1
|
Onishi I, Yamamoto K, Kinowaki Y, Kitagawa M, Kurata M. To Discover the Efficient and Novel Drug Targets in Human Cancers Using CRISPR/Cas Screening and Databases. Int J Mol Sci 2021; 22:12322. [PMID: 34830205 PMCID: PMC8622676 DOI: 10.3390/ijms222212322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas has emerged as an excelle nt gene-editing technology and is used worldwide for research. The CRISPR library is an ideal tool for identifying essential genes and synthetic lethality targeted for cancer therapies in human cancers. Synthetic lethality is defined as multiple genetic abnormalities that, when present individually, do not affect function or survival, but when present together, are lethal. Recently, many CRISPR libraries are available, and the latest libraries are more accurate and can be applied to few cells. However, it is easier to efficiently search for cancer targets with their own screenings by effectively using databases of CRISPR screenings, such as Depmap portal, PICKLES (Pooled In-Vitro CRISPR Knockout Library Essentiality Screens), iCSDB, Project Score database, and CRISP-view. This review will suggest recent optimal CRISPR libraries and effective databases for Novel Approaches in the Discovery and Design of Targeted Therapies.
Collapse
Affiliation(s)
- Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (K.Y.); (Y.K.); (M.K.)
| | | | | | | | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (K.Y.); (Y.K.); (M.K.)
| |
Collapse
|
2
|
Kurata M, Onishi I, Takahara T, Yamazaki Y, Ishibashi S, Goitsuka R, Kitamura D, Takita J, Hayashi Y, Largaesapda DA, Kitagawa M, Nakamura T. C/EBPβ induces B-cell acute lymphoblastic leukemia and cooperates with BLNK mutations. Cancer Sci 2021; 112:4920-4930. [PMID: 34653294 PMCID: PMC8645713 DOI: 10.1111/cas.15164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
BLNK (BASH/SLP‐65) encodes an adaptor protein that plays an important role in B‐cell receptor (BCR) signaling. Loss‐of‐function mutations in this gene are observed in human pre‐B acute lymphoblastic leukemia (ALL), and a subset of Blnk knock‐out (KO) mice develop pre‐B‐ALL. To understand the molecular mechanism of the Blnk mutation‐associated pre‐B‐ALL development, retroviral tagging was applied to KO mice using the Moloney murine leukemia virus (MoMLV). The Blnk mutation that significantly accelerated the onset of MoMLV‐induced leukemia and increased the incidence of pre‐B‐ALL Cebpb was identified as a frequent site of retroviral integration, suggesting that its upregulation cooperates with Blnk mutations. Transgenic expression of the liver‐enriched activator protein (LAP) isoform of Cebpb reduced the number of mature B‐lymphocytes in the bone marrow and inhibited differentiation at the pre‐BI stage. Furthermore, LAP expression significantly accelerated leukemogenesis in Blnk KO mice and alone acted as a B‐cell oncogene. Furthermore, an inverse relationship between BLNK and C/EBPβ expression was also noted in human pre‐B‐ALL cases, and the high level of CEBPB expression was associated with short survival periods in patients with BLNK‐downregulated pre‐B‐ALL. These results indicate the association between the C/EBPβ transcriptional network and BCR signaling in pre‐B‐ALL development and leukemogenesis. This study gives insight into ALL progression and suggests that the BCR/C/EBPβ pathway can be a therapeutic target.
Collapse
Affiliation(s)
- Morito Kurata
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Iichiro Onishi
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Takahara
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yukari Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Goitsuka
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Junko Takita
- Department of Pediatrics, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Japan
| | - David A Largaesapda
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
3
|
Tanaka M, Nakamura T. Modeling fusion gene-associated sarcoma: Advantages for understanding sarcoma biology and pathology. Pathol Int 2021; 71:643-654. [PMID: 34265156 DOI: 10.1111/pin.13142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Disease-specific gene fusions are reportedly major driver mutations in approximately 30% of bone and soft tissue sarcomas. Most fusion genes encode transcription factors or co-factors that regulate downstream target genes, altering cell growth, lineage commitment, and differentiation. Given the limitations of investigating their functions in vitro, the generation of mouse models expressing fusion genes in the appropriate cellular lineages is pivotal. Therefore, we generated a series of mouse models by introducing fusion genes into embryonic mesenchymal progenitors. This review describes mouse models of Ewing, synovial, alveolar soft part, and CIC-rearranged sarcomas. Furthermore, we describe the similarities between these models and their human counterparts. These models provide remarkable advantages to identify cells-of-origin, specific collaborators of fusion genes, angiogenesis key factors, or diagnostic biomarkers. Finally, we discuss the relationship between fusion proteins and the epigenetic background as well as the possible role of the super-enhancers.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
4
|
Cooperation between SS18-SSX1 and miR-214 in Synovial Sarcoma Development and Progression. Cancers (Basel) 2020; 12:cancers12020324. [PMID: 32019274 PMCID: PMC7072427 DOI: 10.3390/cancers12020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
SS18-SSX fusion proteins play a central role in synovial sarcoma development, although, the genetic network and mechanisms of synovial sarcomagenesis remain unknown. We established a new ex vivo synovial sarcoma mouse model through retroviral-mediated gene transfer of SS18-SSX1 into mouse embryonic mesenchymal cells followed by subcutaneous transplantation into nude mice. This approach successfully induced subcutaneous tumors in 100% recipients, showing invasive proliferation of short spindle tumor cells with occasional biphasic appearance. Cytokeratin expression was observed in epithelial components in tumors and expression of TLE1 and BCL2 was also shown. Gene expression profiling indicated SWI/SNF pathway modulation by SS18-SSX1 introduction into mesenchymal cells and Tle1 and Atf2 upregulation in tumors. These findings indicate that the model exhibits phenotypes typical of human synovial sarcoma. Retroviral tagging of the tumor identified 15 common retroviral integration sites within the Dnm3 locus as the most frequent in 30 mouse synovial sarcomas. miR-199a2 and miR-214 upregulation within the Dnm3 locus was observed. SS18-SSX1 and miR-214 cointroduction accelerated sarcoma onset, indicating that miR-214 is a cooperative oncomiR in synovial sarcomagenesis. miR-214 functions in a cell non-autonomous manner, promoting cytokine gene expression (e.g., Cxcl15/IL8). Our results emphasize the role of miR-214 in tumor development and disease progression.
Collapse
|
5
|
Kurata M, Yamamoto K, Moriarity BS, Kitagawa M, Largaespada DA. CRISPR/Cas9 library screening for drug target discovery. J Hum Genet 2017; 63:179-186. [DOI: 10.1038/s10038-017-0376-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/26/2022]
|
6
|
Kizilors A, Pickard MR, Schulte CE, Yacqub-Usman K, McCarthy NJ, Gan SU, Darling D, Gäken J, Williams GT, Farzaneh F. Retroviral insertional mutagenesis implicates E3 ubiquitin ligase RNF168 in the control of cell proliferation and survival. Biosci Rep 2017; 37:BSR20170843. [PMID: 28754805 PMCID: PMC5634340 DOI: 10.1042/bsr20170843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023] Open
Abstract
The E3 ubiquitin ligase RNF168 is a ring finger protein that has previously been identified to play an important regulatory role in the repair of double-strand DNA breaks. In the present study, an unbiased forward genetics functional screen in mouse granulocyte/ macrophage progenitor cell line FDCP1 has identified E3 ubiquitin ligase RNF168 as a key regulator of cell survival and proliferation. Our data indicate that RNF168 is an important component of the mechanisms controlling cell fate, not only in human and mouse haematopoietic growth factor-dependent cells, but also in the human breast epithelial cell line MCF-7. These observations therefore suggest that RNF168 provides a connection to key pathways controlling cell fate, potentially through interaction with PML nuclear bodies and/or epigenetic control of gene expression. Our study is the first to demonstrate a critical role for RNF168 in the in the mechanisms regulating cell proliferation and survival, in addition to its well-established role in DNA repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Shu-Uin Gan
- King's College London, London, N/A, United Kingdom
| | | | - Joop Gäken
- King's College London, London, N/A, United Kingdom
| | - Gwyn T Williams
- Life Sciences, Keele University, Keele, N/A, AT5 5AZ, United Kingdom
| | | |
Collapse
|
7
|
Sera Y, Yamasaki N, Oda H, Nagamachi A, Wolff L, Inukai T, Inaba T, Honda H. Identification of cooperative genes for E2A-PBX1 to develop acute lymphoblastic leukemia. Cancer Sci 2016; 107:890-8. [PMID: 27088431 PMCID: PMC4946715 DOI: 10.1111/cas.12945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/22/2016] [Accepted: 04/09/2016] [Indexed: 12/26/2022] Open
Abstract
E2A-PBX1 is a chimeric gene product detected in t(1;19)-bearing acute lymphoblastic leukemia (ALL) with B-cell lineage. To investigate the leukemogenic process, we generated conditional knock-in (cKI) mice for E2A-PBX1, in which E2A-PBX1 is inducibly expressed under the control of the endogenous E2A promoter. Despite the induced expression of E2A-PBX1, no hematopoietic disease was observed, strongly suggesting that additional genetic alterations are required to develop leukemia. To address this possibility, retroviral insertional mutagenesis was used. Virus infection efficiently induced T-cell, B-cell, and biphenotypic ALL in E2A-PBX1 cKI mice. Inverse PCR identified eight retroviral common integration sites, in which enhanced expression was observed in the Gfi1, Mycn, and Pim1 genes. In addition, it is of note that viral integration and overexpression of the Zfp521 gene was detected in one tumor with B-cell lineage; we previously identified Zfp521 as a cooperative gene with E2A-HLF, another E2A-involving fusion gene with B-lineage ALL. The cooperative oncogenicity of E2A-PBX1 with overexpressed Zfp521 in B-cell tumorigenesis was indicated by the finding that E2A-PBX1 cKI, Zfp521 transgenic compound mice developed B-lineage ALL. Moreover, upregulation of ZNF521, the human counterpart of Zfp521, was found in several human leukemic cell lines bearing t(1;19). These results indicate that E2A-PBX1 cooperates with additional gene alterations to develop ALL. Among them, enhanced expression of ZNF521 may play a clinically relevant role in E2A fusion genes to develop B-lineage ALL.
Collapse
Affiliation(s)
- Yasuyuki Sera
- Department of Disease ModelResearch Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Norimasa Yamasaki
- Department of Disease ModelResearch Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Hideaki Oda
- Department of PathologyTokyo Women's Medical UniversityTokyoJapan
| | - Akiko Nagamachi
- Department of Molecular OncologyResearch Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Linda Wolff
- Laboratory of Cellular OncologyCenter for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Takeshi Inukai
- Department of PediatricsFaculty of MedicineUniversity of YamanashiYamanashiJapan
| | - Toshiya Inaba
- Department of Molecular OncologyResearch Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Hiroaki Honda
- Department of Disease ModelResearch Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| |
Collapse
|
8
|
Zhou B, Osinski JM, Mateo JL, Martynoga B, Sim FJ, Campbell CE, Guillemot F, Piper M, Gronostajski RM. Loss of NFIX Transcription Factor Biases Postnatal Neural Stem/Progenitor Cells Toward Oligodendrogenesis. Stem Cells Dev 2015; 24:2114-26. [DOI: 10.1089/scd.2015.0136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Bo Zhou
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Jason M. Osinski
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Juan L. Mateo
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ben Martynoga
- Division of Molecular Neurobiology, MRC, London, United Kingdom
| | - Fraser J. Sim
- Department of Genetics, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| | - Christine E. Campbell
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | | | - Michael Piper
- School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Richard M. Gronostajski
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Genetics, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
9
|
Lentiviral vector system for coordinated constitutive and drug controlled tetracycline-regulated gene co-expression. Biomaterials 2015; 63:189-201. [DOI: 10.1016/j.biomaterials.2015.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022]
|
10
|
Affiliation(s)
| | - Christian Joerg Braun
- Ludwig-Maximilians University Munich, Dr von Hauner Children's Hospital, Munich, Germany
| | - Kaan Boztug
- Hannover Medical School, Department of Pediatric Hematology/Oncology, Munich, Germany
| | - Christoph Klein
- Ludwig-Maximilians University Munich, Dr von Hauner Children's Hospital, Munich, Germany
| |
Collapse
|
11
|
Yokoyama T, Nakamura T. Tribbles in disease: Signaling pathways important for cellular function and neoplastic transformation. Cancer Sci 2011; 102:1115-22. [PMID: 21338441 DOI: 10.1111/j.1349-7006.2011.01914.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tribbles family of genes encodes pseudokinase proteins that are highly conserved in evolution. Instead of direct phosphorylation of target proteins, tribbles act as adaptors in signaling pathways for important cellular processes. These include mitogen-activated protein kinase kinase (MAPKK), CCAAT/enhancer-binding protein (C/EBP), activating transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP). Trib1 and Trib2 have been identified as myeloid oncogenes, and both may be involved in human leukemia. Tribbles proteins are also involved in a series of non-neoplastic disorders including metabolic and neurological diseases. The RAS/mitogen-activated protein kinase (MAPK) pathway molecules (in particular MAPK/ERK kinase 1 (MEK1) and C/EBP transcription factors) include tribbles-binding proteins that are involved in leukemogenesis, and the role of Trib1 as a linker between MAPK signaling and C/EBP degradation is proposed. Although the molecular function of tribbles is still under investigation, the research on tribbles in cellular processes, homeostasis of organisms and human diseases will provide valuable information for therapy of cancer as well as non-neoplastic disorders.
Collapse
Affiliation(s)
- Takashi Yokoyama
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | |
Collapse
|
12
|
Abstract
Cytokine signaling is critical for proliferation, survival and differentiation of hematopoietic cell, and interleukin-3 (IL-3) is required for maintenance of many hematopoietic cell lines, such as BaF3. We have isolated apoptosis-resistant clones of BaF3 using retroviral insertional mutagenesis and the Xbp1 locus was identified as a retroviral integration site. Expression and splicing of the Xbp1 transcript was conserved in the resistant clone but was promptly disappeared on IL-3 withdrawal in parental BaF3. IL-3 stimulation of BaF3 cells enhanced Xbp1 promoter activity and induced phosphorylation of the endoplasmic reticulum stress sensor protein IRE1, resulting in the increase in Xbp1S that activates unfolded protein response. When downstream signaling from IL-3 was blocked by LY294002 and/or dn-Stat5, Xbp1 expression was downregulated and IRE1 phosphorylation was suppressed. Inhibition of IL-3 signaling as well as knockdown of Xbp1-induced apoptosis in BaF3 cells. In contrast, constitutive expression of Xbp1S protected BaF3 from apoptosis during IL-3 depletion. However, cell cycle arrest at the G1 stage was observed in BaF3 and myeloid differentiation was induced in IL-3-dependent 32Dcl3 cells. Expression of apoptosis-, cell cycle- and differentiation-related genes was modulated by Xbp1S expression. These results indicate that the proper transcriptional and splicing regulation of Xbp1 by IL-3 signaling is important in homeostasis of hematopoietic cells.
Collapse
|
13
|
Identification of Zfp521/ZNF521 as a cooperative gene for E2A-HLF to develop acute B-lineage leukemia. Oncogene 2010; 29:1963-75. [PMID: 20062079 DOI: 10.1038/onc.2009.475] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
E2A-hepatic leukemia factor (HLF) is a chimeric protein found in B-lineage acute lymphoblastic leukemia (ALL) with t(17;19). To analyze the leukemogenic process and to create model mice for t(17;19)-positive leukemia, we generated inducible knock-in (iKI) mice for E2A-HLF. Despite the induced expression of E2A-HLF in the hematopoietic tissues, no disease was developed during the long observation period, indicating that additional gene alterations are required to develop leukemia. To elucidate this process, E2A-HLF iKI and control littermates were subjected to retroviral insertional mutagenesis. Virus infection induced acute leukemias in E2A-HLF iKI mice with higher morbidity and mortality than in control mice. Inverse PCR detected three common integration sites specific for E2A-HLF iKI leukemic mice, which induced overexpression of zinc-finger transcription factors: growth factor independent 1 (Gfi1), zinc-finger protein subfamily 1A1 isoform a (Zfp1a1, also known as Ikaros) and zinc-finger protein 521 (Zfp521). Interestingly, tumors with Zfp521 integration exclusively showed B-lineage ALL, which corresponds to the phenotype of human t(17;19)-positive leukemia. In addition, ZNF521 (human counterpart of Zfp521) was found to be overexpressed in human leukemic cell lines harboring t(17;19). Moreover, both iKI for E2A-HLF and transgenic for Zfp521 mice frequently developed B-lineage ALL. These results indicate that a set of transcription factors promote leukemic transformation of E2A-HLF-expressing hematopoietic progenitors and suggest that aberrant expression of Zfp521/ZNF521 may be clinically relevant to t(17;19)-positive B-lineage ALL.
Collapse
|
14
|
Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood 2009; 115:1610-20. [PMID: 20008790 DOI: 10.1182/blood-2009-07-232249] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The RUNX1/AML1 gene is the most frequently mutated gene in human leukemia. Conditional deletion of Runx1 in adult mice results in an increase of hematopoietic stem cells (HSCs), which serve as target cells for leukemia; however, Runx1(-/-) mice do not develop spontaneous leukemia. Here we show that maintenance of Runx1(-/-) HSCs is compromised, progressively resulting in HSC exhaustion. In leukemia development, the stem cell exhaustion was rescued by additional genetic changes. Retroviral insertional mutagenesis revealed Evi5 activation as a cooperating genetic alteration and EVI5 overexpression indeed prevented Runx1(-/-) HSC exhaustion in mice. Moreover, EVI5 was frequently overexpressed in human RUNX1-related leukemias. These results provide insights into the mechanism for maintenance of pre-leukemic stem cells and may provide a novel direction for therapeutic applications.
Collapse
|
15
|
Tanaka M, Jin G, Yamazaki Y, Takahara T, Takuwa M, Nakamura T. Identification of candidate cooperative genes of the Apc mutation in transformation of the colon epithelial cell by retroviral insertional mutagenesis. Cancer Sci 2008; 99:979-85. [PMID: 18294281 PMCID: PMC11158175 DOI: 10.1111/j.1349-7006.2008.00757.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/06/2008] [Accepted: 01/07/2008] [Indexed: 12/18/2022] Open
Abstract
The mutation of Apc is an important early genetic event in colon carcinogenesis. However, it remains to be clarified what kinds of cooperative genes are required for complete carcinogenesis. To identify cooperative genes for the Apc(Min) mutation the authors carried out retroviral insertional mutagenesis (RIM) using Min mouse-derived IMCE colon epithelial cells. Anchorage-independent transformed colonies were induced by retroviral infection only in IMCE cells, while no transformation was found in young adult mouse colon (YAMC) cells that are normal for Apc. One hundred and fifty-seven retroviral integration sites (RIS) were identified in 101 independent transformants, and four common integration sites (CIS), Dnah3, Ahnak, Stk17b and Rbm9, were observed. Upregulation of Dnah3 and Ahnak, and truncation of Dnah3 due to the viral integration, was revealed. In addition, Dnah3-overexpressing IMCE cells showed impairment of microtubule function. These data suggest the importance of cytoskeletal function in Apc-related tumor development and the usefulness of RIM in non-hematopoietic tissues, providing new insight into the early stage of colon carcinogenesis.
Collapse
Affiliation(s)
- Miwa Tanaka
- Department of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Mizuno T, Yamasaki N, Miyazaki K, Tazaki T, Koller R, Oda H, Honda ZI, Ochi M, Wolff L, Honda H. Overexpression/enhanced kinase activity of BCR/ABL and altered expression of Notch1 induced acute leukemia in p210BCR/ABL transgenic mice. Oncogene 2008; 27:3465-74. [PMID: 18193087 DOI: 10.1038/sj.onc.1211007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic myelogenous leukemia (CML) is a hematopoietic disorder, which begins as indolent chronic phase but inevitably progresses to fatal blast crisis. p210BCR/ABL, a constitutively active tyrosine kinase, is responsible for disease initiation but molecular mechanism(s) underlying disease evolution remains largely unknown. To explore this process, we employed retroviral insertional mutagenesis to CML-exhibiting p210BCR/ABL transgenic mice (Tg). Virus infection induced acute lymphoblastic leukemia (ALL) in p210BCR/ABL Tg with a higher frequency and in a shorter latency than wild-type littermates, and inverse PCR detected two retrovirus common integration sites (CISs) in p210BCR/ABL Tg tumors. Interestingly, one CIS was the transgene itself, where retrovirus integrations induced upregulation of p210BCR/ABL and production of truncated BCR/ABL with an enhanced kinase activity. Another CIS was Notch1 gene, where retrovirus integrations resulted in overexpression of Notch1 and generation of Notch1 lacking the C-terminal region (Notch1DeltaC) associated with stable expression of its activated product, C-terminal-truncated Notch intracellular domain (NICD Delta C). In addition, generation of Tg for both p210BCR/ABL and Notch1DeltaC developed ALL in a shortened period with Stat5 activation, demonstrating the cooperative oncogenicity of Notch1DeltaC/NICD Delta C with p210BCR/ABL involving Stat5-mediated pathway. These results demonstrated that overexpression/enhanced kinase activity of BCR/ABL and altered expression of Notch1 induces acute leukemia in a transgenic model for CML.
Collapse
Affiliation(s)
- T Mizuno
- Department of Developmental Biology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jin G, Yamazaki Y, Takuwa M, Takahara T, Kaneko K, Kuwata T, Miyata S, Nakamura T. Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood 2007; 109:3998-4005. [PMID: 17227832 DOI: 10.1182/blood-2006-08-041202] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cooperative activation of Meis1 and Hoxa9 perturbs myeloid differentiation and eventually leads myeloid progenitors to leukemia, yet it remains to be clarified what kinds of subsequent molecular processes are required for development of overt leukemia. To understand the molecular pathway in Hoxa9/Meis1-induced leukemogenesis, retroviral insertional mutagenesis was applied using retrovirus-mediated gene transfer. The mice that received Hoxa9/Meis1-transduced bone marrow cells developed acute myeloid leukemia (AML), and Trib1, Evi1, Ahi1, Raralpha, Pitpnb, and AK039950 were identified as candidate cooperative genes located near common retroviral integration sites. Trib1 and Evi1 were up-regulated due to retroviral insertions, and coexpression of these genes significantly accelerated the onset of Hoxa9/Meis1-induced AML, suggesting that Trib1 and Evi1 are the key collaborators. Furthermore, Trib1 by itself is a novel myeloid oncogene, enhancing phosphorylation of ERK, resulting in inhibition of apoptosis. These results demonstrate the importance of specific oncogene interaction in myeloid leukemogenesis.
Collapse
Affiliation(s)
- Guang Jin
- Department of Carcinogenesis, The Cancer Institute, Genome Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pothlichet J, Mangeney M, Heidmann T. Mobility and integration sites of a murine C57BL/6 melanoma endogenous retrovirus involved in tumor progression in vivo. Int J Cancer 2006; 119:1869-77. [PMID: 16708391 DOI: 10.1002/ijc.22066] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tumor development is a multistep process in which both genetic and epigenetic events cooperate for the emergence of a malignant clone with metastatic properties. The possibility that endogenous retroviruses promote the expansion of a neoplastic clone by subverting immunosurveillance has been proposed and recently demonstrated in the case of the B16 murine melanoma, which spontaneously express the melanoma-associated retrovirus (MelARV). Indeed, knocking down, by RNA interference, this endogenous retrovirus resulted in the rejection of the tumor cells in immunocompetent mice, without any alteration of their transformed phenotype. Here, we characterize the MelARV proviruses present in the B16 melanoma. Complete sequencing of the viral genomic RNA and characterization of the integration sites within both the B16 tumor cells and a subline selected in vivo for increased metastatic activity disclosed mobility of the element with new proviral insertions targeting critical genes and altering their transcriptional profile. The results show that MelARV can act both at the genetic level, inducing mutations by insertion, and at the epigenetic level, promoting immunosuppression of the host. These properties may as well be relevant to human tumors, such as germline tumors and melanoma, where endogenous retroviruses are active.
Collapse
Affiliation(s)
- Julien Pothlichet
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, CNRS UMR 8122, Institut Gustave Roussy, Villejuif, France
| | | | | |
Collapse
|