1
|
Suzuki K, Shinkai H, Yoshioka G, Matsumoto T, Takenouchi T, Tanaka J, Shimizu M, Kitazawa H, Uenishi H. Polymorphisms in Pattern Recognition Receptor Genes Are Associated with Respiratory Disease Severity in Pig Farms. Animals (Basel) 2022; 12:ani12223163. [PMID: 36428390 PMCID: PMC9686681 DOI: 10.3390/ani12223163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Reduced productivity caused by infections, particularly respiratory diseases, is a serious problem in pig farming. We have previously reported polymorphisms in porcine pattern recognition receptor genes affecting molecular functions and demonstrated that the 2197A/C polymorphism in the nucleotide-binding oligomerization domain containing 2 (NOD2) gene influences porcine circovirus 2-induced mortality. Here, we investigated how these polymorphisms affect respiratory disease-induced lesions, using samples from a slaughterhouse dealing with pigs from two farms. Lung lesions were evaluated using two scoring systems, Goodwin (GW) and slaughterhouse pleuritis evaluation system (SPES), to determine the influence of Mycoplasma hyopneumoniae (Mhp) and Actinobacillus pleuropneumoniae (App), respectively. SPES scores were significantly higher when the 1205T allele of Toll-like receptor 5 (TLR5-1205T), rather than TLR5-1205C, was present. On the farm with more severe Mhp invasion, lower GW lesion scores were significantly associated with the presence of the NOD-like receptor family pyrin domain containing 3 (NLRP3)-2906G allele; where App invasion was worse, lower SPES scores were significantly associated with the presence of the NOD2-2197C allele. Combinations of polymorphisms in pattern recognition receptor genes can therefore be utilized for breeding for resistance against respiratory diseases in pigs. DNA markers of these polymorphisms can thus be used to improve productivity by reducing respiratory diseases due to bacterial pathogens in pig livestock.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroki Shinkai
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan
| | - Gou Yoshioka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Toshimi Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
| | - Junji Tanaka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Masanori Shimizu
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| |
Collapse
|
2
|
Pieper R, van Best N, van Vorst K, Ebner F, Reissmann M, Hornef MW, Fulde M. Toward a porcine in vivo model to analyze the pathogenesis of TLR5-dependent enteropathies. Gut Microbes 2020; 12:1782163. [PMID: 32715918 PMCID: PMC7524303 DOI: 10.1080/19490976.2020.1782163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023] Open
Abstract
Non-communicable diseases, such as the metabolic syndrome and inflammatory bowel disease, constitute serious public health threats in developed countries. Besides environmental factors, genetic predispositions contribute to the onset and progression of the disease. State-of-the-art mouse models recently highlight the involvement of Toll-like receptor 5 (TLR5)-driven microbiota composition in the development of metabolic disorders. Here, we discuss the causes and consequences of an altered enteric microbiota and provide information on a similar mechanism in another species, the pig. We show for the first time that a single nucleotide polymorphism in the porcine TLR5 gene conferring impaired functionality is associated with changes in the intestinal microbiota in adult sows and neonatal piglets. Changes in the developing adaptive cellular immune response support the concept of TLR5-driven changes of the microbe-host interplay also in the pig. Together, these findings suggest that pigs with impaired TLR-functionality might represent a model for TLR5-driven diseases in humans.
Collapse
Affiliation(s)
- Robert Pieper
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Niels van Best
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | - Kira van Vorst
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Friederike Ebner
- Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | | | - Mathias W. Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Muneta Y, Arai N, Yakabe Y, Eguchi M, Shibahara T, Sakuma A, Shinkai H, Uenishi H, Hirose K, Akiba M. In vivo effect of a TLR5 SNP (C1205T) on Salmonella enterica serovar Typhimurium infection in weaned, specific pathogen-free Landrace piglets. Microbiol Immunol 2018; 62:380-387. [PMID: 29660148 DOI: 10.1111/1348-0421.12591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 11/28/2022]
Abstract
Toll-like receptor 5 is a pattern-recognition receptor for bacterial flagellin. We previously reported that a single nucleotide polymorphism (SNP) of swine TLR5, C1205T, impairs recognition of Salmonella typhimurium (ST) flagellin and ethanol-killed Salmonella Choleraesuis (SC). In the present study, weaned, specific pathogen-free (SPF) Landrace piglets with CC, CT or TT genotypes were orally infected with ST (L-3569 strain) to determine the effect of this specific SNP on ST infection in vivo. Eighteen ST-infected piglets (six each with CC, CT, or TT) exhibited fever and diarrhea for 1 week after infection. TT piglets had the longest duration of fever. TT piglets had the greatest mean diarrhea score during the experimental period, followed by CT and CC piglets. Fecal ST shedding was greater in CT and TT pigs than CC pigs from 2 days after infection. Serum haptoglobin concentration increased in ST-infected piglets and to greater extents in CT and TT pigs than CC pigs. Daily weight gain was lower in infected pigs, particularly TT piglets, than control pigs. To the best of our knowledge, this study is the first to demonstrate that impairment of TLR recognition affects pig susceptibility to disease in vivo. Thus, piglets with the T allele of swine TLR5 (C1205T) exhibit impaired resistance to ST infection. Furthermore, elimination of the T allele of this SNP from Landrace pigs would lead to enhancement of their resistance to ST infection.
Collapse
Affiliation(s)
- Yoshihiro Muneta
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Nobuo Arai
- Bacteriology and Parasitology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Osaka Prefecture University, Graduate School of Life and Environmental Sciences, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yoko Yakabe
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Masahiro Eguchi
- Bacteriology and Parasitology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tomoyuki Shibahara
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Osaka Prefecture University, Graduate School of Life and Environmental Sciences, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akiko Sakuma
- Miyagi Livestock Experimental Station, 1 Hiwatari, Minamisawa, Iwadeyama, Osaki, Miyagi 989-6445, Japan
| | - Hiroki Shinkai
- Division of Animal Sciences, Institute of Agrobiological Science, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan
| | - Hirohide Uenishi
- Division of Animal Sciences, Institute of Agrobiological Science, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan
| | - Kensuke Hirose
- Zen-Noh Livestock East Japan Breeding Farm, 121-3 Kamiwano, Uwano, Sizukuishi, Iwate, Iwate 020-0583, Japan
| | - Masato Akiba
- Bacteriology and Parasitology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Osaka Prefecture University, Graduate School of Life and Environmental Sciences, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|