1
|
Shariat Razavi F, Kouchak M, Sistani Karampour N, Mahdavinia M, Nazari Khorasgani Z, Rezaie A, Rahbar N. AS1411aptamer conjugated liposomes for targeted delivery of arsenic trioxide in mouse xenograft model of melanoma cancer. J Liposome Res 2024; 34:288-302. [PMID: 37843918 DOI: 10.1080/08982104.2023.2271046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Development of AS1411aptamer-conjugated liposomes for targeted delivery of arsenic trioxide is the primary goal of this study. AS1411aptamer was used as ligand to target nucleolin, which is highly expressed on the surface of melanoma cancer cells. The targeted liposomes were constructed by the thin film method, and arsenic trioxide was loaded as cobalt (II) hydrogen arsenite (CHA) to increase the loading efficiency and stability of the liposomes. The liposomal structure was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and field emission scanning electron microscopy (FESEM). In addition, particle sizes and zeta potential of the CHA-loaded liposomes (CHAL) and aptamer-functionalized CHA-loaded liposomes (AP-CHAL) were determined. In vitro cytotoxicity of CHAL and AP-CHAL were evaluated using MTT assay in murine melanoma (B16) and mouse embryonic fibroblast (MEF) cell lines. The encapsulation efficiency of CHAL and AP-CHAL was reported as 60.2 ± 6.5% and 58.7 ± 4.2%, respectively. In vivo antitumor activity of CHAL and AP-CHAL in the B16 tumor-xenograft mouse model was dramatically observed. All mice of both groups survived until the end of treatment and showed body weight gain. The tumor protrusion completely disappeared in 50% of the mice in these groups. Furthermore, histopathology studies demonstrated that CHAL and AP-CHAL did not induce significant toxicity in healthy mice tissues. However, unlike the CHAL group, which showed an initial increase in tumor volume, a specific antitumor effect was observed in the AP-CHAL group from the beginning of treatment. The results showed that AP-CHAL can be used as an effective drug delivery system with high potential in the treatment of solid tumors.
Collapse
Affiliation(s)
- Fatemeh Shariat Razavi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Sistani Karampour
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Nazari Khorasgani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Annahita Rezaie
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Liang Y, An Q, Song H, Tang Y, Xiao S, Wu J, Yan N, Yu B, Cao X, Lu M. AcGlcAs: A Novel P53-Targeting Arsenical with Potent Cellular Uptake and Cancer Cell Selectivity. J Med Chem 2023; 66:16579-16596. [PMID: 38069817 DOI: 10.1021/acs.jmedchem.3c00104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Arsenic trioxide (ATO) targets PML/RARα and leads to miraculous success in treating acute promyelocytic leukemia. Notably, ATO also targets p53, the most frequently mutated protein in cancers, through a similar binding mechanism. However, p53-targeting ATO trials are challenging due to the poor cellular uptake and cancer selectivity of ATO. Here, we analyzed the structure-activity relationship of arsenicals and rationally developed a novel arsenical (designated AcGlcAs) by conjugating arsenic to sulfur atoms and tetraacetyl-β-d-thioglucose. AcGlcAs exhibited remarkable cellular uptake through a thiol-mediated pathway (maximally 127-fold higher than ATO), thereby potently targeting PML/RARα and mutant p53. Among the 55 tested cell lines, AcGlcAs preferentially killed cancer lines rather than normal lines. In preclinical studies, AcGlcAs significantly extended the survival of mice bearing a xenograft tumor with p53 mutation while showing high plasma stability and oral bioavailability. Thus, AcGlcAs is a potential clinical candidate for precisely treating numerous p53-mutated cancers.
Collapse
Affiliation(s)
- Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Quanlin An
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination Therapy as a Promising Way to Fight Oral Cancer. Pharmaceutics 2023; 15:1653. [PMID: 37376101 PMCID: PMC10301495 DOI: 10.3390/pharmaceutics15061653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a highly aggressive tumor with invasive properties that can lead to metastasis and high mortality rates. Conventional treatment strategies, such as surgery, chemotherapy, and radiation therapy, alone or in combination, are associated with significant side effects. Currently, combination therapy has become the standard practice for the treatment of locally advanced oral cancer, emerging as an effective approach in improving outcomes. In this review, we present an in-depth analysis of the current advancements in combination therapies for oral cancer. The review explores the current therapeutic options and highlights the limitations of monotherapy approaches. It then focuses on combinatorial approaches that target microtubules, as well as various signaling pathway components implicated in oral cancer progression, namely, DNA repair players, the epidermal growth factor receptor, cyclin-dependent kinases, epigenetic readers, and immune checkpoint proteins. The review discusses the rationale behind combining different agents and examines the preclinical and clinical evidence supporting the effectiveness of these combinations, emphasizing their ability to enhance treatment response and overcome drug resistance. Challenges and limitations associated with combination therapy are discussed, including potential toxicity and the need for personalized treatment approaches. A future perspective is also provided to highlight the existing challenges and possible resolutions toward the clinical translation of current oral cancer therapies.
Collapse
Affiliation(s)
- João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
4
|
Hypoxic Hepatocellular Carcinoma Cells Acquire Arsenic Trioxide Resistance by Upregulating HIF-1α Expression. Dig Dis Sci 2022; 67:3806-3816. [PMID: 34383201 DOI: 10.1007/s10620-021-07202-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although arsenic trioxide (ATO) is used in the treatment of advanced hepatocellular carcinoma (HCC) in clinical trials, it is not satisfactory in terms of improving HCC patients' overall survival. Intratumoral hypoxia and overexpression of hypoxia-inducible factor-1α (HIF-1α) may result in ATO resistance and tumor progression. AIMS We investigated the mechanisms involving HIF-1α expression and acquired ATO chemoresistance in HCC cells and mice. METHODS The therapeutic effects of ATO in normoxic and hypoxic HCC cells were assessed using cell viability and apoptosis assays in vitro and a xenograft model in vivo. mRNA and protein expression of HIF-1α, P-glycoprotein, and VEGF were measured by qRT-PCR and western blotting. HIF-1α inhibition was performed to investigate the mechanism of ATO resistance. VEGF secretion was tested using ELISA and tube formation assays. RESULTS Compared to normoxic cells, hypoxic HCC cells were more resistant to ATO, with higher IC50 values and less apoptosis, and upregulated HIF-1α protein expression, accompanied with the enhancement of P-glycoprotein and VEGF synthesis after ATO treatment. VEGF secretion was elevated in the supernatant of ATO-treated HCC cells, and this change can potentiate angiogenesis in vitro. HIF-1α inhibition attenuated ATO resistance and angiogenesis and promoted the anticancer effects of ATO both in vitro and in vivo by downregulating therapy-induced P-glycoprotein and VEGF overexpression. CONCLUSIONS Hypoxic HCC cells acquire ATO resistance by upregulating HIF-1α levels; thus, combining ATO with a HIF-1α-targeting agent may lead to enhanced antitumor effects in HCC.
Collapse
|
5
|
Dong S, Li Z, Kong J, Wu S, Gao J, Sun W. Arsenic trioxide inhibits angiogenesis of hepatocellular carcinoma after insufficient radiofrequency ablation via blocking paracrine angiopoietin-1 and angiopoietin-2. Int J Hyperthermia 2022; 39:888-896. [PMID: 35848416 DOI: 10.1080/02656736.2022.2093995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES Angiogenesis occurs during tumor progression of hepatocellular carcinoma (HCC) after insufficient radiofrequency ablation (RFA). Arsenic trioxide (ATO) shows promising therapeutic potential in advanced HCC. Whether ATO regulates angiogenesis and can be used to prevent tumor progression in HCC after insufficient RFA is still unknown. METHODS Insufficient RFA was simulated using a water bath. MTT assay and tube formation assay were used to evaluate the effects of ATO on viability and proangiogenic abilities of SMMC7721 and HepG2 cells after insufficient RFA in vitro. The molecular changes with the treatment of ATO were evaluated through Western blot. An ectopic nude mice model was used to evaluate the effect of ATO on the tumor of SMMC7721 cells in vivo after insufficient RFA. RESULTS In this study, HepG2 and SMMC7721 cells after insufficient RFA (named HepG2-H and SMMC7721-H, respectively) showed higher proliferation than the untreated cells and promoted tube formation of endothelial cells in a paracrine manner. ATO eliminated the difference in proliferation between untreated and RFA-treated cells and suppressed angiogenesis induced by HCC cells after insufficient RFA through the Ang-1 (angiopoietin-1)/Ang-2 (angiopoietin-2)/Tie2 pathway. Hif-1α overexpression abolished the inhibitory effect of ATO on angiogenesis in HCC after insufficient RFA. ATO inhibited tumor growth and angiogenesis in HCC after insufficient RFA. CONCLUSIONS Our results demonstrate that ATO blocks the paracrine signaling of Ang-1 and Ang-2 by inhibiting p-Akt/Hif-1α and further suppresses the angiogenesis of HCC after insufficient RFA.
Collapse
Affiliation(s)
- Shuying Dong
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Zhuxin Li
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Shilun Wu
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jun Gao
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Chen X, Huang Y, Chen H, Chen Z, Chen J, Wang H, Li D, Su Z. Augmented EPR effect post IRFA to enhance the therapeutic efficacy of arsenic loaded ZIF-8 nanoparticles on residual HCC progression. J Nanobiotechnology 2022; 20:34. [PMID: 35033089 PMCID: PMC8760822 DOI: 10.1186/s12951-021-01161-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Insufficient radiofrequency ablation (IRFA) can promote the local recurrence and distal metastasis of residual hepatocellular carcinoma (HCC), which makes clinical treatment extremely challenging. In this study, the malignant transition of residual tumors after IRFA was explored. Then, arsenic-loaded zeolitic imidazolate framework-8 nanoparticles (As@ZIF-8 NPs) were constructed, and their therapeutic effect on residual tumors was studied. RESULTS Our data showed that IRFA can dramatically promote the proliferation, induce the metastasis, activate the epithelial-mesenchymal transition (EMT) and accelerate the angiogenesis of residual tumors. Interestingly, we found, for the first time, that extensive angiogenesis after IRFA can augment the enhanced permeability and retention (EPR) effect and enhance the enrichment of ZIF-8 nanocarriers in residual tumors. Encouraged by this unique finding, we successfully prepared As@ZIF-8 NPs with good biocompatibility and confirmed that they were more effective than free arsenic trioxide (ATO) in sublethal heat-induced cell proliferation suppression, apoptosis induction, cell migration and invasion inhibition, and EMT reversal in vitro. Furthermore, compared with free ATO, As@ZIF-8 NPs exhibited remarkably increased therapeutic effects by repressing residual tumor growth and metastasis in vivo. CONCLUSIONS This work provides a new paradigm for the treatment of residual HCC after IRFA.
Collapse
Affiliation(s)
- Xuehua Chen
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yongquan Huang
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Hui Chen
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Ziman Chen
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Jiaxin Chen
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Hao Wang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Zhongzhen Su
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China. .,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
7
|
Li Z, Zheng M, Zhang H, Yang X, Fan L, Fu F, Fu J, Niu R, Yan M, Zhang S. Arsenic Trioxide Promotes Tumor Progression by Inducing the Formation of PGCCs and Embryonic Hemoglobin in Colon Cancer Cells. Front Oncol 2021; 11:720814. [PMID: 34676163 PMCID: PMC8523995 DOI: 10.3389/fonc.2021.720814] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Arsenic trioxide (ATO) has been used to treat acute promyelocytic leukemia. However, it is not effective in treating solid tumors such as colorectal cancer. We have previously reported that polyploid giant cancer cells (PGCCs) exhibiting the characteristics of cancer stem cells can be generated by various inducers. In this study, ATO was used to induce the formation of PGCCs in LoVo and Hct116 colon cancer cell lines. The migration, invasion, and proliferation abilities of colon cancer cells with and without ATO treatment were assessed by wound-healing, transwell, and plate colony formation assays. The expression of epithelial to mesenchymal transition-related proteins and erythroid differentiation-related proteins in colon cancer cells was further evaluated by western blot and immunocytochemical assays. LoVo and Hct116 cells were transfected with a eukaryotic expression vector for green fluorescent protein (GFP), red fluorescent protein (RFP), H2B-GFP, and H2B-mCherry to study PGCCs formation via cell fusion. WB and ICC assays were performed to assess the expression of cell fusion-related proteins. MG132, small interfering RNA-glial cell missing 1 (GCM1), and chromatin immunoprecipitation-polymerase chain reaction assays were performed to study the role of GCM1/syncytin-1-mediated cell fusion. Clinically, the significance of cell fusion-related proteins and erythroid differentiation-related proteins expression in human colorectal cancer tissues was evaluated. Results of our study showed that ATO induced the formation of PGCCs, and the daughter cells derived from PGCCs gained a mesenchymal phenotype and exhibited strong migration, invasion, and proliferation abilities. PGCCs also produced embryonic hemoglobin-delta and -zeta with strong oxygen-binding ability and erythroid differentiation-related proteins after ATO treatment. In addition, cell fusion was observed during the formation of PGCCs, indicated by the presence of yellow fluorescence via the GCM1/syncytin-1 signaling pathway. Clinically, the expression of cell fusion-related and erythroid differentiation-related proteins gradually increased with the progression of human colorectal cancer tissues. In conclusion, ATO can promote tumor progression by inducing the formation of PGCCs via GCM1/syncytin-1-mediated cell fusion. PGCCs can produce daughter cells with high invasion and migration abilities and embryonic hemoglobin with strong oxygen binding ability, promoting survival of tumor cells in a hypoxic microenvironment.
Collapse
Affiliation(s)
- Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangmei Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
8
|
Resveratrol attenuates arsenic-induced cognitive deficits via modulation of Estrogen-NMDAR-BDNF signalling pathway in female mouse hippocampus. Psychopharmacology (Berl) 2021; 238:2485-2502. [PMID: 34050381 DOI: 10.1007/s00213-021-05871-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic inorganic arsenic (iAs) exposure induces deleterious effects on CNS including oxidative stress, cognitive deficits and altered brain neurochemistry. Little is known about the association between iAs and estrogen receptor expression in brain regions. AIMS AND OBJECTIVES Owing to the neuroprotective and estrogenic activities of resveratrol (RES), we examined the combined effects of arsenic trioxide (As2O3) and RES on neurobehavioural functions, estrogen signalling and associated neurochemical changes in mouse hippocampus. MATERIALS AND METHODS As2O3 alone (2 and 4 mg/kg bw) or along with RES (40 mg/kg bw) was administered orally for 45 days to adult female mice. From days 33 to 45, open field, elevated plus maze and Morris water maze tests were conducted to evaluate locomotion, anxiety and learning and memory. On day 46, animals were euthanized and brain tissue and hippocampi obtained therefrom were processed for atomic absorption spectrophotometry and western blotting respectively. RESULTS As2O3 alone exposure resulted in enhanced anxiety levels, reduced locomotion and impaired learning and memory. As2O3-induced behavioural deficits were accompanied by downregulation of estrogen receptor (ERα) expression with a concomitant reduction of BDNF and NMDAR 2B levels in the hippocampus. However, the behavioural alterations and expression of these markers were restored in RES-supplemented mice. Moreover, a dose-dependent iAs accumulation was observed in serum and brain tissues of mice receiving As2O3 alone whereas simultaneous administration of As2O3 with RES facilitated iAs efflux. CONCLUSIONS These results suggest that reduced ERα expression with associated downregulation of BDNF and NMDAR 2B levels could be a mechanism by which iAs induces cognitive impairment; hence, the modulation of estrogen-NMDAR-BDNF pathway by RES represents a potential avenue to recover behavioural deficits induced by this neurotoxin.
Collapse
|
9
|
Chowdhury MMH, Salazar CJJ, Nurunnabi M. Recent advances in bionanomaterials for liver cancer diagnosis and treatment. Biomater Sci 2021; 9:4821-4842. [PMID: 34032223 DOI: 10.1039/d1bm00167a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to the World Health Organization, liver cancer is the fourth leading cause of cancer associated with death worldwide. It demands effective treatment and diagnostic strategies to hinder its recurrence, complexities, aggressive metastasis and late diagnosis. With recent progress in nanotechnology, several nanoparticle-based diagnostic and therapeutic modalities have entered into clinical trials. With further developments in nanoparticle mediated liver cancer diagnosis and treatment, the approach holds promise for improved clinical liver cancer management. In this review, we discuss the key advances in nanoparticles that have potential for liver cancer diagnosis and treatment. We also discuss the potential of nanoparticles to overcome the limitations of existing therapeutic modalities.
Collapse
Affiliation(s)
- Mohammed Mehadi Hassan Chowdhury
- School of Medicine, Faculty of Health, Deakin University, 75 Pigdons Road, Waurnponds, Vic-3216, Australia and Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | | | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, TX 79968, USA. and Biomedical Engineering, University of Texas at El Paso, TX 79968, USA and Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA and Border Biomedical Research Center, University of Texas at El Paso, TX 79968, USA
| |
Collapse
|
10
|
Samanta J, Mondal A, Saha S, Chakraborty S, Sengupta A. Oleic Acid Protects from Arsenic-Induced Cardiac Hypertrophy via AMPK/FoxO/NFATc3 Pathway. Cardiovasc Toxicol 2020; 20:261-280. [PMID: 31571030 DOI: 10.1007/s12012-019-09550-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arsenic toxicity is one of the major environmental problems causing various diseases, cardiovascular disorders is one of them. Several epidemiological studies have shown that arsenic causes cardiac hypertrophy but the detailed molecular mechanism is to be studied yet. This study is designed to determine the molecules involved in the augmentation of arsenic-induced cardiac hypertrophy. Furthermore, the effects of oleic acid on arsenic-induced hypertrophy and cardiac injury have also been investigated. Our results show that arsenic induces cardiac hypertrophy both in vivo in mice and in vitro in rat H9c2 cardiomyocytes. Moreover, arsenic results in decreased activity of AMPK and FoxO1 along with increased NFATc3 expression, a known cardiac hypertrophy inducer. In addition, activation of AMPK and FoxO1 results in reduced NFATc3 expression causing attenuation of arsenic-induced cardiac hypertrophy in H9c2 cells. Interestingly, we have observed that oleic acid helps in ameliorating cardiac hypertrophy in arsenic-exposed mice. Our studies on protection from arsenic-induced cardiac hypertrophy by oleic acid in H9c2 cells shows that oleic acid activates AMPK along with increased nuclear FoxO1 localization, thereby reducing NFATc3 expression and attenuating cardiomyocyte hypertrophy. This study will help in finding out new avenues in treating arsenic-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Jayeeta Samanta
- Department of Life science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Arunima Mondal
- Department of Life science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Srimoyee Saha
- Department of Physics, Jadavpur University, Kolkata, India
| | | | - Arunima Sengupta
- Department of Life science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
11
|
Wang QQ, Jiang Y, Naranmandura H. Therapeutic strategy of arsenic trioxide in the fight against cancers and other diseases. Metallomics 2020; 12:326-336. [PMID: 32163072 DOI: 10.1039/c9mt00308h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arsenic trioxide (ATO) has been recognized as a drug for the treatment of various diseases in traditional medicine for more than two thousand years. Although ATO has recently shown excellent efficacy for the treatment of acute promyelocytic leukemia (APL), it could not provide satisfactory outcomes as a single-agent for the management of non-APL leukemia or different solid tumors. Nevertheless, combination treatment strategies, e.g., ATO with other agents, have shown promising results against different diseases. Here, we introduce in depth the latest evidence and detailed insights into ATO-mediated cures for APL by targeting PML/RARα chimeric protein, followed by the preclinical and clinical efficacy of ATO on various non-APL malignancies and solid tumors. Likewise, the antiviral activity of ATO against human immunodeficiency virus (HIV) and hepatitis C virus (HCV) was also discussed briefly. Our review would provide a clear prospect for the combination of ATO with other agents for treatment of numerous neoplastic diseases, and open a new era in the clinically applicable range of arsenicals.
Collapse
Affiliation(s)
- Qian Qian Wang
- Department of Hematology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
12
|
Wu Q, Chen X, Wang P, Wu Q, Qi X, Han X, Chen L, Meng X, Xu K. Delivery of Arsenic Trioxide by Multifunction Nanoparticles To Improve the Treatment of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8016-8029. [PMID: 31997633 DOI: 10.1021/acsami.9b22802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Arsenic trioxide (ATO) is effective in the treatment of hematological malignancies and solid tumors. However, its toxicity and side effects are severe, posing an obstacle in its clinical application. A controlled-release ATO carrier with mitochondrial targeting was constructed in this study. The safety and efficacy in vitro were investigated using a hemolysis test, cytotoxicity, proliferation, migration, apoptosis, and other changes in cell behavior. The safety and efficacy were further evaluated in vivo by hematoxylin-eosin staining, terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling staining, and blood testing in tumor-bearing mice. Immunohistochemically and western blotting experiments were conducted to explore the mechanism of combination therapy of material-based chemotherapy and microwave hyperthermia in vitro. We demonstrated that the nano-zirconia (ZrO2) loading platform may be used to administer the ATO, with local precision-controlled release and mitochondrial targeting. Furthermore, we showed the safety of this approach for delivering high doses of ATO. In addition, we explored this new method in combination with in vitro microwave heat therapy, providing a potentially novel intravenous approach to chemotherapy. We described a new non-invasive treatment that improved the efficacy of ATO chemotherapy against hepatocellular carcinoma through nano-ZrO2 carriers.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Arsenic Trioxide/administration & dosage
- Arsenic Trioxide/pharmacology
- Arsenic Trioxide/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Delayed-Action Preparations
- Drug Carriers/chemistry
- Drug Liberation
- Hep G2 Cells
- Humans
- Hyperthermia, Induced/instrumentation
- Hyperthermia, Induced/methods
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Mitochondria/drug effects
- Nanoparticles/chemistry
- Nanoparticles/ultrastructure
- Particle Size
- Xenograft Model Antitumor Assays
- Zirconium/chemistry
Collapse
Affiliation(s)
- Qirun Wu
- Department of Radiology , The First Affiliated Hospital of China Medical University , Shenyang 110001 , China
| | - Xiaowei Chen
- Department of Radiology , The First Affiliated Hospital of China Medical University , Shenyang 110001 , China
| | - Peng Wang
- Department of Radiology , The First Affiliated Hospital of China Medical University , Shenyang 110001 , China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Laboratory of Cryogenics, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Xun Qi
- Department of Radiology , The First Affiliated Hospital of China Medical University , Shenyang 110001 , China
| | - Xiangjun Han
- Department of Radiology , The First Affiliated Hospital of China Medical University , Shenyang 110001 , China
| | - Lufeng Chen
- Department of Radiology , The First Affiliated Hospital of China Medical University , Shenyang 110001 , China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Laboratory of Cryogenics, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Ke Xu
- Department of Radiology , The First Affiliated Hospital of China Medical University , Shenyang 110001 , China
| |
Collapse
|
13
|
Li X, Sun D, Zhao T, Zhang Z. Long non-coding RNA ROR confers arsenic trioxide resistance to HepG2 cells by inhibiting p53 expression. Eur J Pharmacol 2020; 872:172982. [PMID: 32017938 DOI: 10.1016/j.ejphar.2020.172982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/25/2022]
Abstract
Arsenic trioxide is an effective drug in the treatment of hematologic malignancies, but it has no obvious therapeutic effect on liver cancer. Long non-coding RNA ROR is a newly found long-noncoding RNA that has been reported to get involved in the regulation of chemo-resistance in multiple cancers. However, whether and how long non-coding RNA ROR gets involved in the resistance to arsenic trioxide in liver cancer has not been explored. In this study, We found that cellular apoptosis was increased by arsenic trioxide in liver cancer HepG2 cells; P53 expression was also increased by arsenic trioxide at both mRNA level and protein level, indicating that P53-dependent apoptosis is the main mechanism for arsenic trioxide to induce cytotoxicity in liver cancer HepG2 cells. Meanwhile, we found an obvious increase in the level of long non-coding RNA ROR in arsenic trioxide-treated HepG2 cells. By measuring the level of reactive oxygen species, glutathione, superoxide dismutase, and malondialdehyde, the product of lipid peroxidation, we further demonstrated that oxidative stress was a potential factor for both the activation of P53 expression and the increase in long non-coding RNA ROR expression. Through the knock-down of long non-coding RNA ROR by siRNA, we revealed that the activated long non-coding RNA ROR ameliorated arsenic trioxide-induced apoptosis by inhibiting P53 expression. Together, our study reported that long non-coding RNA ROR conferred arsenic trioxide resistance to liver cancer cells through inhibiting P53 expression, and long non-coding RNA ROR might be a novel sensitizing target for liver cancer treatment.
Collapse
Affiliation(s)
- Xinyang Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Donglei Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tianhe Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zunzhen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
14
|
Potential molecular mechanisms underlying the effect of arsenic on angiogenesis. Arch Pharm Res 2019; 42:962-976. [PMID: 31701373 DOI: 10.1007/s12272-019-01190-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
Arsenic is a potent chemotherapeutic drug that is applied as a treatment for cancer; it exerts its functions through multiple pathways, including angiogenesis inhibition. As angiogenesis is a critical component of the progression of many diseases, arsenic is a feasible treatment option for patients with other angiogenic diseases, including rheumatoid arthritis and psoriasis, among others. However, arsenic is also a well-known carcinogen, demonstrating a pro-angiogenesis effect. This review will focus on the dual effects of arsenic on neovascularization and the relevant mechanisms underlying these effects, aiming to provide a rational understanding of arsenic treatment. In particular, we expect to provide a comprehensive overview of the current knowledge of the mechanisms by which arsenic influences angiogenesis.
Collapse
|
15
|
Miodragović Ð, Swindell EP, Waxali ZS, Bogachkov A, O'Halloran TV. Beyond Cisplatin: Combination Therapy with Arsenic Trioxide. Inorganica Chim Acta 2019; 496:119030. [PMID: 32863421 PMCID: PMC7453736 DOI: 10.1016/j.ica.2019.119030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Platinum drugs (cisplatin, oxaliplatin, and carboplatin) and arsenic trioxide are the only commercial inorganic non-radioactive anticancer drugs approved by the US Food and Drug Administration. Numerous efforts are underway to take advantage of the synergy between the anticancer activity of cisplatin and arsenic trioxide - two drugs with strikingly different mechanisms of action. These include co-encapsulation of the two drugs in novel nanoscale delivery systems as well as the development of small molecule agents that combine the activity of these two inorganic materials. Several of these new molecular entities containing Pt-As bonds have broad anticancer activity, are robust in physiological buffer solutions, and form stable complexes with biopolymers. This review summarizes results from a number of preclinical studies involving the combination of cisplatin and As2O3, co-encapsulation and nanoformulation efforts, and the chemistry and cytotoxicity of the first member of platinum anticancer agents with an arsenous acid moiety bound to the platinum(II) center: arsenoplatins.
Collapse
Affiliation(s)
- Ðenana Miodragović
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, Illinois 60625, United States
| | - Elden P Swindell
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zohra Sattar Waxali
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Abraham Bogachkov
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Sun Z, Li M, Bai L, Fu J, Lu J, Wu M, Zhou C, Zhang Y, Wu Y. Arsenic trioxide inhibits angiogenesis in vitro and in vivo by upregulating FoxO3a. Toxicol Lett 2019; 315:1-8. [PMID: 31421153 DOI: 10.1016/j.toxlet.2019.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 07/10/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Arsenic trioxide (As2O3) has been used clinically for the treatment of acute promyelocytic leukemia and some solid tumors. However, the mechanisms of its anti-tumor effects are still elusive. Angiogenesis is a key process for tumor initiation, and increasing evidence has supported the role of anti-angiogenesis caused by arsenic in tumor suppression, although the detailed mechanism is not well understood. In the present study, we found that As2O3 significantly inhibited the angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, and this was mediated by the upregulation of FoxO3a. Knockdown of FoxO3a could restore the angiogenic ability of HUVECs. Moreover, vascular endothelial cell-specific knockout of FoxO3a in mice could disrupt the anti-angiogenesis effect of As2O3 and endow the tumors with resistance to As2O3 treatments. Our results revealed a new mechanism by which As2O3 suppresses angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Zhuo Sun
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Mingyan Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Lu Bai
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jiaju Fu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jinqi Lu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Muyu Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chen Zhou
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Ying Zhang
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Yongping Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
17
|
Optimisation of Folate-Mediated Liposomal Encapsulated Arsenic Trioxide for Treating HPV-Positive Cervical Cancer Cells In Vitro. Int J Mol Sci 2019; 20:ijms20092156. [PMID: 31052347 PMCID: PMC6539325 DOI: 10.3390/ijms20092156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 11/28/2022] Open
Abstract
High-risk human papilloma virus (HPV) infection is directly associated with cervical cancer development. Arsenic trioxide (ATO), despite inducing apoptosis in HPV-infected cervical cancer cells in vitro, has been compromised by toxicity and poor pharmacokinetics in clinical trials. Therefore, to improve ATO’s therapeutic profile for HPV-related cancers, this study aims to explore the effects of length of ligand spacers of folate-targeted liposomes on the efficiency of ATO delivery to HPV-infected cells. Fluorescent ATO encapsulated liposomes with folic acid (FA) conjugated to two different PEG lengths (2000 Da and 5000 Da) were synthesised, and their cellular uptake was examined for HPV-positive HeLa and KB and HPV-negative HT-3 cells using confocal microscopy, flow cytometry, and spectrophotometer readings. Cellular arsenic quantification and anti-tumour efficacy was evaluated through inductively coupled plasma-mass spectrometry (ICP-MS) and cytotoxicity studies, respectively. Results showed that liposomes with a longer folic acid-polyethylene glycol (FA-PEG) spacer (5000 Da) displayed a higher efficiency in targeting folate receptor (FR) + HPV-infected cells without increasing any inherent cytotoxicity. Targeted liposomally delivered ATO also displayed superior selectivity and efficiency in inducing higher cell apoptosis in HPV-positive cells per unit of arsenic taken up than free ATO, in contrast to HT-3. These findings may hold promise in improving the management of HPV-associated cancers.
Collapse
|
18
|
Song X, Wang J, Xu Y, Shao H, Gu J. Surface-modified PLGA nanoparticles with PEG/LA-chitosan for targeted delivery of arsenic trioxide for liver cancer treatment: Inhibition effects enhanced and side effects reduced. Colloids Surf B Biointerfaces 2019; 180:110-117. [PMID: 31030022 DOI: 10.1016/j.colsurfb.2019.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022]
Abstract
Arsenic trioxide (As2O3), an effective drug for leukemia, is limited to be used for solid tumor treatment due to its high side effects. In this study, polyethylene glycol (PEG) and lactobionic acid (LA) modified chitosan (PLC) was synthesized and was used to coat poly(lactide-co-glycolide) (PLGA) nanoparticles for encapsulation and targeted release of As2O3 in liver cancer treatment. The As2O3-loaded PLGA/PLC nanoparticles (As2O3-PLGA/PLC NPs) were fabricated through double emulsion-solvent evaporation method and were optimized by orthogonal tests. As2O3-PLGA/PLC NPs presented suitable physical stability, positive charge, high encapsulation efficiency and drug loading, and good biocompatibility. As expected, the NPs can quickly release enough dose of As2O3 in a short time and then sustain the drug concentration. The As2O3-PLGA/PLC NPs showed effective inhibition of SMMC-7721 cells while having lower cytotoxicity against normal human liver cells (LO2 cells). Furthermore, In vivo study showed that the NPs did not present toxic effects on kidney and liver, but showed relatively high growth inhibition effect on liver tumor. Therefore, this PLGA/PLC NPs could be an effective and safe drug delivery system for liver cancer chemotherapy.
Collapse
Affiliation(s)
- Xiaoli Song
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| | - Juan Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Yue Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Hongxia Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225002, PR China
| | - Jun Gu
- Xishan People's Hospital, Wuxi, 214011, PR China.
| |
Collapse
|
19
|
Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. Nat Commun 2018; 9:4347. [PMID: 30341298 PMCID: PMC6195623 DOI: 10.1038/s41467-018-06749-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 08/17/2018] [Indexed: 01/07/2023] Open
Abstract
Arsenic trioxide (ATO) is a successful chemotherapeutic drug for blood cancers via selective induction of apoptosis; however its efficacy in solid tumors is limited. Here we repurpose nanodiamonds (NDs) as a safe and potent autophagic inhibitor to allosterically improve the therapeutic efficacy of ATO-based treatment in solid tumors. We find that NDs and ATO are physically separate and functionally target different cellular pathways (autophagy vs. apoptosis); whereas their metabolic coupling in human liver carcinoma cells remarkably enhances programmed cell death. Combination therapy in liver tumor mice model results in ~91% carcinoma decrease as compared with ~28% without NDs. Treated mice show 100% survival rate in 150 days with greatly reduced advanced liver carcinoma-associated symptoms, and ~80% of post-therapy mice survive for over 20 weeks. Our work presents a novel strategy to harness the power of nanoparticles to broaden the scope of ATO-based therapy and more generally to fight solid tumors. Arsenic trioxide (ATO) based therapy in solid cancers is limited. Here they repurpose nanodiamonds (NDs) as a safe and potent autophagic inhibitor to improve the efficacy of ATO-based treatment in solid tumors and show the combination therapy to work better in orthotopic liver cancer model.
Collapse
|
20
|
Song X, You J, Shao H, Yan C. Effects of surface modification of As 2 O 3 -loaded PLGA nanoparticles on its anti-liver cancer ability: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2018; 169:289-297. [DOI: 10.1016/j.colsurfb.2018.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
|
21
|
Shikonin potentiates the effect of arsenic trioxide against human hepatocellular carcinoma in vitro and in vivo. Oncotarget 2018; 7:70504-70515. [PMID: 27655700 PMCID: PMC5342569 DOI: 10.18632/oncotarget.12041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal malignancy mostly because of metastasis, recurrence and acquired resistance to conventional chemotherapy. Arsenic trioxide (ATO) is successfully used to treat hematological malignancies, and has been proven to trigger apoptosis in HCC cells. However, the phase II trial evaluating the efficacy and toxicity of ATO in patients with HCC showed that single-agent ATO is poorly active against HCC. Therefore, it is of great importance to develop effective chemosensitization agents to ATO. The aim of the present study was to determine whether shikonin (SHI), a natural product from the root of lithospermum erythrorhizon, could synergistically enhance the anti-HCC efficacy of ATO both in vitro and in vivo. We found that the combination of SHI and ATO exhibited synergistic anticancer efficacy and achieved greater selectivity between cancer cells and normal cells. By inducing intracellular oxidative stress, SHI potentiated ATO-induced DNA damage, followed by increased activation of endoplasmic reticulum stress. In addition, inhibition of ROS reversed the apoptosis induced by SHI and ATO, and recovered the activation of endoplasmic reticulum stress, which revealed the vital role of ROS in the synergism. Moreover, HepG2 xenograft tumor growth in nude mice was more effectively inhibited by combined treatment with SHI and ATO. These data suggest that the combination of SHI with ATO presents a promising therapeutic approach for the treatment of HCC.
Collapse
|
22
|
Duan X, Li T, Han X, Ren J, Chen P, Li H, Gong S. The antitumor effect of arsenic trioxide on hepatocellular carcinoma is enhanced by andrographolide. Oncotarget 2017; 8:90905-90915. [PMID: 29207612 PMCID: PMC5710893 DOI: 10.18632/oncotarget.18677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
Abstract
High concentrations of arsenic trioxide (As2O3) are used to treat acute promyelocytic leukemia and solid tumors, with negative side effects to normal cells. Andrographolide is a traditional Chinese medicine that exerts anti-cancer, anti-inflammatory, anti-virus, and anti-diabetic effects. Here, we tested the effects of combined andrographolide with As2O3 against hepatocellular carcinoma (HCC). We found that by increasing apoptosis, andrographolide synergistically enhanced the anti-tumor effects of As2O3 in HepG2 cells in vitro and in vivo. Furthermore, results from our microarray assays and experiments with mouse xenografts showed that EphB4 was downregulated by the combination of As2O3 plus andrographolide. These findings suggest that the combination of andrographolide and As2O3 could yield therapeutic benefits in the treatment of HCC.
Collapse
Affiliation(s)
- Xuhua Duan
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Pengfei Chen
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Hao Li
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Shaojun Gong
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
23
|
Patel B, Das R, Gautam A, Tiwari M, Acharya S, Kumar S. Evaluation of vascular effect of arsenic using in vivo assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15521-15527. [PMID: 28516350 DOI: 10.1007/s11356-017-9156-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As) is an abundant toxicant present in groundwater and soil in various parts of the world including eastern part of India. The epidemiological studies have shown that arsenic exposure is linked to developmental defects and miscarriage. Placenta is known to utilize vasculogenesis to develop its vasculature circulation. The effects of four different doses of sodium meta-arsenite (0, 10, 20, 75, and 150 ppm) were assessed on the vascular structure using two different in vivo models, i.e., Matrigel and chorioallantoic membrane (CAM) assay. For the Matrigel assay, mice were exposed to different doses of arsenic through drinking water for 1 month. Placenta and Matrigel plug (which was inserted on gestational day (GD 0.5)) were removed on GD 14. Similar arsenic concentration was used in CAM assay to observe the effect of vessel development in hen's eggs. The CAM assay outcome evaluated by Angiosys software showed that arsenic exposure reduced the total and mean tubule length in all the arsenic-treated groups. The percentage tubule inhibition was declined significantly in 20, 75, and 150 ppm arsenic-treated groups as evaluated by ImageJ software. Analysis of the CAM outcome by both the image analysis software indicated the adverse effect of arsenic on the tubules. Further, a significant higher blood vessel density in 10 ppm and lower vessel density in 20, 75, and 150 ppm arsenic-exposed mice were also observed in Matrigel plug assay. The placental hypertrophy and dysplasia especially in the labyrinth zone (vasculature) were noted in placenta of arsenic-treated mice. The study indicated that higher arsenic exposures inhibited the angiogenesis which was dose-dependent in both CAM and Matrigel assay and altered structural morphology of placenta. However, no inhibition of blood vessels was noted at lower, i.e., 10 ppm of arsenic-treated group.
Collapse
Affiliation(s)
- Bharat Patel
- Division of Reproductive Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Rajat Das
- Department of Anatomy, Agartala Government Medical College, Agartala, 799006, India
| | - Anil Gautam
- Division of Reproductive Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Mugdha Tiwari
- Division of Reproductive Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Sukhdev Acharya
- Department of Anatomy, Agartala Government Medical College, Agartala, 799006, India
| | - Sunil Kumar
- Division of Reproductive Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India.
| |
Collapse
|
24
|
Arsenic trioxide is an immune adjuvant in liver cancer treatment. Mol Immunol 2017; 81:118-126. [DOI: 10.1016/j.molimm.2016.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 01/25/2023]
|
25
|
Wang X, Li D, Ghali L, Xia R, Munoz LP, Garelick H, Bell C, Wen X. Therapeutic Potential of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal Nanotechnology. NANOSCALE RESEARCH LETTERS 2016; 11:94. [PMID: 26887578 PMCID: PMC4759142 DOI: 10.1186/s11671-016-1307-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/08/2016] [Indexed: 05/23/2023]
Abstract
Arsenic trioxide (ATO) has been used successfully to treat acute promyelocytic leukaemia, and since this discovery, it has also been researched as a possible treatment for other haematological and solid cancers. Even though many positive results have been found in the laboratory, wider clinical use of ATO has been compromised by its toxicity at higher concentrations. The aim of this study was to explore an improved method for delivering ATO using liposomal nanotechnology to evaluate whether this could reduce drug toxicity and improve the efficacy of ATO in treating human papillomavirus (HPV)-associated cancers. HeLa, C33a, and human keratinocytes were exposed to 5 μm of ATO in both free and liposomal forms for 48 h. The stability of the prepared samples was tested using inductively coupled plasma optical emission spectrometer (ICP-OES) to measure the intracellular arsenic concentrations after treatment. Fluorescent double-immunocytochemical staining was carried out to evaluate the protein expression levels of HPV-E6 oncogene and caspase-3. Cell apoptosis was analysed by flow cytometry. Results showed that liposomal ATO was more effective than free ATO in reducing protein levels of HPV-E6 and inducing cell apoptosis in HeLa cells. Moreover, lower toxicity was observed when liposomal-delivered ATO was used. This could be explained by lower intracellular concentrations of arsenic. The slowly accumulated intracellular ATO through liposomal delivery might act as a reservoir which releases ATO gradually to maintain its anti-HPV effects. To conclude, liposome-delivered ATO could protect cells from the direct toxic effects induced by higher concentrations of intracellular ATO. Different pathways may be involved in this process, depending on local architecture of the tissues and HPV status.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Centre for Investigative and Diagnostic Oncology, Middlesex University, London, NW4 4BT, UK
| | - Dong Li
- Centre for Investigative and Diagnostic Oncology, Middlesex University, London, NW4 4BT, UK
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK
| | - Lucy Ghali
- Centre for Investigative and Diagnostic Oncology, Middlesex University, London, NW4 4BT, UK
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK
| | - Ruidong Xia
- Jiangsu Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Leonardo P Munoz
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK
| | - Hemda Garelick
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK
| | - Celia Bell
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK
| | - Xuesong Wen
- Centre for Investigative and Diagnostic Oncology, Middlesex University, London, NW4 4BT, UK.
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK.
| |
Collapse
|
26
|
Xie L, Guo W, Tang X, Yang Y, Xu J. Effects of Arsenic Trioxide on Minor Progressive High-Grade Osteosarcoma of the Extremities Metastatic to the Lung: Results of 39 Patients Treated in a Single Institution. Case Rep Oncol 2016; 9:610-628. [PMID: 27920692 PMCID: PMC5118832 DOI: 10.1159/000448705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023] Open
Abstract
Patients who mildly progressed after first-line chemotherapy were administered arsenic trioxide (ATO) 5–10 mg intravenously daily. Thirty-nine patients were finally enrolled in the study, of whom 19 patients received first-line chemotherapy with ATO infusion while 20 patients did not. Progression-free survival at 4 months was 89.2 and 62.7% (p = 0.043) for the ATO group and the control group, respectively, while the 2-year overall survival was 61 and 16.4% (p = 0.032).
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Yi Yang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| |
Collapse
|
27
|
Hallauer J, Geng X, Yang HC, Shen J, Tsai KJ, Liu Z. The Effect of Chronic Arsenic Exposure in Zebrafish. Zebrafish 2016; 13:405-12. [PMID: 27140519 PMCID: PMC5035366 DOI: 10.1089/zeb.2016.1252] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Arsenic is a prevalent environmental toxin and a Group one human carcinogenic agent. Chronic arsenic exposure has been associated with many human diseases. The aim of this study is to evaluate zebrafish as an animal model to assess arsenic toxicity in elevated long-term arsenic exposure. With prolonged exposure (6 months) to various concentrations of arsenic from 50 ppb to 300 ppb, effects of arsenic accumulation in zebrafish tissues, and phenotypes were investigated. Results showed that there are no significant changes of arsenic retention in zebrafish tissues, and zebrafish did not exhibit any visible tumor formation under arsenic exposure conditions. However, the zebrafish demonstrate a dysfunction in their neurological system, which is reflected by a reduction of locomotive activity. Moreover, elevated levels of the superoxide dismutase (SOD2) protein were detected in the eye and liver, suggesting increased oxidative stress. In addition, the progenies of arsenic-treated parents displayed a smaller biomass (four-fold reduction in body weight) compared with those from their parental controls. This result indicates that arsenic may induce genetic or epigenetic changes that are then passed on to the next generation. Overall, this study demonstrates that zebrafish is a convenient vertebrate model with advantages in the evaluation of arsenic-associated neurological disorders as well as its influences on the offspring.
Collapse
Affiliation(s)
- Janell Hallauer
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Xiangrong Geng
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Hung-Chi Yang
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jian Shen
- Department of Pathology, Creighton University School of Medicine, Omaha, Nebraska
| | - Kan-Jen Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| |
Collapse
|
28
|
Wang L, Hu X, Xu Y, Liu Z. Arsenic trioxide inhibits lung metastasis of mouse colon cancer via reducing the infiltration of regulatory T cells. Tumour Biol 2016; 37:15165-15173. [PMID: 27677289 PMCID: PMC5126207 DOI: 10.1007/s13277-016-5377-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/09/2016] [Indexed: 01/19/2023] Open
Abstract
The purpose of this study was to investigate the effects of arsenic trioxide (As2O3) on the infiltration of regulatory T cells (Tregs) in the local lung metastasis of mouse colon cancer in vivo and the regulation of Tregs in cytokine-induced killer cells (CIKs) in vitro. A high Tregs infiltration mouse colon cancer lung metastasis model was established by intravenous injection of CT26 murine colon carcinoma cells. Tumor-bearing mice were randomly divided into three groups: control group, low-dose As2O3 group, and high-dose As2O3 group. For in vitro studies, CIKs were treated with vehicle control or 0.1, 1, or 5 μM As2O3. The level of Tregs was detected via flow cytometry, Foxp3 expression was assessed by immunohistochemistry and reverse transcription–polymerase chain reaction (RT-PCR), the level of interferon gamma (IFN-γ) was evaluated by enzyme-linked immunoassay (ELISA), and the cytotoxic activity of As2O3-treated CIKs was assessed through a lactate dehydrogenase (LDH) release assay. Obvious lung metastasis was observed 3 days after CT26 murine colon carcinoma cell injection. The numbers of Tregs in the lungs and spleens of tumor-bearing mice were significantly higher than those of the normal group (p < 0.01). As2O3 treatment increased the mouse weight as well as reduced the number of metastatic lung nodules and the lung/body weight ratio (p < 0.01). Moreover, As2O3 treatment significantly reduced the Tregs proportion and the Foxp3 messenger RNA (mRNA) levels in metastatic lung tissues (p < 0.01). In vitro, As2O3 significantly reduced the Tregs proportion and the Foxp3 mRNA levels (p < 0.01) and significantly increased the cytotoxic activity of CIKs and the IFN-γ levels in the supernatant of cultured CIKs (p < 0.01). As2O3 might inhibit lung metastasis of colon cancer by reducing the local infiltration of Tregs and increase the cytotoxic activity of CIKs by suppressing Tregs.
Collapse
Affiliation(s)
- Lei Wang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.,Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Disease of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantatation, Wuhan, 430071, China
| | - Xiang Hu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yingxin Xu
- Institute of General Surgery, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Zhong Liu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China. .,Department of General Surgery, First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China.
| |
Collapse
|
29
|
Xiao X, Liu Y, Guo M, Fei W, Zheng H, Zhang R, Zhang Y, Wei Y, Zheng G, Li F. pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo. J Biomater Appl 2016; 31:23-35. [PMID: 27059495 DOI: 10.1177/0885328216637211] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic trioxide (As2O3, ATO), a FDA approved drug for hematologic malignancies, was proved of efficient growth inhibition of cancer cell in vitro or solid tumor in vivo. However, its effect on solid tumor in vivo was hampered by its poor pharmacokinetics and dose-limited toxicity. In this study, a polyacrylic acid capped pH-triggered mesoporous silica nanoparticles was conducted to improve the pharmacokinetics and enhance the antitumor effect of arsenic trioxide. The mesoporous silica nanoparticles loaded with arsenic trioxide was grafted with polyacrylic acid (PAA-ATO-MSN) as a pH-responsive biomaterial on the surface to achieve the release of drug in acidic microenvironment of tumor, instead of burst release action in circulation. The nanoparticles were characterized with uniform grain size (particle sizes of 158.6 ± 1.3 nm and pore sizes of 3.71 nm, respectively), historically comparable drug loading efficiency (11.42 ± 1.75%), pH-responsive and strengthened sustained release features. The cell toxicity of amino groups modified mesoporous silica nanoparticles (NH2-MSN) was significantly reduced by capping of polyacrylic acid. In pharmacokinetic studies, the half time (t1/2β) was prolonged by 1.3 times, and the area under curve) was increased by 2.6 times in PAA-ATO-MSN group compared with free arsenic trioxide group. Subsequently, the antitumor efficacy in vitro (SMMC-7721 cell line) and in vivo (H22 xenografts) was remarkably enhanced indicated that PAA-ATO-MSN improved the antitumor effect of the drug. These results suggest that the polyacrylic acid capped mesoporous silica nanoparticles (PAA-MSN) will be a promising nanocarrier for improving pharmacokinetic features and enhancing the anti-tumor efficacy of arsenic trioxide.
Collapse
Affiliation(s)
- Xuecheng Xiao
- Department of Pharmaceutics, Hubei University of Chinese Medicine, Wuhan, China
| | - Yangyang Liu
- Department of Pharmaceutics, Hubei University of Chinese Medicine, Wuhan, China
| | - Manman Guo
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weidong Fei
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongrong Zhang
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Zhang
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yinghui Wei
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guohua Zheng
- Department of Pharmaceutics, Hubei University of Chinese Medicine, Wuhan, China
| | - Fanzhu Li
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.01.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Wu X, Han Z, Schur RM, Lu ZR. Targeted Mesoporous Silica Nanoparticles Delivering Arsenic Trioxide with Environment Sensitive Drug Release for Effective Treatment of Triple Negative Breast Cancer. ACS Biomater Sci Eng 2016; 2:501-507. [DOI: 10.1021/acsbiomaterials.5b00398] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaohui Wu
- Department
of Biomedical
Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zheng Han
- Department
of Biomedical
Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Rebecca M. Schur
- Department
of Biomedical
Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zheng-Rong Lu
- Department
of Biomedical
Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
32
|
Zhang Y, Wang Y, Lu Q, Xin W, Cui W, Zhu J. Organoarsenic Roxarsone Promotes Angiogenesis In Vivo. Basic Clin Pharmacol Toxicol 2015; 118:259-70. [PMID: 26450128 DOI: 10.1111/bcpt.12501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022]
Abstract
Roxarsone, an organoarsenic feed additive, is widely used worldwide to promote animal growth. It has been found to exhibit a higher angiogenic index than As(III) at lower concentrations and to promote angiogenic phenotype in human endothelial cell in vitro. Little research has focused on the potential angiogenic effect of roxarsone in vitro or in vivo. Here, we investigated the pro-angiogenic effect of roxarsone in vivo. The effects of 0.1-10.0 μM roxarsone were tested in the rat endothelial cell Matrigel plug assay, chicken chorioallantoic membrane (CAM) model and MCF-7 cell xenograft tumour model; 10 ng/mL vascular endothelial growth factor (VEGF) was used as a positive control and PBS as a negative control. Roxarsone significantly increased the volume, weight and haemoglobin content of the Matrigel plugs compared to PBS group (p < 0.05); 1.0 μM roxarsone exerted the most significant effects. H&E staining and CD31 immunochemistry revealed obviously more new vessels or capillary-like structures in the plugs of the roxarsone and VEGF groups. Roxarsone significantly increased the numbers of primary/secondary vessels and area of vessels in the CAM assay and obviously increased tumour weight and volume in the xenograft model compared to PBS (p < 0.05). Histochemistry indicated local necrosis was observed at the centre of the xenograft tumours in the PBS and roxarsone groups, with less necrosis apparent in the VEGF-treated tumours. The growth of endothelial cells and VEGF level was obviously affected at blockade of VEGF and its receptor Flt-1/Flk-1 by SU5416 or its antibody in vitro. This study demonstrates roxarsone promotes angiogenesis in vivo, and a VEGF/VEGFR mechanism may be involved.
Collapse
Affiliation(s)
- Yumei Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yujing Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Qianqian Lu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Wenfang Xin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Weibo Cui
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Jiaqiao Zhu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
33
|
Saghiri MA, Orangi J, Asatourian A, Sorenson CM, Sheibani N. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb). Crit Rev Oncol Hematol 2015; 98:290-301. [PMID: 26638864 DOI: 10.1016/j.critrevonc.2015.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/27/2015] [Accepted: 10/15/2015] [Indexed: 02/02/2023] Open
Abstract
Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran.
| | - Jafar Orangi
- Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran
| | - Armen Asatourian
- Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
34
|
Liu ZM, Tseng HY, Cheng YL, Yeh BW, Wu WJ, Huang HS. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis. Toxicol Appl Pharmacol 2015; 285:41-50. [PMID: 25791921 DOI: 10.1016/j.taap.2015.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022]
Abstract
Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21(WAF1/CIP1)) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1-0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5-20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (-1486 to -1479bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO.
Collapse
Affiliation(s)
- Zi-Miao Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Yu Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Ling Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Bi-Wen Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
35
|
TG-interacting factor mediates arsenic-induced malignant transformation of keratinocytes via c-Src/EGFR/AKT/FOXO3A and redox signalings. Arch Toxicol 2014; 89:2229-41. [DOI: 10.1007/s00204-014-1445-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022]
|
36
|
Thomas-Schoemann A, Batteux F, Alexandre J. A new strategy to target regulatory T cells in solid tumors. Oncoimmunology 2014; 2:e23338. [PMID: 23802078 PMCID: PMC3661163 DOI: 10.4161/onci.23338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 11/24/2022] Open
Abstract
The depletion of regulatory T cells (Tregs) is a promising therapeutic strategy to enhance antitumor immune responses. Our recent findings indicate that low doses of arsenic trioxide can delay tumor growth in murine models of colon and breast cancer by depleting Tregs through oxidative and nitrosative bursts.
Collapse
Affiliation(s)
- Audrey Thomas-Schoemann
- Université Paris Descartes ; Unité de Formation et de Recherche des Sciences Pharmaceutiques et Biologiques; Paris, France ; Université Paris Descartes; Sorbonne Paris Cité; Faculté de Médecine; Paris, France ; Unité Fonctionnelle de Pharmacocinétique et Pharmacochimie; Assistance Publique-Hôpitaux de Paris; Hôpital Cochin; Paris, France
| | | | | |
Collapse
|
37
|
Feki-Tounsi M, Olmedo P, Gil F, Mhiri MN, Rebai A, Hamza-Chaffai A. Trace metal quantification in bladder biopsies from tumoral lesions of Tunisian cancer and controls subjects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11433-11438. [PMID: 24903250 DOI: 10.1007/s11356-014-3099-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
The incidence of bladder tumors has been dramatically increasing since the 1970s, possibly as a consequence of ongoing environmental pollution. Previous studies have provided some evidence of an association between cancer and exposure to carcinogenic metals. In order to examine the association between levels of toxic metals in patients with bladder tumors and controls, the amounts of arsenic, cadmium, chromium, and nickel were measured in tumoral lesions and adjacent normal part of the bladder mucosa excised for carcinoma and compared with those in the bladder mucosa of volunteer subjects operated for non-neoplastic diseases. The quantification of metals in tissue was assessed by atomic absorption spectroscopy. In tumoral tissues of the excised bladder mucosa, content of Cr and Ni was significantly low compared to that of adjacent normal tissues and control tissues while that of As and Cd in normal tissues adjacent to the tumor were significantly elevated compared to controls. Though the sample size was small, the present study shows that concentrations of metals such as Cd, Cr, As, and Ni in bladder tissue may be used as a biomarker of exposure. On the basis of the results obtained in this study, high amounts of As and Cd in adjacent normal parts of the bladders with carcinomas compared to controls would strongly suggest possible, individual or synergistic, effects of these pollutants on enzymatic systems, priming an oncogenic pathway.
Collapse
Affiliation(s)
- Molka Feki-Tounsi
- Unit of Marine and Environmental Toxicology, IPEIS, Sfax University, PB 805, 3018, Sfax, Tunisia,
| | | | | | | | | | | |
Collapse
|
38
|
Jiang F, Wang X, Liu Q, Shen J, Li Z, Li Y, Zhang J. Inhibition of TGF-β/SMAD3/NF-κB signaling by microRNA-491 is involved in arsenic trioxide-induced anti-angiogenesis in hepatocellular carcinoma cells. Toxicol Lett 2014; 231:55-61. [PMID: 25196641 DOI: 10.1016/j.toxlet.2014.08.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/29/2014] [Accepted: 08/30/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Current standard practices for treatment of HCC are less than satisfactory because of metastasis and recurrence, which are primarily attributed to the angiogenesis. So, the anti-angiogenesis treatment has become the new approach for HCC therapy. In addition to treating leukemia, arsenic trioxide (As2O3) also suppresses other solid tumors, including HCC. However, the roles of As2O3 in the angiogenesis potential of HCC cells remain unclear. In our present study, As2O3 attenuated the angiogenic ability by the microRNA-491 (miR-491)-mediated inhibition of TGF-β/SMAD3/NF-κB signal pathway in MHCC97H and MHCC97L cells. Briefly, in these cells, As2O3 improved the expression of miR-491 via DNA-demethylation; miR-491, which targeted the SMAD3-3'-UTR, decreased the expression/function of SMAD3, leading to the inactivation of NF-κB/IL-6/STAT-3 signaling; knockdown of miR-491 abolished the As2O3-induced inhibitions of the TGF-β/SMAD3/NF-κB pathway, the VEGF secretion, and the angiogenesis. By understanding a novel mechanism whereby As2O3 inhibits the angiogenic potential in HCC cells, our study would help in the design of future strategies of developing As2O3 as a potential chemopreventive agent when used alone or in combination with other current anticancer drugs.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xingxing Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qinqiang Liu
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China
| | - Jian Shen
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China
| | - Zhong Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China.
| |
Collapse
|
39
|
Waalkes MP, Qu W, Tokar EJ, Kissling GE, Dixon D. Lung tumors in mice induced by "whole-life" inorganic arsenic exposure at human-relevant doses. Arch Toxicol 2014; 88:1619-29. [PMID: 25005685 PMCID: PMC4130362 DOI: 10.1007/s00204-014-1305-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Abstract
In mice, inorganic arsenic in the drinking water in the parts per million range via the dam during in utero life or with whole-life exposure is a multi-site carcinogen in the offspring. However, human arsenic exposure is typically in the parts per billion (ppb) range. Thus, we studied "whole-life" inorganic arsenic carcinogenesis in mice at levels more relevant to humans. Breeder male and female CD1 mice were exposed to 0, 50, 500 or 5,000 ppb arsenic (as sodium arsenite) in the drinking water for 3 weeks prior to breeding, during pregnancy and lactation, and after weaning (at week 3) groups of male and female offspring (initial n = 40) were exposed for up to 2 years. Tumors were assessed in these offspring. Arsenic exposure had no effect on pregnant dam weights or water consumption, litter size, offspring birthweight or weight at weaning compared to control. In male offspring mice, arsenic exposure increased (p < 0.05) bronchiolo-alveolar tumor (adenoma or carcinoma) incidence at 50-ppb group (51 %) and 500-ppb group (54 %), but not at 5,000-ppb group (28 %) compared to control (22 %). These arsenic-induced bronchiolo-alveolar tumors included increased (p < 0.05) carcinoma at 50-ppb group (27 %) compared to controls (8 %). An increase (p < 0.05) in lung adenoma (25 %) in the 50-ppb group compared to control (11 %) occurred in female offspring. Thus, in CD1 mice whole-life arsenic exposure induced lung tumors at human-relevant doses (i.e., 50 and 500 ppb).
Collapse
Affiliation(s)
- Michael P Waalkes
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 Alexander Drive, MD E1-07, P.O. Box 12233, Research Triangle Park, NC, 27709, USA,
| | | | | | | | | |
Collapse
|
40
|
Wang GZ, Zhang W, Fang ZT, Zhang W, Yang MJ, Yang GW, Li S, Zhu L, Wang LL, Zhang WS, Liu R, Qian S, Wang JH, Qu XD. Arsenic trioxide: marked suppression of tumor metastasis potential by inhibiting the transcription factor Twist in vivo and in vitro. J Cancer Res Clin Oncol 2014; 140:1125-36. [PMID: 24756364 DOI: 10.1007/s00432-014-1659-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Arsenic trioxide (ATO) has been found effective in several types of cancer cells, including acute promyelocytic leukemia, and recently in hepatocellular carcinoma (HCC). In this study, we investigated the role of ATO in regulating the invasive activity of HCC after transarterial embolization (TAE). METHODS Cell migration and invasion were observed using Transwell and wound-healing assay. The molecular changes in E-cadherin, N-cadherin, and Vimentin of surviving tumor cells were determined by Western blotting. The effects of ATO on Twist activity of the tumor cells were further analyzed. In animal study, 40 male buffalo rats implanted with McA-RH7777 tumor in the liver were randomly divided into four groups: control, TAE, ATO, and TAE + ATO. TAE procedures were performed on the 14th day after implantation. Lung metastases were observed using fluorescence imaging, and the molecular changes in residual tumor cells were evaluated by Western blotting or immunohistochemistry. Tumor growth and survival analysis were also evaluated. RESULTS Arsenic trioxide markedly reduced cell migration and invasiveness, which were enhanced by hypoxia after TAE. Western blot analysis revealed ATO inhibited the expression of epithelial-mesenchymal transition (EMT) markers by suppressing Twist. The marked suppression effect of ATO on invasiveness and metastatic potential related to EMT was also shown in tissue. CONCLUSION The results of this study demonstrated that ATO is an effective anticancer agent in combination with TAE in the treatment of HCC, by suppressing tumor progression and metastasis via selectively inducing tumor cell apoptosis and arresting EMT by inhibiting the Twist activation.
Collapse
Affiliation(s)
- Guang-Zhi Wang
- Department of Intervention Radiology, Zhongshan Hospital Fudan University, No. 180 Fenglin Road, Xuhui, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Duan D, Yao J, Zhang B, Peng S, Ma H, Song Y, Fang J. Dithiaarsanes Induce Oxidative Stress-Mediated Apoptosis in HL-60 Cells by Selectively Targeting Thioredoxin Reductase. J Med Chem 2014; 57:5203-11. [DOI: 10.1021/jm500221p] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaping Liu
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Dongzhu Duan
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Juan Yao
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoxin Zhang
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shoujiao Peng
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - HuiLong Ma
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yanlin Song
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
42
|
Nakaoka T, Ota A, Ono T, Karnan S, Konishi H, Furuhashi A, Ohmura Y, Yamada Y, Hosokawa Y, Kazaoka Y. Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell Oncol (Dordr) 2014; 37:119-29. [PMID: 24599717 DOI: 10.1007/s13402-014-0167-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) accounts for the majority of oral cancers. Despite recent advances in OSCC diagnostics and therapeutics, the overall survival rate still remains low. Here, we assessed the efficacy of a combinatorial arsenic trioxide (ATO) and cisplatin (CDDP) treatment in human OSCC cells. METHODS The combinatorial effect of ATO/CDDP on the growth and apoptosis of OSCC cell lines HSC-2, HSC-3, and HSC-4 was evaluated using MTT and annexin V assays, respectively. Chou-Talalay analyses were preformed to evaluate the combinatorial effects of ATO/CDDP on the dose-reduction index (DRI). To clarify the mechanism underlying the ATO/CDDP anticancer effect, we also examined the involvement of reactive oxygen species (ROS) in ATO/CDDP-induced apoptosis. RESULTS Combination index (CI) analyses revealed that a synergistic interaction of ATO and CDDP elicits a wide range of effects in HSC-2 cells, with CI values ranging from 0.78 to 0.90, where CI < 1 defines synergism. The CI values in HSC-3 and HSC-4 cells ranged from 0.34 to 0.45 and from 0.60 to 0.92, respectively. In addition, ATO/CDDP yielded favorable DRI values ranging from 1.6-fold to 7.71-fold dose reduction. Compared to mono-therapy, ATO/CDDP combinatorial therapy significantly augmented the loss of mitochondrial potential, caspase-3/7 activity and subsequent apoptosis. These changes were all abrogated by the antioxidant N-acetylcysteine. CONCLUSIONS This study provides the first evidence for a synergistic ATO/CDDP anticancer (apoptotic) activity in OSCC cells with a favorable DRI, thereby highlighting its potential as a combinational therapeutic regime in OSCC.
Collapse
Affiliation(s)
- Toshiki Nakaoka
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gao YH, Zhang HP, Yang SM, Yang Y, Ma YY, Zhang XY, Yang YM. Inactivation of Akt by arsenic trioxide induces cell death via mitochondrial-mediated apoptotic signaling in SGC-7901 human gastric cancer cells. Oncol Rep 2014; 31:1645-52. [PMID: 24482137 DOI: 10.3892/or.2014.2994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/13/2014] [Indexed: 11/05/2022] Open
Abstract
Arsenic trioxide (As2O3) has been recognized as a potential chemotherapeutic agent, yet the details concerning its mechanism of action in solid cancers remain undetermined. The present study assessed the role of Akt in the cell death induced by As2O3. The MTT assay showed that As2O3 suppressed the proliferation of SGC-7901 cells in a dose- and time-dependent manner. Characteristic apoptotic changes were observed in the As2O3‑treated cells by Hoechst 33342 staining, and FACS analysis showed that As2O3 caused dose-dependent apoptotic cell death. As2O3 activated caspase-3 and -9, and PARP cleavage in a dose-dependent manner. Compromised mitochondrial membrane potential and an increased protein level of Bax indicated involvement of mitochondia. As2O3 decreased the levels of p-Akt (Ser473), p-Akt (Thr308) and p-GSK-3β (Ser9), suggesting that As2O3 inactivated Akt kinase. In addition, LY294002 (a PI3 kinase inhibitor) augmented the apoptosis induced by As2O3. These results demonstrated that inhibition of PI3K/Akt signaling was involved in As2O3-induced apoptosis of gastric cancer SGC-7901 cells.
Collapse
Affiliation(s)
- Yan-Hui Gao
- The Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hao-Peng Zhang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shu-Meng Yang
- Department of Outpatient Surgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Yue Yang
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yu-Yan Ma
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xin-Yu Zhang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan-Mei Yang
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
44
|
Preparation and investigation of arsenic trioxide-loaded polylactic acid/magnetic hybrid nanoparticles. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-3306-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Chen C, Jiang X, Ren Y, Zhang Z. Arsenic trioxide co-exposure potentiates benzo(a)pyrene genotoxicity by enhancing the oxidative stress in human lung adenocarcinoma cell. Biol Trace Elem Res 2013; 156:338-49. [PMID: 24061964 DOI: 10.1007/s12011-013-9819-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Although both arsenic trioxide (As2O3) and benzo(a)pyrene (BaP) are well-established human carcinogens, the interaction between As2O3 and BaP is synergistic or antagonistic remains controversial in terms of the existing studies. In addition, the mechanisms responsible for the combined effects are still unclear. In this study, we examined the potential interactive effects between As2O3 (1, 5, and 10 μM) and BaP (5, 10, and 20 μM) in cultured A549 cells by treating with BaP and As2O3 alone or in combination at various concentrations for 24 h. The single and combined effects of As2O3 and BaP on the cytotoxicity, DNA/chromosomal damage, and oxidative stress were examined by using tetrazolium (3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) dye colorimetric assay, colony formation assay, fluorescence probe, chemical colorimetry, comet assay as well as micronucleus test. Our results showed that As2O3 synergistically enhanced the cytotoxicity, genotoxicity, and level of oxidative stress induced by BaP at various tested concentrations. Also, our experimental results showed that intracellular glutathione (GSH) contents were increased by various doses of BaP, but single or cotreatment with As2O3 significantly decreased the GSH level in the cells at all tested concentrations. Taken together, our results suggest that As2O3 may exert its synergistic cyto- and genotoxic effects with BaP mainly via elevated intracellular reactive oxygen species and reduced GSH contents and superoxide dismutase activities, thus promoting high level of oxidative stress, which may be a pivotal mechanism underlying As2O3 cocarcinogenic action.
Collapse
Affiliation(s)
- Chengzhi Chen
- Department of Environmental Health, West China School of Public Health, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, People's Republic of China
| | | | | | | |
Collapse
|
46
|
In vitro and ex vivo angiogenic effects of roxarsone on rat endothelial cells. Toxicol Lett 2013; 223:175-82. [DOI: 10.1016/j.toxlet.2013.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/23/2022]
|
47
|
Li W, Wang M, Wang L, Ji S, Zhang J, Zhang C. Icariin Synergizes with Arsenic Trioxide to Suppress Human Hepatocellular Carcinoma. Cell Biochem Biophys 2013; 68:427-36. [DOI: 10.1007/s12013-013-9724-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Zhao S, Zhang X, Zhang J, Zhang J, Zou H, Liu Y, Dong X, Sun X. Intravenous Administration of Arsenic Trioxide Encapsulated in Liposomes Inhibits the Growth of C6 Gliomas in Rat Brains. J Chemother 2013; 20:253-62. [DOI: 10.1179/joc.2008.20.2.253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
49
|
Kritharis A, Bradley TP, Budman DR. The evolving use of arsenic in pharmacotherapy of malignant disease. Ann Hematol 2013; 92:719-30. [DOI: 10.1007/s00277-013-1707-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/11/2013] [Indexed: 12/01/2022]
|
50
|
Thomas-Schoemann A, Batteux F, Mongaret C, Nicco C, Chéreau C, Annereau M, Dauphin A, Goldwasser F, Weill B, Lemare F, Alexandre J. Arsenic Trioxide Exerts Antitumor Activity through Regulatory T Cell Depletion Mediated by Oxidative Stress in a Murine Model of Colon Cancer. THE JOURNAL OF IMMUNOLOGY 2012; 189:5171-7. [DOI: 10.4049/jimmunol.1103094] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|