1
|
Cappelli EA, do Espírito Santo Cucinelli A, Simpson-Louredo L, Canellas MEF, Antunes CA, Burkovski A, da Silva JFR, Mattos-Guaraldi AL, Saliba AM, dos Santos LS. Insights of OxyR role in mechanisms of host-pathogen interaction of Corynebacterium diphtheriae. Braz J Microbiol 2022; 53:583-594. [PMID: 35169995 PMCID: PMC9151940 DOI: 10.1007/s42770-022-00710-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Corynebacterium diphtheriae, the leading causing agent of diphtheria, has been increasingly related to invasive diseases, including sepsis, endocarditis, pneumonia, and osteomyelitis. Oxidative stress defense is required not only for successful growth and survival under environmental conditions but also in the regulation of virulence mechanisms of human pathogenic species, by promoting mucosal colonization, survival, dissemination, and defense against the innate immune system. OxyR, functioning as a negative and/or positive transcriptional regulator, has been included among the major bacterial coordinators of antioxidant response. OxyR was first reported as a repressor of catalase expression in C. diphtheriae. However, the involvement of OxyR in C. diphtheriae pathogenesis remains unclear. Accordingly, this work aimed to investigate the role of OxyR in mechanisms of host-pathogen interaction of C. diphtheriae through the disruption of the OxyR of the diphtheria toxin (DT)-producing C. diphtheriae CDC-E8392 strain. The effects of OxyR gene disruption were analyzed through interaction assays with human epithelial cell lines (HEp-2 and pneumocytes A549) and by the induction of experimental infections in Caenorhabditis elegans nematodes and Swiss Webster mice. The OxyR disruption exerted influence on NO production and mechanism accountable for the expression of the aggregative-adherence pattern (AA) expressed by CDC-E8392 strain on human epithelial HEp-2 cells. Moreover, invasive potential and intracytoplasmic survival within HEp-2 cells, as well as the arthritogenic potential in mice, were found affected by the OxyR disruption. In conclusion, data suggest that OxyR is implicated in mechanisms of host-pathogen interaction of C. diphtheriae.
Collapse
Affiliation(s)
- Elisabete Alves Cappelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andrezza do Espírito Santo Cucinelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Liliane Simpson-Louredo
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Maria Eurydice Freire Canellas
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Camila Azevedo Antunes
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil ,grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Burkovski
- grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jemima Fuentes Ribeiro da Silva
- grid.412211.50000 0004 4687 5267Department of Histology and Embryology, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Luíza Mattos-Guaraldi
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alessandra Mattos Saliba
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Louisy Sanches dos Santos
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Chianca GC, Antunes LAA, Ornellas PO, Neves FPG, Póvoa HCC, Iorio NLPP. Virulence of Lactobacillus spp. misidentified as Enterococcus faecalis from children's carious dentine. Acta Odontol Scand 2022; 80:21-28. [PMID: 34107230 DOI: 10.1080/00016357.2021.1934534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective: This study aimed to search for Enterococcus faecalis in children's deep carious dentine and characterize their virulence traits.Material and Methods: Eight isolates from 15 carious molars identified by 16S rDNA species-specific PCR as E. faecalis were included. These eight isolates were subject to identification by MALDI-TOF and characterized regarding: (i) bacterial aggregation and biofilm formation on polystyrene and glass, with/without saliva, as single or dual-species (associated to Streptococcus mutans); (ii) environmental pH measurement before and after 24 h incubation; (iii) acidogenicity; (iv) gelatinase production; (v) macrophage adherence; and (vi) toxicity towards Caenorhabditis elegans. Statistical analyses were performed using two-way ANOVA/Tukey or Fisher's exact tests.Results: All isolates initially identified as E. faecalis by PCR were correctly identified as Lactobacillus by MALDI-TOF, being designated as Lactobacillus misidentified as Enterococcus (LME). These isolates produced biofilm in the presence of saliva and in the dual-species assays. Bacterial aggregation was only observed in the dual-species model. After 24 h, environmental pH dropped from 7.5 to 4.5 for seven of eight isolates, and to 4.0 in all dual-species models. LME isolates were acidogenic, none of them produced gelatinase or adhered to macrophages, but all presented toxicity towards C. elegans.Conclusions: No E. faecalis were identified in the children's caries lesions. All LME isolates presented important virulence traits, including biofilm formation and high acidogenicity, which cause enamel demineralization, that might increase the risk of dental caries in children carrying LME. Thus, the correct identification and in-depth virulence characterization of microorganisms isolated from dental caries are important to understand the dynamics of this disease.
Collapse
Affiliation(s)
- Gabriela Ceccon Chianca
- Department of Basic Science, Universidade Federal Fluminense (UFF), Nova Friburgo, Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Estácio de Sá (UNESA), Nova Friburgo, Rio de Janeiro, Brazil
| | - Lívia Azeredo Alves Antunes
- Department of Specific Formation, Universidade Federal Fluminense (UFF), Nova Friburgo, Rio de Janeiro, Brazil
| | - Pâmela Oliveira Ornellas
- Department of Specific Formation, Universidade Federal Fluminense (UFF), Nova Friburgo, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
3
|
Banesh S, Layek S, Trivedi DV. Hemin acts as CD36 ligand to activate down-stream signalling to disturb immune responses and cytokine secretion from macrophages. Immunol Lett 2022; 243:1-18. [DOI: 10.1016/j.imlet.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
|
4
|
Induction of Necrosis in Human Macrophage Cell Lines by Corynebacterium diphtheriae and Corynebacterium ulcerans Strains Isolated from Fatal Cases of Systemic Infections. Int J Mol Sci 2019; 20:ijms20174109. [PMID: 31443569 PMCID: PMC6747468 DOI: 10.3390/ijms20174109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/10/2023] Open
Abstract
When infecting a human host, Corynebacterium diphtheriae and Corynebacterium ulcerans are able to impair macrophage maturation and induce cell death. However, the underlying molecular mechanisms are not well understood. As a framework for this project, a combination of fluorescence microscopy, cytotoxicity assays, live cell imaging, and fluorescence-activated cell sorting was applied to understand the pathogenicity of two Corynebacterium strains isolated from fatal cases of systemic infections. The results showed a clear cytotoxic effect of the bacteria. The observed survival of the pathogens in macrophages and, subsequent, necrotic lysis of cells may be mechanisms explaining dissemination of C. diphtheriae and C. ulcerans to distant organs in the body.
Collapse
|
5
|
Peixoto RS, Antunes CA, Lourêdo LS, Viana VG, Santos CSD, Fuentes Ribeiro da Silva J, Hirata R, Hacker E, Mattos-Guaraldi AL, Burkovski A. Functional characterization of the collagen-binding protein DIP2093 and its influence on host-pathogen interaction and arthritogenic potential of Corynebacterium diphtheriae. MICROBIOLOGY-SGM 2017; 163:692-701. [PMID: 28535857 DOI: 10.1099/mic.0.000467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Corynebacterium diphtheriae is typically recognized as the a etiological agent of diphtheria, a toxaemic infection of the respiratory tract; however, both non-toxigenic and toxigenic strains are increasingly isolated from cases of invasive infections. The molecular mechanisms responsible for bacterial colonization and dissemination to host tissues remain only partially understood. In this report, we investigated the role of DIP2093, described as a putative adhesin of the serine-aspartate repeat (Sdr) protein family in host-pathogen interactions of C. diphtheriae wild-type strain NCTC13129. Compared to the parental strain, a DIP2093 mutant RN generated in this study was attenuated in its ability to bind to type I collagen, to adhere to and invade epithelial cells, as well as to survive within macrophages. Furthermore, DIP2093 mutant strain RN had a less detrimental impact on the viability of Caenorhabditis elegans as well as in the clinical severity of arthritis in mice. In conclusion, DIP2093 functions as a microbial surface component recognizing adhesive matrix molecules, and may be included among the factors that contribute to the pathogenicity of C. diphtheriae strains, independently of toxin production.
Collapse
Affiliation(s)
- Renata Stavracakis Peixoto
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University, (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Camila Azevedo Antunes
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Liliane Simpson Lourêdo
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil.,National Institute for Quality Control in Health (INCQS), Fundação Oswaldo Cruz- FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Vanilda Gonçalves Viana
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Cintia Silva Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Jemima Fuentes Ribeiro da Silva
- Ultrastructure and Tissue Biology, Department of Histology and Embryology, Roberto Alcântara Gomes Biology Institute - iBRAG - UERJ, Rio de Janeiro, RJ, Brazil
| | - Raphael Hirata
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Elena Hacker
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Luíza Mattos-Guaraldi
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University, (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Andreas Burkovski
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Peixoto RS, Hacker E, Antunes CA, Weerasekera D, Dias AA, Martins CA, Hirata R, Santos KRND, Burkovski A, Mattos-Guaraldi AL. Pathogenic properties of a Corynebacterium diphtheriae strain isolated from a case of osteomyelitis. J Med Microbiol 2017; 65:1311-1321. [PMID: 27902402 DOI: 10.1099/jmm.0.000362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Corynebacterium diphtheriae is typically recognized as a colonizer of the upper respiratory tract (respiratory diphtheria) and the skin (cutaneous diphtheria). However, different strains of Corynebacteriumdiphtheriae can also cause invasive infections. In this study, the characterization of a non-toxigenic Corynebacteriumdiphtheriae strain (designated BR-INCA5015) isolated from osteomyelitis in the frontal bone of a patient with adenoid cystic carcinoma was performed. Pathogenic properties of the strain BR-INCA5015 were tested in a Caenorhabditis elegans survival assay showing strong colonization and killing by this strain. Survival rates of 3.8±2.7 %, 33.6±7.3 % and 0 % were observed for strains ATCC 27010T, ATCC 27012 and BR-INCA5015, respectively, at day 7. BR-INCA5015 was able to colonize epithelial cells, showing elevated capacity to adhere to and survive within HeLa cells compared to other Corynebacteriumdiphtheriae isolates. Intracellular survival in macrophages (THP-1 and RAW 264.7) was significantly higher compared to control strains ATCC 27010T (non-toxigenic) and ATCC 27012 (toxigenic). Furthermore, the ability of BR-INCA5015 to induce osteomyelitis was confirmed by in vivo assay using Swiss Webster mice.
Collapse
Affiliation(s)
- Renata Stavracakis Peixoto
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Elena Hacker
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Camila Azevedo Antunes
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Dulanthi Weerasekera
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - A A Dias
- National Institute for Quality Control in Health (INCQS), Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Carlos Alberto Martins
- Brazilian National Cancer Institute - Ministry of Health, INCA, Rio de Janeiro, RJ, Brazil
| | - Raphael Hirata
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Kátia Regina Netto Dos Santos
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Andreas Burkovski
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil.,Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Mittal R, Lisi CV, Kumari H, Grati M, Blackwelder P, Yan D, Jain C, Mathee K, Weckwerth PH, Liu XZ. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages. Front Microbiol 2016; 7:1828. [PMID: 27917157 PMCID: PMC5114284 DOI: 10.3389/fmicb.2016.01828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host-pathogen interaction will provide novel avenues to design effective treatment modalities against OM.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Christopher V Lisi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami FL, USA
| | - M'hamed Grati
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Patricia Blackwelder
- Chemistry Department, Center for Advanced Microscopy, University of Miami, Coral GablesFL, USA; Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key BiscayneFL, USA
| | - Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Chaitanya Jain
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, MiamiFL, USA; Global Health Consortium and Biomolecular Science Institute, Florida International University, MiamiFL, USA
| | - Paulo H Weckwerth
- Health Sciences Department, University of Sagrado Coração Bauru, Brazil
| | - Xue Z Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| |
Collapse
|
8
|
Hacker E, Ott L, Schulze-Luehrmann J, Lührmann A, Wiesmann V, Wittenberg T, Burkovski A. The killing of macrophages by Corynebacterium ulcerans. Virulence 2015; 7:45-55. [PMID: 26632348 DOI: 10.1080/21505594.2015.1125068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Corynebacterium ulcerans is an emerging pathogen transmitted by a zoonotic pathway with a very broad host spectrum to humans. Despite rising numbers of infections and potentially fatal outcomes, data on the molecular basis of pathogenicity are scarce. In this study, the interaction of 2 C. ulcerans isolates - one from an asymptomatic dog, one from a fatal case of human infection - with human macrophages was investigated. C. ulcerans strains were able to survive in macrophages for at least 20 hours. Uptake led to delay of phagolysosome maturation and detrimental effects on the macrophages as deduced from cytotoxicity measurements and FACS analyses. The data presented here indicate a high infectious potential of this emerging pathogen.
Collapse
Affiliation(s)
- Elena Hacker
- a Friedrich-Alexander-Universität Erlangen-Nürnberg; Professur für Mikrobiologie ; Erlangen , Germany
| | - Lisa Ott
- a Friedrich-Alexander-Universität Erlangen-Nürnberg; Professur für Mikrobiologie ; Erlangen , Germany
| | - Jan Schulze-Luehrmann
- b Friedrich-Alexander-Universität Erlangen-Nürnberg; Universitätsklinikum Erlangen; Mikrobiologisches Institut - Klinische Mikrobiologie; Immunologie und Hygiene ; Erlangen , Germany
| | - Anja Lührmann
- b Friedrich-Alexander-Universität Erlangen-Nürnberg; Universitätsklinikum Erlangen; Mikrobiologisches Institut - Klinische Mikrobiologie; Immunologie und Hygiene ; Erlangen , Germany
| | - Veit Wiesmann
- c Fraunhofer Institut für Integrierte Schaltungen (IIS) ; Erlangen , Germany
| | - Thomas Wittenberg
- c Fraunhofer Institut für Integrierte Schaltungen (IIS) ; Erlangen , Germany
| | - Andreas Burkovski
- a Friedrich-Alexander-Universität Erlangen-Nürnberg; Professur für Mikrobiologie ; Erlangen , Germany
| |
Collapse
|
9
|
Santos LSD, Antunes CA, Santos CSD, Pereira JAA, Sabbadini PS, Luna MDGD, Azevedo V, Hirata Júnior R, Burkovski A, Asad LMBDO, Mattos-Guaraldi AL. Corynebacterium diphtheriae putative tellurite-resistance protein (CDCE8392_0813) contributes to the intracellular survival in human epithelial cells and lethality of Caenorhabditis elegans. Mem Inst Oswaldo Cruz 2015; 110:662-8. [PMID: 26107188 PMCID: PMC4569831 DOI: 10.1590/0074-02760140479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/15/2015] [Indexed: 11/29/2022] Open
Abstract
Corynebacterium diphtheriae, the aetiologic agent of diphtheria,
also represents a global medical challenge because of the existence of invasive
strains as causative agents of systemic infections. Although tellurite
(TeO32-) is toxic to most microorganisms, TeO32--resistant
bacteria, including C. diphtheriae, exist in
nature. The presence of TeO32--resistance (TeR)
determinants in pathogenic bacteria might provide selective advantages in the natural
environment. In the present study, we investigated the role of the putative
TeR determinant (CDCE8392_813gene) in the virulence
attributes of diphtheria bacilli. The disruption of CDCE8392_0813 gene expression in
the LDCIC-L1 mutant increased susceptibility to TeO32- and reactive oxygen
species (hydrogen peroxide), but not to other antimicrobial agents. The LDCIC-L1
mutant also showed a decrease in both the lethality of Caenorhabditis elegans
and the survival inside of human epithelial cells compared to wild-type
strain. Conversely, the haemagglutinating activity and adherence to and formation of
biofilms on different abiotic surfaces were not regulated through the CDCE8392_0813
gene. In conclusion, the CDCE8392_813 gene contributes to the TeR and
pathogenic potential of C. diphtheriae.
Collapse
Affiliation(s)
- Louisy Sanches Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Camila Azevedo Antunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Cintia Silva Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - José Augusto Adler Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Priscila Soares Sabbadini
- Laboratório de Doenças Bacterianas, Centro de Ciências da Saúde, Centro Universitário do Maranhão, São Luís, MA, BR
| | - Maria das Graças de Luna
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Raphael Hirata Júnior
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Andreas Burkovski
- Lehrstuhl fuer Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, DE
| | - Lídia Maria Buarque de Oliveira Asad
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Ana Luíza Mattos-Guaraldi
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| |
Collapse
|
10
|
Kucinska M, Skupin-Mrugalska P, Szczolko W, Sobotta L, Sciepura M, Tykarska E, Wierzchowski M, Teubert A, Fedoruk-Wyszomirska A, Wyszko E, Gdaniec M, Kaczmarek M, Goslinski T, Mielcarek J, Murias M. Phthalocyanine derivatives possessing 2-(morpholin-4-yl)ethoxy groups as potential agents for photodynamic therapy. J Med Chem 2015; 58:2240-55. [PMID: 25700089 DOI: 10.1021/acs.jmedchem.5b00052] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three 2-(morpholin-4-yl)ethoxy substituted phthalocyanines were synthesized and characterized. Phthalocyanine derivatives revealed moderate to high quantum yields of singlet oxygen production depending on the solvent applied (e.g., in DMF ranging from 0.25 to 0.53). Their photosensitizing potential for photodynamic therapy was investigated in an in vitro model using cancer cell lines. Biological test results were found particularly encouraging for the zinc(II) phthalocyanine derivative possessing two 2-(morpholin-4-yl)ethoxy substituents in nonperipheral positions. Cells irradiated for 20 min at 2 mW/cm(2) revealed the lowest IC50 value at 0.25 μM for prostate cell line (PC3), whereas 1.47 μM was observed for human malignant melanoma (A375) cells. The cytotoxic activity in nonirradiated cells of novel phthalocyanine was found to be very low. Moreover, the cellular uptake, localization, cell cycle, apoptosis through an ELISA assay, and immunochemistry method were investigated in LNCaP cells. Our results showed that the tested photosensitizer possesses very interesting biological activity, depending on experimental conditions.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences , Dojazd 30, 60-631 Poznan, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Antunes CA, Sanches dos Santos L, Hacker E, Köhler S, Bösl K, Ott L, de Luna MDG, Hirata R, Azevedo VADC, Mattos-Guaraldi AL, Burkovski A. Characterization of DIP0733, a multi-functional virulence factor of Corynebacterium diphtheriae. MICROBIOLOGY-SGM 2015; 161:639-47. [PMID: 25635272 DOI: 10.1099/mic.0.000020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Corynebacterium diphtheriae is typically recognized as an extracellular pathogen. However, a number of studies revealed its ability to invade epithelial cells, indicating a more complex pathogen-host interaction. The molecular mechanisms controlling and facilitating internalization of Cor. diphtheriae are poorly understood. In this study, we investigated the role of DIP0733 as virulence factor to elucidate how it contributes to the process of pathogen-host cell interaction. Based on in vitro experiments, it was suggested recently that the DIP0733 protein might be involved in adhesion, invasion of epithelial cells and induction of apoptosis. A corresponding Cor. diphtheriae mutant strain generated in this study was attenuated in its ability to colonize and kill the host in a Caenorhabditis elegans infection model system. Furthermore, the mutant showed an altered adhesion pattern and a drastically reduced ability to adhere and invade epithelial cells. Subsequent experiments showed an influence of DIP0733 on binding of Cor. diphtheriae to extracellular matrix proteins such as collagen and fibronectin. Furthermore, based on its fibrinogen-binding activity, DIP0733 may play a role in avoiding recognition of Cor. diphtheriae by the immune system. In summary, our findings support the idea that DIP0733 is a multi-functional virulence factor of Cor. diphtheriae.
Collapse
Affiliation(s)
- Camila Azevedo Antunes
- Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany Departmento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Elena Hacker
- Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Köhler
- Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Korbinian Bösl
- Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Ott
- Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Raphael Hirata
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Departmento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Andreas Burkovski
- Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Peixoto RS, Pereira GA, Sanches Dos Santos L, Rocha-de-Souza CM, Gomes DLR, Silva Dos Santos C, Werneck LMC, Dias AADSDO, Hirata R, Nagao PE, Mattos-Guaraldi AL. Invasion of endothelial cells and arthritogenic potential of endocarditis-associated Corynebacterium diphtheriae. MICROBIOLOGY-SGM 2013; 160:537-546. [PMID: 24344208 DOI: 10.1099/mic.0.069948-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although infection by Corynebacterium diphtheriae is a model of extracellular mucosal pathogenesis, different clones have been also associated with invasive infections such as sepsis, endocarditis, septic arthritis and osteomyelitis. The mechanisms that promote C. diphtheriae infection and haematogenic dissemination need further investigation. In this study we evaluated the association and invasion mechanisms with human umbilical vein endothelial cells (HUVECs) and experimental arthritis in mice of endocarditis-associated strains and control non-invasive strains. C. diphtheriae strains were able to adhere to and invade HUVECs at different levels. The endocarditis-associated strains displayed an aggregative adherence pattern and a higher number of internalized viable cells in HUVECs. Transmission electron microscopy (TEM) analysis revealed intracellular bacteria free in the cytoplasm and/or contained in a host-membrane-confined compartment as single micro-organisms. Data showed bacterial internalization dependent on microfilament and microtubule stability and involvement of protein phosphorylation in the HUVEC signalling pathway. A high number of affected joints and high arthritis index in addition to the histopathological features indicated a strain-dependent ability of C. diphtheriae to cause severe polyarthritis. A correlation between the arthritis index and increased systemic levels of IL-6 and TNF-α was observed for endocarditis-associated strains. In conclusion, higher incidence of potential mechanisms by which C. diphtheriae may access the bloodstream through the endothelial barrier and stimulate the production of pro-inflammatory cytokines such as IL-6 and TNF-α, in addition to the ability to affect the joints and induce arthritis through haematogenic spread are thought to be related to the pathogenesis of endocarditis-associated strains.
Collapse
Affiliation(s)
- Renata Stavracakis Peixoto
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Gabriela Andrade Pereira
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Débora Leandro Rama Gomes
- Faculty of Pharmacy, Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| | - Cintia Silva Dos Santos
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Lucia Maria Correa Werneck
- National Institute for Quality Control in Health (INCQS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | - Raphael Hirata
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Prescilla Emy Nagao
- Biology Institute Roberto Alcântara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Ott L, Scholz B, Höller M, Hasselt K, Ensser A, Burkovski A. Induction of the NFκ-B signal transduction pathway in response to Corynebacterium diphtheriae infection. Microbiology (Reading) 2013; 159:126-135. [DOI: 10.1099/mic.0.061879-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lisa Ott
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| | - Brigitte Scholz
- Klinische und Molekulare Virologie, Virologisches Institut des Universitätsklinikums Erlangen, Schlossgarten 4, 91054, Erlangen, Germany
| | - Martina Höller
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| | - Kristin Hasselt
- BioCer Entwicklungs-GmbH, Ludwig-Thoma-Str. 36c, 95447 Bayreuth, Germany
| | - Armin Ensser
- Klinische und Molekulare Virologie, Virologisches Institut des Universitätsklinikums Erlangen, Schlossgarten 4, 91054, Erlangen, Germany
| | - Andreas Burkovski
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
14
|
Sabbadini PS, Assis MC, Trost E, Gomes DLR, Moreira LO, Dos Santos CS, Pereira GA, Nagao PE, Azevedo VADC, Hirata Júnior R, Dos Santos ALS, Tauch A, Mattos-Guaraldi AL. Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells. Microb Pathog 2012; 52:165-76. [PMID: 22239957 DOI: 10.1016/j.micpath.2011.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 11/25/2022]
Abstract
Although Corynebacterium diphtheriae has been classically described as an exclusively extracellular pathogen, there is growing evidence that it may be internalized by epithelial cells. The aim of the present report was to investigate the nature and involvement of the surface-exposed non-fimbrial 67-72 kDa proteins (67-72p), previously characterized as adhesin/hemagglutinin, in C. diphtheriae internalization by HEp-2 cells. Transmission electron microscopy and bacterial internalization inhibition assays indicated the role of 67-72p as invasin for strains of varied sources. Cytoskeletal changes with accumulation of polymerized actin in HEp-2 cells beneath adherent 67-72p-adsorbed microspheres were observed by the Fluorescent actin staining test. Trypan blue staining method and Methylthiazole tetrazolium reduction assay showed a significant decrease in viability of HEp-2 cells treated with 67-72p. Morphological changes in HEp-2 cells observed after treatment with 67-72p included vacuolization, nuclear fragmentation and the formation of apoptotic bodies. Flow cytometry revealed an apoptotic volume decrease in HEp-2 cells treated with 67-72p. Moreover, a double-staining assay using Propidium Iodide/Annexin V gave information about the numbers of vital vs. early apoptotic cells and late apoptotic or secondary necrotic cells. The comparative analysis of MALDI-TOF MS experiments with the probes provided for 67-72p CDC-E8392 with an in silico proteome deduced from the complete genome sequence of C. diphtheriae identified with significant scores 67-72p as the protein DIP0733. In conclusion, DIP0733 (67-72p) may be directly implicated in bacterial invasion and apoptosis of epithelial cells in the early stages of diphtheria and C. diphtheriae invasive infection.
Collapse
|