1038/mi.2014.65] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/21/2014] [Indexed: 02/04/2023]
Abstract
Macrophages are innate immune cells that possess unique abilities to polarize toward different phenotypes. Classically activated macrophages are known to have major roles in host defense against various microbial pathogens, including fungi, while alternatively activated macrophages are instrumental in immune-regulation and wound healing. Macrophages in the lungs are often the first responders to pulmonary fungal pathogens, and the macrophage polarization state has the potential to be a deciding factor in disease progression or resolution. This review discusses the distinct macrophage polarization states and their roles during pulmonary fungal infection. We focus primarily on Cryptococcus neoformans and Pneumocystis model systems as disease resolution of these two opportunistic fungal pathogens is linked to classically or alternatively activated macrophages, respectively. Further research considering macrophage polarization states that result in anti-fungal activity has the potential to provide a novel approach for the treatment of fungal infections.
Collapse
|
11
|
Cole GT, Hurtgen BJ, Hung CY. Progress Toward a Human Vaccine Against Coccidioidomycosis. CURRENT FUNGAL INFECTION REPORTS 2012; 6:235-244. [PMID: 23585916 DOI: 10.1007/s12281-012-0105-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Coccidioidomycosis (San Joaquin Valley fever) is a human respiratory disease caused by a soil-borne mold, and is recognized as an intransigent microbial infection by physicians who treat patients with the potentially life-threatening, disseminated form of this mycosis. Epidemiological studies based on surveys of skin-test reactivity of people who reside in the endemic regions of the Southwestern US have shown that at least 150,000 new infections occur annually. The clinical spectrum of coccidioidomycosis ranges from an asymptomatic insult to a severe pulmonary disease in which the pathogen may spread from the lungs to the skin, bones, brain and other body organs. Escalation of symptomatic infections and increased cost of long-term antifungal treatment warrant a concerted effort to develop a vaccine against coccidioidomycosis. This review examines recently reported strategies used to generate such a vaccine and summarizes current understanding of the nature of protective immunity to this formidable disease.
Collapse
Affiliation(s)
- Garry T Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases (STCEID), University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
12
|
Yamamoto H, Abe Y, Miyazato A, Tanno D, Tanaka M, Miyasaka T, Ishii K, Kawakami K. Cryptococcus neoformans suppresses the activation of bone marrow-derived dendritic cells stimulated with its own DNA, but not with DNA from other fungi. ACTA ACUST UNITED AC 2011; 63:363-72. [PMID: 22092563 DOI: 10.1111/j.1574-695x.2011.00859.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 11/29/2022]
Abstract
DNA from Cryptococcus neoformans activates bone marrow-derived dendritic cells (BM-DCs) in a TLR9-dependent manner. In this study, we examined the effect of the culture supernatants of C. neoformans on the activation of BM-DCs caused by its own DNA. C. neoformans supernatants suppressed IL-12p40, IL-6 production and CD40 expression by BM-DCs stimulated with its own DNA, but not with CpG-ODN and DNA from Candida albicans, Saccharomyces cerevisiae or Escherichia coli. In a confocal microscopic analysis, C. neoformans DNA was colocalized with LAMP-1, a late endosomal marker, and TLR9. The culture supernatants did not show any apparent suppression of these responses. In a luciferase reporter assay, C. neoformans supernatants inhibited NFκB activation caused by its own DNA. These inhibitory activities were attenuated by treatment with heat or trypsin. These results indicate that C. neoformans secrete certain proteinous molecules that suppress the activation of BM-DCs caused by its own DNA.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Fungal diseases have emerged as significant causes of morbidity and mortality, particularly in immune-compromised individuals, prompting greater interest in understanding the mechanisms of host resistance to these pathogens. Consequently, the past few decades have seen a tremendous increase in our knowledge of the innate and adaptive components underlying the protective (and nonprotective) mechanisms of antifungal immunity. What has emerged from these studies is that phagocytic cells are essential for protection and that defects in these cells compromise the host's ability to resist fungal infection. This review covers the functions of phagocytes in innate antifungal immunity, along with selected examples of the strategies that are used by fungal pathogens to subvert these defenses.
Collapse
Affiliation(s)
- Gordon D Brown
- Aberdeen Fungal Group, Section of Immunology and Infection, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, United Kingdom.
| |
Collapse
|
14
|
Blastomyces dermatitidis yeast cells inhibit nitric oxide production by alveolar macrophage inducible nitric oxide synthase. Infect Immun 2011; 79:2385-95. [PMID: 21444664 DOI: 10.1128/iai.01249-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of pathogens to evade host antimicrobial mechanisms is crucial to their virulence. The dimorphic fungal pathogen Blastomyces dermatitidis can infect immunocompetent patients, producing a primary pulmonary infection that can later disseminate to other organs. B. dermatitidis possesses a remarkable ability to resist killing by alveolar macrophages. To date, no mechanism to explain this resistance has been described. Here, we focus on macrophage production of the toxic molecule nitric oxide as a potential target of subversion by B. dermatitidis yeast cells. We report that B. dermatitidis yeast cells reduce nitric oxide levels in the supernatants of activated alveolar macrophages. This reduction is not due to detoxification of nitric oxide, but rather to suppression of macrophage nitric oxide production. We show that B. dermatitidis yeast cells do not block upregulation of macrophage inducible nitric oxide synthase (iNOS) expression or limit iNOS access to its arginine substrate. Instead, B. dermatitidis yeast cells appear to inhibit iNOS enzymatic activity. Further investigation into the genetic basis of this potential virulence mechanism could lead to the identification of novel antifungal drug targets.
Collapse
|
15
|
Cordero RJB, Frases S, Guimaräes AJ, Rivera J, Casadevall A. Evidence for branching in cryptococcal capsular polysaccharides and consequences on its biological activity. Mol Microbiol 2011; 79:1101-17. [PMID: 21208301 DOI: 10.1111/j.1365-2958.2010.07511.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The encapsulated fungus Cryptococcus neoformans is a common cause of life-threatening disease in immunocompromised individuals. Its major virulence determinant is the polysaccharide (PS) capsule. An unsolved problem in cryptococcal biology is whether the PSs composing the capsule are linear or complex branched polymers, as well as the implications of this structural composition in pathogenesis. In this study we approached the problem by combining static and dynamic light scattering, viscosity analysis, and high-resolution microscopy and correlated the findings with biological properties. Analysis of the dependence of capsular PS molecular mass and the radius of gyration provided strong evidence against a simple linear PS configuration. Shape factors calculated from light scattering measurements in solution revealed values consistent with polymer branching. Furthermore, viscosity measurements provided complementary evidence for structural branching. Electron microscopy showed PS spherical-like structures similar to other branched PS. Finally, we show that the capacity of capsular PS to interfere in complement-mediated phagocytosis, inhibit nitric oxide production by macrophage-like cells, protect against reactive oxygen species, antibody reactivity and half-life in serum were influenced by the degree of branching, providing evidence for the notion that PS branching is an important parameter in determining the biological activity of C. neoformans PS.
Collapse
Affiliation(s)
- Radames J B Cordero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
16
|
Gonzalez A, Hung CY, Cole GT. Coccidioides releases a soluble factor that suppresses nitric oxide production by murine primary macrophages. Microb Pathog 2010; 50:100-8. [PMID: 21129481 DOI: 10.1016/j.micpath.2010.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/28/2010] [Accepted: 11/03/2010] [Indexed: 01/04/2023]
Abstract
We studied the effect of the presence of Coccidioides on the production of nitric oxide (NO) by primary macrophages previously activated by IFN-γ and LPS. The fungal cells were isolated from cultures of arthroconidia that had been incubated for 24 h in a medium that supported parasitic phase growth and were co-cultured with the macrophages. These live, first-generation parasitic cells of Coccidioides, referred to as spherule initials, suppressed NO production as well as iNOS mRNA expression by activated macrophages. Phagocytosis was not required for suppression of NO. We also showed that the culture supernatant of the spherule initials was capable of suppressing NO production, and that this activity was mediated by an as yet unidentified, secreted fungal factor(s). Heat-, paraformaldehyde- or X-ray-treated spherule initials did not show this inhibitory effect. To our surprise, macrophages obtained from iNOS-deficient mice revealed phagocytic activity and killing efficiency which were comparable to that of macrophages isolated from wild type C57BL/6 mice. Although the cultured fungal pathogen can suppress NO production, this oxidative product is apparently not essential for in vitro killing of Coccidioides by activated macrophages. Our results suggest that other unidentified fungicidal mechanisms exist against Coccidioides which are apparently independent of NO production.
Collapse
Affiliation(s)
- Angel Gonzalez
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | | |
Collapse
|
17
|
Seider K, Heyken A, Lüttich A, Miramón P, Hube B. Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol 2010; 13:392-400. [PMID: 20627672 DOI: 10.1016/j.mib.2010.05.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Pathogenic yeasts, either from the environment or the normal flora, have to face phagocytic cells that constitute the first line of defence during infection. In order to evade or counteract attack by phagocytes, pathogenic yeasts have acquired a repertoire of strategies to survive, colonize and infect the host. In this review we focus on the interaction of yeasts, such as Candida, Histoplasma or Cryptococcus species, with macrophages or neutrophils. We discuss strategies used by these fungi to prevent phagocytosis or to counteract phagocytic activities. We go on to describe the strategies that permit intracellular survival within phagocytes and that may eventually lead to damage of and escape from the phagocyte.
Collapse
Affiliation(s)
- Katja Seider
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute Jena (HKI), Jena, Germany
| | | | | | | | | |
Collapse
|
18
|
Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun 2010; 78:1601-9. [PMID: 20145096 DOI: 10.1128/iai.01171-09] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cryptococcus neoformans and distantly related fungal species release extracellular vesicles that traverse the cell wall and contain a varied assortment of components, some of which have been associated with virulence. Previous studies have suggested that these extracellular vesicles are produced in vitro and during animal infection, but the role of vesicular secretion during the interaction of fungi with host cells remains unknown. In this report, we demonstrate by fluorescence microscopy that mammalian macrophages can incorporate extracellular vesicles produced by C. neoformans. Incubation of cryptococcal vesicles with murine macrophages resulted in increased levels of extracellular tumor necrosis factor alpha (TNF-alpha), interleukin-10 (IL-10), and transforming growth factor beta (TGF-beta). Vesicle preparations also resulted in a dose-dependent stimulation of nitric oxide production by phagocytes, suggesting that vesicle components stimulate macrophages to produce antimicrobial compounds. Treated macrophages were more effective at killing C. neoformans yeast. Our results indicate that the extracellular vesicles of C. neoformans can stimulate macrophage function, apparently activating these phagocytic cells to enhance their antimicrobial activity. These results establish that cryptococcal vesicles are biologically active.
Collapse
|
19
|
Kleinschek MA, Müller U, Schütze N, Sabat R, Straubinger RK, Blumenschein WM, McClanahan T, Kastelein RA, Alber G. Administration of IL-23 engages innate and adaptive immune mechanisms during fungal infection. Int Immunol 2009; 22:81-90. [PMID: 19951959 DOI: 10.1093/intimm/dxp117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
IL-23 is a key cytokine in promotion of chronic inflammation. Here, we address if its pro-inflammatory potential can be harnessed to protect against chronic cryptococcosis. Mice were infected with Cryptococcus neoformans and treated with recombinant IL-23. Administration of IL-23 led to prolonged survival and reduced fungal burden but was inferior to IL-12 treatment. Independent of endogenous IL-23/IL-12, IL-23 treatment induced an altered cytokine profile accompanied by marked changes in composition of the inflammatory infiltrate characterized by T cell and dendritic cell recruitment. Although IL-23 induced hallmarks of the T(h)17 pathway, also non-T cells produced IL-17A and IL-22. IL-23 treatment of T-cell-deficient mice resulted in increased IL-17A and IL-22 production and modulation of the cellular response at the site of infection with elevated expression of CD86 on macrophages. Our data show that IL-23 treatment induces innate and adaptive tissue inflammation with limited impact on resistance to chronic cryptococcosis.
Collapse
Affiliation(s)
- Melanie A Kleinschek
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Inden K, Kaneko J, Miyazato A, Yamamoto N, Mouri S, Shibuya Y, Nakamura K, Aoyagi T, Hatta M, Kunishima H, Hirakata Y, Itoh Y, Kaku M, Kawakami K. Toll-like receptor 4-dependent activation of myeloid dendritic cells by leukocidin of Staphylococcus aureus. Microbes Infect 2009; 11:245-53. [PMID: 19111627 DOI: 10.1016/j.micinf.2008.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/21/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|