1
|
5-Fluorouracil Conversion Pathway Mutations in Gastric Cancer. BIOLOGY 2020; 9:biology9090265. [PMID: 32887417 PMCID: PMC7563957 DOI: 10.3390/biology9090265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
To date, 5-Fluorouracil (5FU) is a major component of several chemotherapy regimens, thus its study is of fundamental importance to better understand all the causes that may lead to chemoresistance and treatment failure. Given the evident differences between prognosis in Asian and Caucasian populations, triggered by clear genetic discordances and given the extreme genetic heterogeneity of gastric cancer (GC), the evaluation of the most frequent mutations in every single member of the 5FU conversion and activation pathway might reveal several important results. Here, we exploited the cBioPortal analysis software to query a large databank of clinical and wide-genome studies to evaluate the components of the three major 5FU transformation pathways. We demonstrated that mutations in such ways were associated with a poor prognosis and reduced overall survival, often caused by a deletion in the TYMP gene and amplification in TYMS. The use of prodrugs and dihydropyrimidine dehydrogenase (DPD) inhibitors, which normally catabolizes 5FU into inactive metabolites, improved such chemotherapies, but several steps forward still need to be taken to select better therapies to target the chemoresistant pools of cells with high anaplastic features and genomic instability.
Collapse
|
2
|
Huang H, Zou Y, Zhang H, Li X, Li Y, Deng X, Sun H, Guo Z, Ao L. A qualitative transcriptional prognostic signature for patients with stage I-II pancreatic ductal adenocarcinoma. Transl Res 2020; 219:30-44. [PMID: 32119844 DOI: 10.1016/j.trsl.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 02/04/2023]
Abstract
Accurately prognostic evaluation of patients with stage I-II pancreatic ductal adenocarcinoma (PDAC) is of importance to treatment decision and patient management. Most previously reported prognostic signatures were based on risk scores summarized from quantitative expression measurements of signature genes, which are susceptible to experimental batch effects and impractical for clinical applications. Based on the within-sample relative expression orderings of genes, we developed a robust qualitative transcriptional prognostic signature, consisting of 64 gene pairs (64-GPS), to predict the overall survival (OS) of 161 stage I-II PDAC patients in the training dataset who were treated with surgery only. Samples were classified into the high-risk group when at least 25 of 64 gene pairs suggested it was at high risk. The signature was successfully validated in 324 samples from 6 independent datasets produced by different laboratories. All samples in the low-risk group had significantly better OS than samples in the high-risk group. Multivariate Cox regression analyses showed that the 64-GPS remained significantly associated with the OS of patients after adjusting available clinical factors. Transcriptomic analysis of the 2 prognostic subgroups showed that the differential expression signals were highly reproducible in all datasets, whereas the differences between samples grouped by the TNM staging system were weak and irreproducible. The epigenomic analysis showed that the epigenetic alternations may cause consistently transcriptional changes between the 2 different prognostic groups. The genomic analysis revealed that mutation‑induced disturbances in several key genes, such as LRMDA, MAPK10, and CREBBP, might lead to poor prognosis for PDAC patients. Conclusively, the 64-GPS can robustly predict the prognosis of patients with stage I-II PDAC, which provides theoretical basis for clinical individualized treatment.
Collapse
Affiliation(s)
- Haiyan Huang
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yi Zou
- Department of Automation and Key Laboratory of China MOE for System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China
| | - Huarong Zhang
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiang Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yawei Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xusheng Deng
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huaqin Sun
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zheng Guo
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou, China
| | - Lu Ao
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou, China.
| |
Collapse
|
3
|
Qiao LL, Yao WJ, Zhang ZQ, Yang X, Zhao MX. The Biological Activity Research of the Nano-Drugs Based on 5-Fluorouracil-Modified Quantum Dots. Int J Nanomedicine 2020; 15:2765-2776. [PMID: 32425520 PMCID: PMC7186888 DOI: 10.2147/ijn.s244693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Over the past decades, quantum dots (QDs) have shown the broad application in diverse fields, especially in intracellular probing and drug delivery, due to their high fluorescence intensity, long fluorescence lifetime, strong light-resistant bleaching ability, and strong light stability. Therefore, we explore a kind of therapeutic potential against cancer with fluorescent imaging. METHODS In the current study, a new type of QDs (QDs@L-Cys-TAEA-5-FUA) capped with L-cysteine (L-Cys) and tris(2-aminoethyl)amine (TAEA) ligands, and conjugated with 5-fluorouracil-1-acetic acid (5-FUA) has been synthesized. Ligands were characterized by electrospray ionization mass spectrometry and H-nuclear magnetic resonance (1H NMR) spectroscopy. The modified QDs were characterized by transmission electron microscopy, ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 HepG2, and QSG-7701 cells. The fluorescence imaging of modified QDs was obtained by fluorescence microscope. RESULTS The modified QDs are of controllable sizes in the range of 4-5 nm and they possess strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the L-Cys-TAEA-5-FUA was successfully incorporated into QD nanoparticles. The MTT results demonstrated that L-Cys-TAEA-5-FUA modified QDs could efficiently inhibit the proliferation of cancer cells as compared to the normal cells, illustrating their antitumor efficacy. The mechanistic studies revealed that the effective internalization of modified QDs inside cancer cells could inhibit their proliferation, through excessive production of intracellular reactive oxygen species, leading to apoptosis process. CONCLUSION The present study suggests that modified QDs can enter cells efficiently and could be employed as therapeutic agents for the treatment of various types of cancers with fluorescent imaging.
Collapse
Affiliation(s)
- Lu-Lu Qiao
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Wen-Jing Yao
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Zhi-Qiang Zhang
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| |
Collapse
|
4
|
Huang MY, Huang JJ, Huang CM, Lin CH, Tsai HL, Huang CW, Chai CY, Lin CY, Wang JY. Relationship Between Expression of Proteins ERCC1, ERCC2, and XRCC1 and Clinical Outcomes in Patients with Rectal Cancer Treated with FOLFOX-Based Preoperative Chemoradiotherapy. World J Surg 2018; 41:2884-2897. [PMID: 28608017 DOI: 10.1007/s00268-017-4070-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Platinum resistance enhances DNA damage repair through nucleotide excision repair mechanisms involving the excision repair cross-complementing group 1 (ERCC1), X-ray cross-complementing group 1 (XRCC1), and excision repair cross-complementing group 2 (ERCC2). We evaluated the correlation between the expression of these three DNA repair genes and clinical outcomes in patients with rectal cancer receiving FOLFOX-based preoperative chemoradiotherapy (CRT). METHODS Using immunohistochemistry, we examined the expression of ERCC1, ERCC2, and XRCC1 in pre-CRT cancer tissues from 86 patients with rectal cancer who had undergone curative resection and preoperative CRT with FOLFOX-4 to identify potential predictors of clinical outcomes. RESULTS Following CRT, 57 and 29 patients were classified as responders (pathological tumor regression grade TRG 0 and TRG 1) and poor responders (TRG 2 and TRG 3), respectively. The multivariate analysis revealed that ERCC1 overexpression was correlated with a poor CRT response [p < 0.0001; odds ratio (OR), 9.397; 95% confidence interval (CI) 2.721-32.457]. Furthermore, a poor response to CRT (pathological TRG of 2-3) (p = 0.18; OR 5.685; 95% CI 1.349-23.954) and abnormal pre-CRT serum carcinoembryonic antigen levels (>5 ng/mL) (p = 0.03; OR 6.288; 95% CI 1.198-33.006) were independent predictors of postoperative relapse. By contrast, ERCC2 and XRCC1 expression did not play predictive roles in the analyzed patients. CONCLUSIONS ERCC1 overexpression is associated with a poor preoperative CRT response in patients with rectal cancer receiving FOLFOX-based preoperative CRT. ERCC1 is a potential biomarker for identifying patients who can benefit from customized treatment programs.
Collapse
Affiliation(s)
- Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joh-Jong Huang
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chun-Ming Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Hung Lin
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yang Lin
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, No. 100 Tzyou 1st Road, Kaohsiung, 807, Taiwan.
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Surgery, Graduate Institute of Clinical Medicine, College of Medicine, Center for Natural products and Drug Development, Center for Biomarkers and Biotech Drugs and Center for Environmental Medicine, Kaohsiung Medical University, No. 100 Tzyou 1st Road, Kaohsiung, 807, Taiwan.
| |
Collapse
|
5
|
MATSUOKA HISASHI, KONDO KAZUYA, TAKIZAWA HIROMITSU, FUJINO HARUHIKO, SAKAMOTO ETSUKO, UCHIDA JUNJI, UYAMA KOH, TOBA HIROAKI, KENZAKI KOICHIRO, SAKIYAMA SHOJI, TANGOKU AKIRA. Comprehensive evaluation of the response of genes to the administration of the antitumor drug S-1 using a low density array. Int J Oncol 2014; 46:569-77. [DOI: 10.3892/ijo.2014.2754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/09/2014] [Indexed: 11/06/2022] Open
|
6
|
Lee H, Kim C, Ku JL, Kim W, Yoon SK, Kuh HJ, Lee JH, Nam SW, Lee EK. A long non-coding RNA snaR contributes to 5-fluorouracil resistance in human colon cancer cells. Mol Cells 2014; 37:540-6. [PMID: 25078450 PMCID: PMC4132306 DOI: 10.14348/molcells.2014.0151] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 12/11/2022] Open
Abstract
Several types of genetic and epigenetic regulation have been implicated in the development of drug resistance, one significant challenge for cancer therapy. Although changes in the expression of non-coding RNA are also responsible for drug resistance, the specific identities and roles of them remain to be elucidated. Long non-coding RNAs (lncRNAs) are a type of ncRNA (> 200 nt) that influence the regulation of gene expression in various ways. In this study, we aimed to identify differentially expressed lncRNAs in 5-fluorouracil-resistant colon cancer cells. Using two pairs of 5-FU-resistant cells derived from the human colon cancer cell lines SNU-C4 and SNU-C5, we analyzed the expression of 90 lncRNAs by qPCR-based profiling and found that 19 and 23 lncRNAs were differentially expressed in SNU-C4R and SNU-C5R cells, respectively. We confirmed that snaR and BACE1AS were downregulated in resistant cells. To further investigate the effects of snaR on cell growth, cell viability and cell cycle were analyzed after transfection of siRNAs targeting snaR. Down-regulation of snaR decreased cell death after 5-FU treatment, which indicates that snaR loss decreases in vitro sensitivity to 5-FU. Our results provide an important insight into the involvement of lncRNAs in 5-FU resistance in colon cancer cells.
Collapse
Affiliation(s)
- Heejin Lee
- Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Chongtae Kim
- Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Ja-Lok Ku
- Cancer Research Institute and Cancer Research Center, Seoul National University, Seoul 110-744, Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Sungjoo Kim Yoon
- Cancer Evolution Research Center, Catholic University of Korea, Seoul 137-701, Korea
- Department of Biomedical Science, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Hyo-Jeong Kuh
- Cancer Evolution Research Center, Catholic University of Korea, Seoul 137-701, Korea
- Department of Biomedical Science, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea
- Cancer Evolution Research Center, Catholic University of Korea, Seoul 137-701, Korea
| | - Suk Woo Nam
- Cancer Evolution Research Center, Catholic University of Korea, Seoul 137-701, Korea
- Department of Pathology, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea
- Cancer Evolution Research Center, Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
7
|
Kurokawa K, Tanahashi T, Iima T, Yamamoto Y, Akaike Y, Nishida K, Masuda K, Kuwano Y, Murakami Y, Fukushima M, Rokutan K. Role of miR-19b and its target mRNAs in 5-fluorouracil resistance in colon cancer cells. J Gastroenterol 2012; 47:883-95. [PMID: 22382630 DOI: 10.1007/s00535-012-0547-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/04/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Drug resistance in colorectal cancers is assumed to be mediated by changes in the expression of microRNAs, but the specific identities and roles of microRNAs are largely unclear. We examined the effect of 5-fluorouracil (5-FU) resistance on microRNA expression. METHODS Two types of 5-FU-resistant colon cancer cells were derived from the DLD-1 and KM12C cell lines. The expressions of microRNAs were profiled with a microarray containing 723 microRNAs and validated by quantitative real-time polymerase chain reaction (qRT-PCR). To survey the downstream mediators of microRNA, we used a microRNA:mRNA immunoprecipitation (RIP)-Chip and pathway analysis tool to identify potential direct targets of microRNA. RESULTS In response to 5-FU, miR-19b and miR-21 were over-expressed in 5-FU-resistant cells. Of note, miR-19b was up-regulated 3.47-fold in the DLD-1 resistant cells, which exhibited no alteration in cell cycle profiles despite exposure to 5-FU. After transfection of miR-19b, specific mRNAs were recruited to microRNA:mRNA complexes isolated with Ago2 antibody and subjected to whole-genome transcriptional analysis. In this analysis, 66 target mRNAs were enriched by at least 5.0-fold in the microRNA:mRNA complexes from DLD-1 resistant cells. Ingenuity pathway analysis of mRNA targets significantly (P < 0.05) indicated the category "Cell Cycle" as a probable area of the molecular and cellular function related with 5-FU resistance. Among candidate mRNA targets, SFPQ and MYBL2 have been linked to cell cycle functions. CONCLUSIONS We revealed up-regulation of miR-19b in response to 5-FU and potential targets of miR-19b mediating the cell cycle under treatment with 5-FU. Our study provides an important insight into the mechanism of 5-FU resistance in colorectal cancers.
Collapse
Affiliation(s)
- Ken Kurokawa
- Department of Stress Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nukatsuka M, Saito H, Nakagawa F, Tsujimoto H, Sakamoto K, Tsukioka S, Uchida J, Kiniwa M, Kobunai T, Takechi T. Combination therapy using oral S-1 and targeted agents against human tumor xenografts in nude mice. Exp Ther Med 2012; 3:755-762. [PMID: 22969964 DOI: 10.3892/etm.2012.484] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/13/2012] [Indexed: 12/15/2022] Open
Abstract
In this study, combination therapies using the oral fluoropyrimidine tegafur-gimeracil-oteracil (S-1) with several targeted agents or antibodies, were evaluated. First, the effects of tyrosine kinase inhibitors (erlotinib hydrochloride, sorafenib tosilate and sunitinib malate) against human non-small cell lung cancer (NSCLC), breast cancer and colorectal cancer were evaluated in vivo. The effects of the combination of S-1 and targeted antibodies (bevacizumab and cetuximab) against human colorectal cancers was also evaluated in vivo. S-1 and the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, erlotinib, showed a significant inhibition of growth in human NSCLC (Lu-99 and PC-9 cell lines). The antitumor activity of the combination of S-1 and erlotinib against Lu-99 and PC-9 cancer cell lines was significantly superior to either monotherapy (P<0.05). Combination therapy using the multi-tyrosine kinase inhibitors, sorafenib or sunitinib, with S-1 against breast cancer (MX-1 cell line) and NSCLC (NCI-H460 cell line) was significantly superior to either monotherapy (P<0.01). The combination of the anti-vascular endothelial growth factor antibody bevacizumab or the anti-EGFR antibody, cetuximab, with S-1 against human colorectal cancer [Col-1, KM20C (bevacizumab) and DLD-1 (cetuximab) cell lines] and a 5-fluorouracil (5-FU)-resistant cell line (KM12C/5-FU) was significantly superior to either monotherapy (p<0.01). In particular, the growth of the Col-1 cells was completely inhibited by the combination of S-1 and bevacizumab. No toxic mortalities and no significant difference in the body weight changes of the animals treated with S-1 combined with the targeted agents or with the mono-therapies were observed; therefore, the treatments appeared to be well-tolerated. Our preclinical findings indicate that the combination therapies of S-1 and targeted agents are promising treatment options.
Collapse
Affiliation(s)
- Mamoru Nukatsuka
- Oncology Medical Affairs Division, Taiho Pharmaceutical Co., Ltd., Tokushima 771-0194
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wan P, Li Q, Larsen JEP, Eklund AC, Parlesak A, Rigina O, Nielsen SJ, Björkling F, Jónsdóttir SÓ. Prediction of drug efficacy for cancer treatment based on comparative analysis of chemosensitivity and gene expression data. Bioorg Med Chem 2011; 20:167-76. [PMID: 22154557 DOI: 10.1016/j.bmc.2011.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 11/06/2011] [Accepted: 11/11/2011] [Indexed: 01/24/2023]
Abstract
The NCI60 database is the largest available collection of compounds with measured anti-cancer activity. The strengths and limitations for using the NCI60 database as a source of new anti-cancer agents are explored and discussed in relation to previous studies. We selected a sub-set of 2333 compounds with reliable experimental half maximum growth inhibitions (GI(50)) values for 30 cell lines from the NCI60 data set and evaluated their growth inhibitory effect (chemosensitivity) with respect to tissue of origin. This was done by identifying natural clusters in the chemosensitivity data set and in a data set of expression profiles of 1901 genes for the corresponding tumor cell lines. Five clusters were identified based on the gene expression data using self-organizing maps (SOM), comprising leukemia, melanoma, ovarian and prostate, basal breast, and luminal breast cancer cells, respectively. The strong difference in gene expression between basal and luminal breast cancer cells was reflected clearly in the chemosensitivity data. Although most compounds in the data set were of low potency, high efficacy compounds that showed specificity with respect to tissue of origin could be found. Furthermore, eight potential topoisomerase II inhibitors were identified using a structural similarity search. Finally, a set of genes with expression profiles that were significantly correlated with anti-cancer drug activity was identified. Our study demonstrates that the combined data sets, which provide comprehensive information on drug activity and gene expression profiles of tumor cell lines studied, are useful for identifying potential new active compounds.
Collapse
Affiliation(s)
- Peng Wan
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Bldg. 208, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Auman JT, McLeod HL. Colorectal Cancer Cell Lines Lack the Molecular Heterogeneity of Clinical Colorectal Tumors. Clin Colorectal Cancer 2010; 9:40-7. [DOI: 10.3816/ccc.2010.n.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Anti-angiogenic effect of 5-Fluorouracil-based drugs against human colon cancer xenografts. Cancer Lett 2008; 267:26-36. [PMID: 18420342 DOI: 10.1016/j.canlet.2008.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/17/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
In addition to the direct cytotoxic effects of chemotherapy agents on tumor cells, the anti-angiogenic activities attained by these agents by targeting proliferating endothelial cells in tumor blood vessels has attracted much research interest. In this study, we examined the antitumor activity of 5-Fluorouracil (5-FU)-based drugs (S-1 [1M tegafur, 0.4M 5-chloro-2,4-dihydroxypyridine and 1M potassium oxonate] and capecitabine) on human colorectal cancer xenografts and evaluated their anti-angiogenic effects. Both drugs showed significant antitumor activities against COL-1 xenografts at a sub-maximum tolerated dose (sub-MTD), which was lower than the maximum tolerated dose (MTD). At the sub-MTD, a significant reduction in the microvessel number and the enhancement of tumor-associated microvessel endothelial cell apoptosis was seen in xenografts treated with S-1. In addition, we found that thrombospondin-1 (TSP-1) expression, known to be a mediator of the anti-angiogenic effects of metronomic chemotherapy, was significantly up-regulated in xenograft tumor tissues and plasma in animals treated with S-1 at a sub-MTD. Capecitabine also showed a trend toward the induction of TSP-1. These results suggest that 5-FU-based drugs inhibit tumor progression through different modes of action, including cytotoxic activity derived from 5-FU and the inhibition of angiogenesis through the induction of TSP-1.
Collapse
|
12
|
Sakamoto E, Nagase H, Kobunai T, Oie S, Oka T, Fukushima M, Oka T. Orotate phosphoribosyltransferase expression level in tumors is a potential determinant of the efficacy of 5-fluorouracil. Biochem Biophys Res Commun 2007; 363:216-22. [PMID: 17854773 DOI: 10.1016/j.bbrc.2007.08.164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 08/24/2007] [Indexed: 11/19/2022]
Abstract
Although the intratumoral expression levels of thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) are known to affect the antitumor activity of 5-fluorouracil (5-FU), the importance of orotate phosphoribosyltransferase (OPRT) has remained unclear. This study investigated the relationship between intratumoral OPRT expression and the antitumor activity of 5-FU using human NCI60 cell lines with similar levels of TS and DPD messenger RNAs, as well as 31 tumor xenografts. The OPRT mRNA level was positively correlated with the 5-FU efficacy in these cell lines. In vitro, the 50% growth-inhibitory concentrations of 5-FU were closely correlated with the OPRT mRNA levels in cancer cell lines with similar levels of TS mRNAs when combined with a DPD inhibitor. Moreover, downregulation of OPRT with small-interfering RNA decreased the sensitivities of the cultured tumor cells to 5-FU. These results suggest that the OPRT expression level in tumors is an additional determinant of the efficacy of 5-FU.
Collapse
Affiliation(s)
- Etsuko Sakamoto
- Personalized Medicine Research Laboratory, Taiho Pharmaceutical Co., Ltd., 224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Minna JD, Girard L, Xie Y. Tumor mRNA Expression Profiles Predict Responses to Chemotherapy. J Clin Oncol 2007; 25:4329-36. [PMID: 17906194 DOI: 10.1200/jco.2007.12.3968] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Ooyama A, Okayama Y, Takechi T, Sugimoto Y, Oka T, Fukushima M. Genome-wide screening of loci associated with drug resistance to 5-fluorouracil-based drugs. Cancer Sci 2007; 98:577-83. [PMID: 17425594 PMCID: PMC11158905 DOI: 10.1111/j.1349-7006.2007.00424.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Resistance to chemotherapeutic agents represents the chief cause of mortality in cancer patients with advanced disease. Chromosomal aberration and altered gene expression are the main genetic mechanisms of tumor chemoresistance. In this study, we have established an algorithm to calculate DNA copy number using the Affymetrix 10K array, and performed a genome-wide correlation analysis between DNA copy number and antitumor activity against 5-fluorouracil (5-FU)-based drugs (S-1, tegafur + uracil [UFT], 5'-DFUR and capecitabine) to screen for loci influencing drug resistance using 27 human cancer xenografts. A correlation analysis confirmed that the single nucleotide polymorphism (SNP) showing significant associations with drug sensitivity were concentrated in some cytogenetic regions (18p, 17p13.2, 17p12, 11q14.1, 11q11 and 11p11.12), and we identified some genes that have been indicated their relations to drug sensitivity. Among these regions, 18p11.32 at the location of the thymidylate synthase gene (TYMS) was strongly associated with resistance to 5-FU-based drugs. A change in copy number of the TYMS gene was reflected in the TYMS expression level, and showed a significant negative correlation with sensitivity against 5-FU-based drugs. These results suggest that amplification of the TYMS gene is associated with innate resistance, supporting the possibility that TYMS copy number might be a predictive marker of drug sensitivity to fluoropyrimidines. Further study is necessary to clarify the functional roles of other genes coded in significant cytogenetic regions. These promising data suggest that a comprehensive DNA copy number analysis might aid in the quest for optimal markers of drug response.
Collapse
Affiliation(s)
- Akio Ooyama
- Personalized Medicine Research Laboratory, Taiho Pharmaceutical Co., 224-2 Ebisuno, Hiraishi, Kawauchi-cho Tokushima, 711-0194, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Kobunai T, Ooyama A, Sasaki S, Wierzba K, Takechi T, Fukushima M, Watanabe T, Nagawa H. Changes to the dihydropyrimidine dehydrogenase gene copy number influence the susceptibility of cancers to 5-FU-based drugs: Data mining of the NCI-DTP data sets and validation with human tumour xenografts. Eur J Cancer 2007; 43:791-8. [PMID: 17254767 DOI: 10.1016/j.ejca.2006.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/22/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
Patient response to the anti-tumour drug 5-fluorouracil (5-FU) is variable, but predicting the response rate is important for the selection of effective chemotherapy. Our aim was to identify alterations in DNA copy number that influence susceptibility of cancer cells to 5-FU-based drugs. The NCI public database was used to identify chromosome loci associated with drug sensitivity and DNA copy number. One of the 11 candidates, the cytogenetic band 1p21.3, harbours the dihydropyrimidine dehydrogenase (DPD) gene. To validate this finding, the DPD copy number and in vivo sensitivity to 5-FU-based drugs were determined in 31 human tumour xenografts. Those xenografts demonstrating low sensitivity had significantly higher DPD copy numbers than highly sensitive tumours (P<0.002). Moreover, DPD mRNA expression levels were significantly correlated with DPD copy numbers (P<0.046). An assessment of copy number may be a more precise method of predicting the sensitivity of cancer patients to 5-FU related drugs.
Collapse
Affiliation(s)
- Takashi Kobunai
- Department of Systematic Clinical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | |
Collapse
|