1
|
Yoon A, Yi KS, Chang SY, Kim SH, Song M, Choi JA, Bourgeois M, Hossain MJ, Chen LM, Donis RO, Kim H, Lee Y, Hwang DB, Min JY, Chang SJ, Chung J. An Anti-Influenza Virus Antibody Inhibits Viral Infection by Reducing Nucleus Entry of Influenza Nucleoprotein. PLoS One 2015; 10:e0141312. [PMID: 26512723 PMCID: PMC4626144 DOI: 10.1371/journal.pone.0141312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/07/2015] [Indexed: 01/23/2023] Open
Abstract
To date, four main mechanisms mediating inhibition of influenza infection by anti-hemagglutinin antibodies have been reported. Anti-globular-head-domain antibodies block either influenza virus receptor binding to the host cell or progeny virion release from the host cell. Anti-stem region antibodies hinder the membrane fusion process or induce antibody-dependent cytotoxicity to infected cells. In this study we identified a human monoclonal IgG1 antibody (CT302), which does not inhibit both the receptor binding and the membrane fusion process but efficiently reduced the nucleus entry of viral nucleoprotein suggesting a novel inhibition mechanism of viral infection by antibody. This antibody binds to the subtype-H3 hemagglutinin globular head domain of group-2 influenza viruses circulating throughout the population between 1997 and 2007.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antibody Affinity/immunology
- Cell Line
- Disease Models, Animal
- Epitope Mapping/methods
- Epitopes/chemistry
- Epitopes/immunology
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Immunoglobulin G/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza, Human/immunology
- Influenza, Human/virology
- Male
- Mice
- Models, Molecular
- Molecular Sequence Data
- Neutralization Tests
- Nucleoproteins/metabolism
- Orthomyxoviridae/physiology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Protein Binding
- Protein Conformation
- Sequence Alignment
- Virus Replication
Collapse
Affiliation(s)
- Aerin Yoon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Kye Sook Yi
- Biotechnology Research Institute, Celltrion Inc., Incheon, South Korea
| | | | - Sung Hwan Kim
- Biotechnology Research Institute, Celltrion Inc., Incheon, South Korea
| | - Manki Song
- International Vaccine Institute, Seoul, South Korea
| | - Jung Ah Choi
- International Vaccine Institute, Seoul, South Korea
| | - Melissa Bourgeois
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - M. Jaber Hossain
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Li-Mei Chen
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Hyori Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Yujean Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Do Been Hwang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Ji-Young Min
- Institut Pasteur Korea, Gyeonggi-do, South Korea
- * E-mail: (JC); (SJC); (JYM)
| | - Shin Jae Chang
- Biotechnology Research Institute, Celltrion Inc., Incheon, South Korea
- * E-mail: (JC); (SJC); (JYM)
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- * E-mail: (JC); (SJC); (JYM)
| |
Collapse
|
2
|
Prospects of HA-based universal influenza vaccine. BIOMED RESEARCH INTERNATIONAL 2015; 2015:414637. [PMID: 25785268 PMCID: PMC4345066 DOI: 10.1155/2015/414637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/23/2014] [Indexed: 12/02/2022]
Abstract
Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs). Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA). Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs) against influenza HA using recent technological advancements in antibody libraries, hybridoma, and isolation of single Ab-secreting plasma cells has increased the interest in developing a universal influenza vaccine as it could provide life-long protection. While these BnAbs can serve as a source for passive immunotherapy, their identification represents an important step towards the design of such a universal vaccine. This review describes the recent advances and approaches used in the development of universal influenza vaccine based on highly conserved HA regions identified by BnAbs.
Collapse
|
3
|
Human monoclonal antibodies to pandemic 1957 H2N2 and pandemic 1968 H3N2 influenza viruses. J Virol 2012; 86:6334-40. [PMID: 22457520 DOI: 10.1128/jvi.07158-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Investigation of the human antibody response to the 1957 pandemic H2N2 influenza A virus has been largely limited to serologic studies. We generated five influenza virus hemagglutinin (HA)-reactive human monoclonal antibodies (MAbs) by hybridoma technology from the peripheral blood of healthy donors who were born between 1950 and 1968. Two MAbs reacted with the pandemic H2N2 virus, two recognized the pandemic H3N2 virus, and remarkably, one reacted with both the pandemic H2N2 and H3N2 viruses. Each of these five naturally occurring MAbs displayed hemagglutination inhibition activity, suggesting specificity for the globular head domain of influenza virus HA. When incubated with virus, MAbs 8F8, 8M2, and 2G1 each elicited H2N2 escape mutations immediately adjacent to the receptor-binding domain on the HA globular head in embryonated chicken eggs. All H2N2-specific MAbs were able to inhibit a 2006 swine H2N3 influenza virus. MAbs 8M2 and 2G1 shared the V(H)1-69 germ line gene, but these antibodies were otherwise not genetically related. Each antibody was able to protect mice in a lethal H2N2 virus challenge. Thus, even 43 years after circulation of H2N2 viruses, these subjects possessed peripheral blood B cells encoding potent inhibiting antibodies specific for a conserved region on the globular head of the pandemic H2 HA.
Collapse
|