1
|
Liu Y, Hu W, Xie Y, Tang J, Ma H, Li J, Nie J, Wang Y, Gao Y, Cheng C, Li C, Ma Y, Su S, Zhang Z, Bao Y, Ren Y, Wang X, Sun F, Li S, Lu R. Single-cell transcriptomics enable the characterization of local extension in retinoblastoma. Commun Biol 2024; 7:11. [PMID: 38172218 PMCID: PMC10764716 DOI: 10.1038/s42003-023-05732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Retinoblastoma (RB) is the most prevalent ocular tumor of childhood, and its extraocular invasion significantly increases the risk of metastasis. Nevertheless, a single-cell characterization of RB local extension has been lacking. Here, we perform single-cell RNA sequencing on four RB samples (two from intraocular and two from extraocular RB patients), and integrate public datasets of five normal retina samples, four intraocular samples, and three extraocular RB samples to characterize RB local extension at the single-cell level. A total of 128,454 qualified cells are obtained in nine major cell types. Copy number variation inference reveals chromosome 6p amplification in cells derived from extraocular RB samples. In cellular heterogeneity analysis, we identified 10, 8, and 7 cell subpopulations in cone precursor like cells, retinoma like cells, and MKI67+ photoreceptorness decreased (MKI67+ PhrD) cells, respectively. A high expression level of SOX4 was detected in cells from extraocular samples, especially in MKI67+ PhrD cells, which was verified in additional clinical RB samples. These results suggest that SOX4 might drive RB local extension. Our study presents a single-cell transcriptomic landscape of intraocular and extraocular RB samples, improving our understanding of RB local extension at the single-cell resolution and providing potential therapeutic targets for RB patients.
Collapse
Affiliation(s)
- Yaoming Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Wei Hu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Yanjie Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Junjie Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Huan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Jinmiao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Jiahe Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Yinghao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Chao Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Yujun Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Shicai Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Zhihui Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Yuekun Bao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Yi Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Xinyue Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Fengyu Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China.
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
| |
Collapse
|
2
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
3
|
Vasiljevic A. Histopathology and molecular pathology of pediatric pineal parenchymal tumors. Childs Nerv Syst 2023; 39:2273-2284. [PMID: 35972537 DOI: 10.1007/s00381-022-05637-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Pineal parenchymal tumors in children are rare. They consist of two main types, pineoblastoma (PB) and pineal parenchymal tumor of intermediate differentiation (PPTID), which are World Health Organization (WHO) grade 4 and grade 2-3 respectively. PBs are divided into four distinct molecular groups: PB-miRNA1, PB-miRNA2, PB-RB1, and PB-MYC/FOXR2. PB-RB1 and PB-MYC/FOXR2 affect young children and are associated with a dismal prognosis. PB-miRNA1 and PB-miRNA2 groups affect older children and follow a more favorable course. They are characterized by mutually exclusive alterations in genes involved in miRNA biogenesis, including DICER1, DROSHA, and DGCR8. They may be sporadic or may represent one manifestation of DICER1 syndrome. PB-RB1 tumors show alterations in the RB1 gene and may develop in the setting of congenital retinoblastoma, a condition known as "trilateral retinoblastoma." In the pediatric population, PPTIDs typically affect adolescents. They are characterized by small in-frame insertions in the KBTBD4 gene which is involved in ubiquitination.
Collapse
Affiliation(s)
- Alexandre Vasiljevic
- Centre de Pathologie Et Neuropathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677 BRON Cedex, Lyon, France.
| |
Collapse
|
4
|
Bisht S, Chawla B, Kumar A, Vijayan V, Kumar M, Sharma P, Dada R. Identification of novel genes by targeted exome sequencing in Retinoblastoma. Ophthalmic Genet 2022; 43:771-788. [PMID: 35930312 DOI: 10.1080/13816810.2022.2106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Retinoblastoma (RB) is initiated by mutation in both alleles of RB1 gene. However, few cases may occur even in the absence of RB1 mutation suggesting the role of genes other than RB1. METHODOLOGY The current study was planned to utilize targeted exome sequencing in Indian RB patients affected with unilateral non-familial RB. 75 unilateral RB patients below 5 years of age were enrolled. Genomic DNA was extracted from blood and tumor tissue. From peripheral blood DNA, all coding and exon/intron regions were amplified using PCR and direct sequencing. Cases which did not harbor pathogenic variants in peripheral blood DNA were further screened for mutations in their tumor tissue DNA using targeted exome sequencing. Three pathogenicity prediction tools (Mutation Taster, SIFT, and PolyPhen-2) were used to determine the pathogenicity of non-synonymous variations. An in-house bioinformatics pipeline was devised for the mutation screening by targeted exome sequencing. Protein modeling studies were also done to predict the effect of the mutations on the protein structure and function. RESULTS Using the mentioned approach, we found two novel variants (g.69673_69674insT and g.48373314C>A) in RB1 gene in peripheral blood DNA. We also found novel variants in eight genes (RB1, ACAD11, GPR151, KCNA1, OTOR, SOX30, ARL11, and MYCT1) that may be associated with RB pathogenesis. CONCLUSION The present study expands our current knowledge regarding the genomic landscape of RB and also highlights the importance of NGS technologies to detect genes and novel variants that may play an important role in cancer initiation, progression, and prognosis.
Collapse
Affiliation(s)
- Shilpa Bisht
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Bhavna Chawla
- Ocular Oncology Service, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar
- Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India
| | - Viswanathan Vijayan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Field MG, Kuznetsoff JN, Zhang MG, Dollar JJ, Durante MA, Sayegh Y, Decatur CL, Kurtenbach S, Pelaez D, Harbour JW. RB1 loss triggers dependence on ESRRG in retinoblastoma. SCIENCE ADVANCES 2022; 8:eabm8466. [PMID: 35984874 PMCID: PMC9390996 DOI: 10.1126/sciadv.abm8466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/08/2022] [Indexed: 05/10/2023]
Abstract
Retinoblastoma (Rb) is a deadly childhood eye cancer that is classically initiated by inactivation of the RB1 tumor suppressor. Clinical management continues to rely on nonspecific chemotherapeutic agents that are associated with treatment resistance and toxicity. Here, we analyzed 103 whole exomes, 20 whole transcriptomes, 5 single-cell transcriptomes, and 4 whole genomes from primary Rb tumors to identify previously unknown Rb dependencies. Several recurrent genomic aberrations implicate estrogen-related receptor gamma (ESRRG) in Rb pathogenesis. RB1 directly interacts with and inhibits ESRRG, and RB1 loss uncouples ESRRG from negative regulation. ESRRG regulates genes involved in retinogenesis and oxygen metabolism in Rb cells. ESRRG is preferentially expressed in hypoxic Rb cells in vivo. Depletion or inhibition of ESRRG causes marked Rb cell death, which is exacerbated in hypoxia. These findings reveal a previously unidentified dependency of Rb cells on ESRRG, and they implicate ESRRG as a potential therapeutic vulnerability in Rb.
Collapse
Affiliation(s)
- Matthew G. Field
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffim N. Kuznetsoff
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michelle G. Zhang
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - James J. Dollar
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Durante
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yoseph Sayegh
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christina L. Decatur
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J. William Harbour
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Liu J, Ottaviani D, Sefta M, Desbrousses C, Chapeaublanc E, Aschero R, Sirab N, Lubieniecki F, Lamas G, Tonon L, Dehainault C, Hua C, Fréneaux P, Reichman S, Karboul N, Biton A, Mirabal-Ortega L, Larcher M, Brulard C, Arrufat S, Nicolas A, Elarouci N, Popova T, Némati F, Decaudin D, Gentien D, Baulande S, Mariani O, Dufour F, Guibert S, Vallot C, Rouic LLL, Matet A, Desjardins L, Pascual-Pasto G, Suñol M, Catala-Mora J, Llano GC, Couturier J, Barillot E, Schaiquevich P, Gauthier-Villars M, Stoppa-Lyonnet D, Golmard L, Houdayer C, Brisse H, Bernard-Pierrot I, Letouzé E, Viari A, Saule S, Sastre-Garau X, Doz F, Carcaboso AM, Cassoux N, Pouponnot C, Goureau O, Chantada G, de Reyniès A, Aerts I, Radvanyi F. A high-risk retinoblastoma subtype with stemness features, dedifferentiated cone states and neuronal/ganglion cell gene expression. Nat Commun 2021; 12:5578. [PMID: 34552068 PMCID: PMC8458383 DOI: 10.1038/s41467-021-25792-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma is the most frequent intraocular malignancy in children, originating from a maturing cone precursor in the developing retina. Little is known on the molecular basis underlying the biological and clinical behavior of this cancer. Here, using multi-omics data, we demonstrate the existence of two retinoblastoma subtypes. Subtype 1, of earlier onset, includes most of the heritable forms. It harbors few genetic alterations other than the initiating RB1 inactivation and corresponds to differentiated tumors expressing mature cone markers. By contrast, subtype 2 tumors harbor frequent recurrent genetic alterations including MYCN-amplification. They express markers of less differentiated cone together with neuronal/ganglion cell markers with marked inter- and intra-tumor heterogeneity. The cone dedifferentiation in subtype 2 is associated with stemness features including low immune and interferon response, E2F and MYC/MYCN activation and a higher propensity for metastasis. The recognition of these two subtypes, one maintaining a cone-differentiated state, and the other, more aggressive, associated with cone dedifferentiation and expression of neuronal markers, opens up important biological and clinical perspectives for retinoblastomas.
Collapse
Affiliation(s)
- Jing Liu
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Daniela Ottaviani
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.414531.60000 0001 0695 6255Precision Medicine, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Meriem Sefta
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Céline Desbrousses
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Elodie Chapeaublanc
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Rosario Aschero
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Nanor Sirab
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Fabiana Lubieniecki
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Gabriela Lamas
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Laurie Tonon
- grid.418116.b0000 0001 0200 3174Synergie Lyon Cancer, Plateforme de Bioinformatique “Gilles Thomas”, Centre Léon Bérard, 69008 Lyon, France
| | - Catherine Dehainault
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France
| | - Clément Hua
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Paul Fréneaux
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Sacha Reichman
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Narjesse Karboul
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Anne Biton
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U900, 75005 Paris, France ,Ecole des Mines ParisTech, 77305 Fontainebleau, France ,grid.428999.70000 0001 2353 6535Present Address: Institut Pasteur – Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, 75015 Paris, France
| | - Liliana Mirabal-Ortega
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Magalie Larcher
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Céline Brulard
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.411777.30000 0004 1765 1563Present Address: INSERM U930, CHU Bretonneau, 37000 Tours, France
| | - Sandrine Arrufat
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - André Nicolas
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Nabila Elarouci
- grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Tatiana Popova
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Fariba Némati
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - Didier Decaudin
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - David Gentien
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - Sylvain Baulande
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, NGS Platform, 75005 Paris, France
| | - Odette Mariani
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Florent Dufour
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Sylvain Guibert
- grid.425132.3GeCo Genomics Consulting, Integragen, 91000 Evry, France
| | - Céline Vallot
- grid.425132.3GeCo Genomics Consulting, Integragen, 91000 Evry, France
| | - Livia Lumbroso-Le Rouic
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France
| | - Alexandre Matet
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Laurence Desjardins
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France
| | - Guillem Pascual-Pasto
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Mariona Suñol
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Department of Pathology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jaume Catala-Mora
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Department of Ophthalmology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Genoveva Correa Llano
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jérôme Couturier
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Emmanuel Barillot
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U900, 75005 Paris, France ,Ecole des Mines ParisTech, 77305 Fontainebleau, France
| | - Paula Schaiquevich
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Marion Gauthier-Villars
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Dominique Stoppa-Lyonnet
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Lisa Golmard
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Claude Houdayer
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France ,grid.41724.34Present Address: Department of Genetics, Rouen University Hospital, 76000 Rouen, France
| | - Hervé Brisse
- grid.418596.70000 0004 0639 6384Département d’Imagerie Médicale, Institut Curie, 75005 Paris, France
| | - Isabelle Bernard-Pierrot
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Eric Letouzé
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Universités, INSERM, 75006 Paris, France ,grid.508487.60000 0004 7885 7602Functional Genomics of Solid Tumors, équipe labellisée Ligue Contre le Cancer, Université de Paris, Université Paris 13, Paris, France
| | - Alain Viari
- grid.418116.b0000 0001 0200 3174Synergie Lyon Cancer, Plateforme de Bioinformatique “Gilles Thomas”, Centre Léon Bérard, 69008 Lyon, France
| | - Simon Saule
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Xavier Sastre-Garau
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.414145.10000 0004 1765 2136Present Address: Department of Pathology, Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France
| | - François Doz
- grid.508487.60000 0004 7885 7602Université de Paris, Paris, France ,grid.418596.70000 0004 0639 6384SIREDO Center (Care, Innovation and Research in Pediatric Adolescent and Young Adult Oncology), Institut Curie, 75005 Paris, France
| | - Angel M. Carcaboso
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Nathalie Cassoux
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Celio Pouponnot
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Guillermo Chantada
- grid.414531.60000 0001 0695 6255Precision Medicine, Hospital J.P. Garrahan, Buenos Aires, Argentina ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain ,grid.423606.50000 0001 1945 2152National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Aurélien de Reyniès
- grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Isabelle Aerts
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.418596.70000 0004 0639 6384SIREDO Center (Care, Innovation and Research in Pediatric Adolescent and Young Adult Oncology), Institut Curie, 75005 Paris, France
| | - François Radvanyi
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| |
Collapse
|
7
|
Kim ME, Polski A, Xu L, Prabakar RK, Peng CC, Reid MW, Shah R, Kuhn P, Cobrinik D, Hicks J, Berry JL. Comprehensive Somatic Copy Number Analysis Using Aqueous Humor Liquid Biopsy for Retinoblastoma. Cancers (Basel) 2021; 13:cancers13133340. [PMID: 34283049 PMCID: PMC8268955 DOI: 10.3390/cancers13133340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Aqueous humor (AH) liquid biopsy is an enriched source of cell-free circulating tumor-derived DNA for retinoblastoma (RB). The use of this AH liquid biopsy allows for genomic analysis of eyes in the absence of tumor tissue. Development of this platform was critical because direct tumor biopsy is prohibited in RB due to risk of extraocular tumor spread. In this retrospective study, we provide comprehensive, whole-genome analysis of the somatic copy number alterations (SCNAs) in 68 eyes of 64 RB patients. We show that the prevalence of specific SCNAs differ between eyes that required immediate enucleation (surgical removal) and eyes that were attempted to be saved but subsequently failed treatment, requiring secondary enucleation. Increases in chromosomal instability, or higher number of broad genomic alterations, predict higher risk clinical and biomarker features in these eyes. Prospective analyses are needed to further determine the clinical relevance and application of these findings. Abstract Aqueous humor (AH) liquid biopsy has been established as a surrogate tumor biopsy for retinoblastoma (RB). Previous AH studies have focused on highly recurrent RB somatic copy number alterations (SCNAs) including gain of 1q, 2p, 6p, and loss of 13q and 16q. In this retrospective study, we provide a comprehensive, whole-genome analysis of RB SCNAs and evaluate associated clinical features for 68 eyes of 64 RB patients from whom AH was obtained between December 2014 and October 2020. Shallow whole-genome sequencing of AH cell-free DNA was performed to assess for SCNAs. The prevalence of specific non-highly recurrent SCNAs, such as 20q gain and 8p loss, differed between primarily and secondarily enucleated eyes. Increases in chromosomal instability predict more advanced seeding morphology (p = 0.015); later age of diagnosis (p < 0.0001); greater odds of an endophytic tumor growth pattern (without retinal detachment; p = 0.047); tumor heights >10 mm (p = 0.09); and containing 6p gain, a biomarker of poor ocular prognosis (p = 0.004). The AH liquid biopsy platform is a high-yield method of whole-genome RB SCNA analysis, and SCNAs are associated with numerous clinical findings in RB eyes. Prospective analyses are encouraged to further elucidate the clinical relevance of specific SCNAs in RB.
Collapse
Affiliation(s)
- Mary E. Kim
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Ashley Polski
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Liya Xu
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
| | - Rishvanth K. Prabakar
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA;
| | - Chen-Ching Peng
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
| | - Mark W. Reid
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
| | - Rachana Shah
- Cancer and Blood Disease Institute at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Peter Kuhn
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - David Cobrinik
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - James Hicks
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jesse L. Berry
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Correspondence: ; Tel.: +1-323-442-6335
| |
Collapse
|
8
|
Shields CL, Srinivasan A, Lucio-Alvarez JA, Shields JA. Retinocytoma/retinoma: comparative analysis of clinical features in 78 tumors and rate of transformation into retinoblastoma over 20 years. J AAPOS 2021; 25:147.e1-147.e8. [PMID: 34051357 DOI: 10.1016/j.jaapos.2020.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE To explore clinical features and long-term outcomes in patients with retinocytoma/retinoma. METHODS The medical records of patients with retinocytoma/retinoma over a 20-year period were reviewed retrospectively to compare patient age at presentation (<4 vs ≥4 years), tumor type, and tumor focality (unifocal vs multifocal). RESULTS Of 2,021 patients with retinoblastoma, 62 (3%; median age, 5 years; 85% white; 58% male) had 78 tumors: 54 retinocytoma (69%) and 24 retinoma (31%). Median basal tumor diameter was 6.0 mm; mean thickness, 2.3 mm. Younger patients (<4 years) were more likely Hispanic (19% vs 2%; P = 0.04), with leukocoria (24% vs 0%; P = 0.003), and with calcification in ≤50% of the tumor (96% vs 70%; P = 0.007). Compared with retinoma, retinocytoma was more prevalent in older patients (median age, 9 vs 2 years; P < 0.001), with fewer symptoms (38% vs 69%; P = 0.04), larger median basal diameter (7.0 vs 3.0 mm; P < 0.001), greater thickness (2.5 vs 1.6 mm; P = 0.02), and less frequently with additional retinoblastoma in either eye (9% vs 71%; P < 0.0001). Compared with multifocal tumors, unifocal tumors occurred more frequently with lack of symptoms (62% vs 25%; P = 0.03), greater median basal diameter (6.0 vs 3.3; P = 0.003), and greater thickness (2.5 vs 1.5 mm; P = 0.006). Tumor transformation into retinoblastoma was found in 2.7% by 2 years, 9.2% by 5 years, 15.3% by 10-20 years. The only factor predictive of transformation was increasing thickness (P = 0.003; hazard ratio of 2.83 per 1 mm increase). CONCLUSIONS In our study cohort, the rate of retinocytoma/retinoma transformation into retinoblastoma increased from 2 to 10-20 years of age. The only factor predictive of transformation was increasing tumor thickness.
Collapse
Affiliation(s)
- Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Archana Srinivasan
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - J Antonio Lucio-Alvarez
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jerry A Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Aschero R, Francis JH, Ganiewich D, Gomez-Gonzalez S, Sampor C, Zugbi S, Ottaviani D, Lemelle L, Mena M, Winter U, Correa Llano G, Lamas G, Lubieniecki F, Szijan I, Mora J, Podhajcer O, Doz F, Radvanyi F, Abramson DH, Llera AS, Schaiquevich PS, Lavarino C, Chantada GL. Recurrent Somatic Chromosomal Abnormalities in Relapsed Extraocular Retinoblastoma. Cancers (Basel) 2021; 13:cancers13040673. [PMID: 33567541 PMCID: PMC7915502 DOI: 10.3390/cancers13040673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Relapse outside the eye of retinoblastoma (the most common eye cancer in children) is an uncommon event in developed countries, however it is the main cause of death in patients with retinoblastoma worldwide. The genomic features of this population are not known. We studied 23 cases from four countries and found a characteristic pattern in chromosomal copy number alterations that could help guide future clinical management of these patients. Abstract Most reports about copy number alterations (CNA) in retinoblastoma relate to patients with intraocular disease and features of children with extraocular relapse remain unknown, so we aimed to describe the CNA in this population. We evaluated 23 patients and 27 specimens from 4 centers. Seventeen cases had extraocular relapse after initial enucleation and six cases after an initial preservation attempt. We performed an analysis of CNA and BCOR gene alteration by SNP array (Single Nucleotide Polymorfism array), whole-exome sequencing, IMPACT panel and CGH array (Array-based comparative genomic hybridization). All cases presented CNA at a higher prevalence than those reported in previously published studies for intraocular cases. CNA previously reported for intraocular retinoblastoma were found at a high frequency in our cohort: gains in 1q (69.5%), 2p (60.9%) and 6p (86.9%), and 16q loss (78.2%). Other, previously less-recognized, CNA were found including loss of 11q (34.8%), gain of 17q (56.5%), loss of 19q (30.4%) and BCOR alterations were present in 72.7% of our cases. A high number of CNA including 11q deletions, 17q gains, 19q loss, and BCOR alterations, are more common in extraocular retinoblastoma. Identification of these features may be correlated with a more aggressive tumor warranting consideration for patient management.
Collapse
Affiliation(s)
- Rosario Aschero
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires 1245, Argentina; (R.A.); (U.W.); (G.L.); (F.L.)
- National Scientific and Technical Research Council, CONICET, Buenos Aires 1425, Argentina; (S.Z.); (O.P.); (A.S.L.); (P.S.S.)
| | - Jasmine H. Francis
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.H.F.); (D.H.A.)
| | - Daiana Ganiewich
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires 1405, Argentina;
| | - Soledad Gomez-Gonzalez
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (S.G.-G.); (J.M.); (C.L.)
| | - Claudia Sampor
- Hematology-Oncology Service, Hospital de Pediatría JP Garrahan, Buenos Aires 1245, Argentina;
| | - Santiago Zugbi
- National Scientific and Technical Research Council, CONICET, Buenos Aires 1425, Argentina; (S.Z.); (O.P.); (A.S.L.); (P.S.S.)
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires 1245, Argentina;
| | - Daniela Ottaviani
- University of Paris and Institut Curie (SIREDO Center: Care, Innovation and Reserach in pediatric, Adolescent and Young Adults Oncology), CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; (D.O.); (L.L.); (F.D.); (F.R.)
| | - Lauriane Lemelle
- University of Paris and Institut Curie (SIREDO Center: Care, Innovation and Reserach in pediatric, Adolescent and Young Adults Oncology), CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; (D.O.); (L.L.); (F.D.); (F.R.)
| | - Marcela Mena
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires 1245, Argentina;
| | - Ursula Winter
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires 1245, Argentina; (R.A.); (U.W.); (G.L.); (F.L.)
| | - Genoveva Correa Llano
- Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Gabriela Lamas
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires 1245, Argentina; (R.A.); (U.W.); (G.L.); (F.L.)
| | - Fabiana Lubieniecki
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires 1245, Argentina; (R.A.); (U.W.); (G.L.); (F.L.)
| | - Irene Szijan
- Genetic and Molecular Biology, University of Buenos Aires, Buenos Aires 1113, Argentina;
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (S.G.-G.); (J.M.); (C.L.)
- Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Osvaldo Podhajcer
- National Scientific and Technical Research Council, CONICET, Buenos Aires 1425, Argentina; (S.Z.); (O.P.); (A.S.L.); (P.S.S.)
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires 1405, Argentina;
| | - François Doz
- University of Paris and Institut Curie (SIREDO Center: Care, Innovation and Reserach in pediatric, Adolescent and Young Adults Oncology), CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; (D.O.); (L.L.); (F.D.); (F.R.)
| | - François Radvanyi
- University of Paris and Institut Curie (SIREDO Center: Care, Innovation and Reserach in pediatric, Adolescent and Young Adults Oncology), CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; (D.O.); (L.L.); (F.D.); (F.R.)
| | - David H. Abramson
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.H.F.); (D.H.A.)
| | - Andrea S. Llera
- National Scientific and Technical Research Council, CONICET, Buenos Aires 1425, Argentina; (S.Z.); (O.P.); (A.S.L.); (P.S.S.)
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires 1405, Argentina;
| | - Paula S. Schaiquevich
- National Scientific and Technical Research Council, CONICET, Buenos Aires 1425, Argentina; (S.Z.); (O.P.); (A.S.L.); (P.S.S.)
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires 1245, Argentina;
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (S.G.-G.); (J.M.); (C.L.)
- Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Guillermo L. Chantada
- National Scientific and Technical Research Council, CONICET, Buenos Aires 1425, Argentina; (S.Z.); (O.P.); (A.S.L.); (P.S.S.)
- Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
- Correspondence:
| |
Collapse
|
10
|
Winter U, Ganiewich D, Ottaviani D, Zugbi S, Aschero R, Sendoya JM, Cafferata EG, Mena M, Sgroi M, Sampor C, Lubieniecki F, Fandiño A, Abba MC, Doz F, Podhjacer O, Carcaboso AM, Letouzé E, Radvanyi F, Chantada GL, Llera AS, Schaiquevich P. Genomic and Transcriptomic Tumor Heterogeneity in Bilateral Retinoblastoma. JAMA Ophthalmol 2021; 138:569-574. [PMID: 32191268 DOI: 10.1001/jamaophthalmol.2020.0427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Comprehensive understanding of the genomic and gene-expression differences between retinoblastoma tumors from patients with bilateral disease may help to characterize risk and optimize treatment according to individual tumor characteristics. Objective To compare the genomic features between each eye and a specimen from an orbital relapse in patients with bilateral retinoblastoma. Design, Setting, and Participants In this case, 2 patients with retinoblastoma underwent upfront bilateral enucleation. Tumor samples were subjected to genomic and gene-expression analysis. Primary cell cultures were established from both of the tumors of 1 patient and were used for gene-expression studies. Main Outcomes and Measures Whole-exome sequencing was performed on an Illumina platform for fresh tumor samples and DNA arrays (CytoScan or OncoScan) were used for paraffin-embedded samples and cell lines. Gene-expression analysis was performed using Agilent microarrays. Germinal and somatic alterations, copy number alterations, and differential gene expression were assessed. Results After initial bilateral enucleation, patient 1 showed massive choroidal and laminar optic nerve infiltration, while patient 2 showed choroidal and laminar optic nerve invasion. Patient 1 developed left-eye orbital recurrence and bone marrow metastasis less than 1 year after enucleation. Both ocular tumors showed gains on 1q and 6p but presented other distinct genomic alterations, including an additional gain in 2p harboring the N-myc proto-oncogene (MYCN) in the left tumor and orbital recurrence. Similar copy number alterations between the orbital recurrence and the left eye supported the origin of the relapse, with an additional 11q loss only detected in the orbital relapse. Specimens from patient 2 showed common copy number gains and losses, but further evolution rendered a 2p gain spanning MYCN in the left tumor. For this patient, microarray expression analysis showed differential expression of the MYCN and the forkhead box protein G1 (FOXG1) gene pathways between the left and right tumors. Conclusions and Relevance Differential genomic and gene expression features were observed between tumors in 2 patients with bilateral disease, confirming intereye heterogeneity that might be considered if targeted therapies are used in such patients. Chromosomal alteration profile supported the origin of the orbital recurrence from the homolateral eye in 1 patient. Loss in chromosome 11q may have been associated with extraocular relapse in this patient.
Collapse
Affiliation(s)
- Ursula Winter
- Precision Medicine, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Daiana Ganiewich
- Precision Medicine, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina.,Laboratory of Molecular and Cellular Therapy, Instituto Leloir, Buenos Aires, Argentina
| | - Daniela Ottaviani
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Institut Curie, Paris, France
| | - Santiago Zugbi
- Precision Medicine, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Rosario Aschero
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina.,Pathology Service, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Juan Martin Sendoya
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, Buenos Aires, Argentina
| | - Eduardo G Cafferata
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina.,Laboratory of Molecular and Cellular Therapy, Instituto Leloir, Buenos Aires, Argentina
| | - Marcela Mena
- Precision Medicine, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Mariana Sgroi
- Ophthalmology Service, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Claudia Sampor
- Oncology Service, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Fabiana Lubieniecki
- Pathology Service, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Adriana Fandiño
- Ophthalmology Service, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Martin C Abba
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina.,Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medical Sciences, Universidad de La Plata, La Plata, Argentina
| | - François Doz
- Soins, Innovation, Recherche, en Oncologie de l'Enfant, de l'Adolescent et de l'Adulte Jeune (SIREDO) Oncology Center, Institut Curie, Paris, France
| | - Osvaldo Podhjacer
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina.,Laboratory of Molecular and Cellular Therapy, Instituto Leloir, Buenos Aires, Argentina
| | - Angel Montero Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program and Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Functional Genomics of Solid Tumor, Labex Immuno-Oncology, Équipe Labellisée Ligue Contre le Cancer, Université de Paris, Université Paris 13, Paris, France
| | - François Radvanyi
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Institut Curie, Paris, France
| | - Guillermo L Chantada
- Precision Medicine, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Andrea S Llera
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina.,Laboratory of Molecular and Cellular Therapy, Instituto Leloir, Buenos Aires, Argentina
| | - Paula Schaiquevich
- Precision Medicine, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| |
Collapse
|
11
|
Miraldi Utz V, Brightman DS, Sandoval MA, Hufnagel RB, Saal HM. Systemic and ocular manifestations of a patient with mosaic ARID1A-associated Coffin-Siris syndrome and review of select mosaic conditions with ophthalmic manifestations. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:644-655. [PMID: 32888375 DOI: 10.1002/ajmg.c.31839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Mosaic genetic mutations may be somatic, germline, or "gonosomal" and have the potential to cause genetic syndromes, disorders, or malformations. Mutations can occur at any point in embryonic development and the timing determines the extent of distribution of the mutation throughout the body and different tissue types. The eye and visual pathway offer a unique opportunity to study somatic and gonosomal mosaic mutations as the eye consists of tissues derived from all three germ layers allowing disease pathology to be assessed with noninvasive imaging. In this review, we describe systemic and ocular manifestations in a child with mosaic Coffin-Siris syndrome. The patient presented with a significant medical history of accommodative esotropia and hyperopia, macrocephaly, polydactyly, global developmental delay, hypotonia, ureteropelvic junction (UPJ) obstruction, and brain MRI abnormalities. The ophthalmic findings in this patient were nonspecific, however, they are consistent with ocular manifestations reported in other patients with Coffin-Siris syndrome. We also review ophthalmic findings of select mosaic chromosomal and single-gene disorders. Ophthalmic assessment alongside clinical genetic testing may play an important role in diagnosis of genetic syndromes as well as understanding disease pathology, particularly when mosaicism plays a role.
Collapse
Affiliation(s)
- Virginia Miraldi Utz
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Diana S Brightman
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Monica A Sandoval
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Robert B Hufnagel
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Howard M Saal
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Retinoblastoma: Etiology, Modeling, and Treatment. Cancers (Basel) 2020; 12:cancers12082304. [PMID: 32824373 PMCID: PMC7465685 DOI: 10.3390/cancers12082304] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Retinoblastoma is a retinal cancer that is initiated in response to biallelic loss of RB1 in almost all cases, together with other genetic/epigenetic changes culminating in the development of cancer. RB1 deficiency makes the retinoblastoma cell-of-origin extremely susceptible to cancerous transformation, and the tumor cell-of-origin appears to depend on the developmental stage and species. These are important to establish reliable preclinical models to study the disease and develop therapies. Although retinoblastoma is the most curable pediatric cancer with a high survival rate, advanced tumors limit globe salvage and are often associated with high-risk histopathological features predictive of dissemination. The advent of chemotherapy has improved treatment outcomes, which is effective for globe preservation with new routes of targeted drug delivery. However, molecularly targeted therapeutics with more effectiveness and less toxicity are needed. Here, we review the current knowledge concerning retinoblastoma genesis with particular attention to the genomic and transcriptomic landscapes with correlations to clinicopathological characteristics, as well as the retinoblastoma cell-of-origin and current disease models. We further discuss current treatments, clinicopathological correlations, which assist in guiding treatment and may facilitate globe preservation, and finally we discuss targeted therapeutics for future treatments.
Collapse
|
13
|
Polski A, Xu L, Prabakar RK, Gai X, Kim JW, Shah R, Jubran R, Kuhn P, Cobrinik D, Hicks J, Berry JL. Variability in retinoblastoma genome stability is driven by age and not heritability. Genes Chromosomes Cancer 2020; 59:584-590. [PMID: 32390242 DOI: 10.1002/gcc.22859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma (RB) is a childhood intraocular cancer initiated by biallelic inactivation of the RB tumor suppressor gene (RB1-/- ). RB can be hereditary (germline RB1 pathogenic allele is present) or non-hereditary. Somatic copy number alterations (SCNAs) contribute to subsequent tumorigenesis. Previous studies of only enucleated RB eyes have reported associations between heritability status and the prevalence of SCNAs. Herein, we use an aqueous humor (AH) liquid biopsy to investigate RB genomic profiles in the context of germline RB1 status, age, and International Intraocular Retinoblastoma Classification (IIRC) clinical grouping for both enucleated and salvaged eyes. Between 2014 and 2019, AH was sampled from a total of 54 eyes of 50 patients. Germline RB1 status was determined from clinical blood testing, and cell-free DNA from AH was analyzed for SCNAs. Of the 50 patients, 23 (46.0%; 27 eyes) had hereditary RB, and 27 (54.0%, 27 eyes) had non-hereditary RB. Median age at diagnosis was comparable between hereditary (13 ± 10 months) and non-hereditary (13 ± 8 months) eyes (P = 0.818). There was no significant difference in the prevalence or number of SCNAs based on (1) hereditary status (P > 0.56) or (2) IIRC grouping (P > 0.47). There was, however, a significant correlation between patient age at diagnosis, and (1) number of total SCNAs (r[52] = 0.672, P < 0.00001) and (2) number of highly-recurrent RB SCNAs (r[52] = 0.616, P < 0.00001). This evidence does not support the theory that specific molecular or genomic subtypes exist between hereditary and non-hereditary RB; rather, the prevalence of genomic alterations in RB eyes is strongly related to patient age at diagnosis.
Collapse
Affiliation(s)
- Ashley Polski
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Liya Xu
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA
| | - Rishvanth K Prabakar
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Jonathan W Kim
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Rachana Shah
- Cancer and Blood Disease Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Rima Jubran
- Cancer and Blood Disease Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Peter Kuhn
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA.,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - David Cobrinik
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - James Hicks
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jesse L Berry
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
14
|
Munier FL, Beck-Popovic M, Chantada GL, Cobrinik D, Kivelä TT, Lohmann D, Maeder P, Moll AC, Carcaboso AM, Moulin A, Schaiquevich P, Bergin C, Dyson PJ, Houghton S, Puccinelli F, Vial Y, Gaillard MC, Stathopoulos C. Conservative management of retinoblastoma: Challenging orthodoxy without compromising the state of metastatic grace. "Alive, with good vision and no comorbidity". Prog Retin Eye Res 2019; 73:100764. [PMID: 31173880 DOI: 10.1016/j.preteyeres.2019.05.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Retinoblastoma is lethal by metastasis if left untreated, so the primary goal of therapy is to preserve life, with ocular survival, visual preservation and quality of life as secondary aims. Historically, enucleation was the first successful therapeutic approach to decrease mortality, followed over 100 years ago by the first eye salvage attempts with radiotherapy. This led to the empiric delineation of a window for conservative management subject to a "state of metastatic grace" never to be violated. Over the last two decades, conservative management of retinoblastoma witnessed an impressive acceleration of improvements, culminating in two major paradigm shifts in therapeutic strategy. Firstly, the introduction of systemic chemotherapy and focal treatments in the late 1990s enabled radiotherapy to be progressively abandoned. Around 10 years later, the advent of chemotherapy in situ, with the capitalization of new routes of targeted drug delivery, namely intra-arterial, intravitreal and now intracameral injections, allowed significant increase in eye preservation rate, definitive eradication of radiotherapy and reduction of systemic chemotherapy. Here we intend to review the relevant knowledge susceptible to improve the conservative management of retinoblastoma in compliance with the "state of metastatic grace", with particular attention to (i) reviewing how new imaging modalities impact the frontiers of conservative management, (ii) dissecting retinoblastoma genesis, growth patterns, and intraocular routes of tumor propagation, (iii) assessing major therapeutic changes and trends, (iv) proposing a classification of relapsing retinoblastoma, (v) examining treatable/preventable disease-related or treatment-induced complications, and (vi) appraising new therapeutic targets and concepts, as well as liquid biopsy potentiality.
Collapse
Affiliation(s)
- Francis L Munier
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland.
| | - Maja Beck-Popovic
- Unit of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Guillermo L Chantada
- Hemato-Oncology Service, Hospital JP Garrahan, Buenos Aires, Argentina; Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - David Cobrinik
- The Vision Center and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; USC Roski Eye Institute, Department of Biochemistry & Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Tero T Kivelä
- Department of Ophthalmology, Ocular Oncology and Pediatric Ophthalmology Services, Helsinki University Hospital, Helsinki, Finland
| | - Dietmar Lohmann
- Eye Oncogenetics Research Group, Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Philippe Maeder
- Unit of Neuroradiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Annette C Moll
- UMC, Vrije Universiteit Amsterdam, Department of Ophthalmology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Angel Montero Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Alexandre Moulin
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Paula Schaiquevich
- Unit of Clinical Pharmacokinetics, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Ciara Bergin
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Susan Houghton
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Francesco Puccinelli
- Interventional Neuroradiology Unit, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Yvan Vial
- Materno-Fetal Medicine Unit, Woman-Mother-Child Department, University Hospital of Lausanne, Switzerland
| | - Marie-Claire Gaillard
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Christina Stathopoulos
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Kooi IE, Mol BM, Massink MPG, de Jong MC, de Graaf P, van der Valk P, Meijers-Heijboer H, Kaspers GJL, Moll AC, te Riele H, Cloos J, Dorsman JC. A Meta-Analysis of Retinoblastoma Copy Numbers Refines the List of Possible Driver Genes Involved in Tumor Progression. PLoS One 2016; 11:e0153323. [PMID: 27115612 PMCID: PMC4846005 DOI: 10.1371/journal.pone.0153323] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/28/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND While RB1 loss initiates retinoblastoma development, additional somatic copy number alterations (SCNAs) can drive tumor progression. Although SCNAs have been identified with good concordance between studies at a cytoband resolution, accurate identification of single genes for all recurrent SCNAs is still challenging. This study presents a comprehensive meta-analysis of genome-wide SCNAs integrated with gene expression profiling data, narrowing down the list of plausible retinoblastoma driver genes. METHODS We performed SCNA profiling of 45 primary retinoblastoma samples and eight retinoblastoma cell lines by high-resolution microarrays. We combined our data with genomic, clinical and histopathological data of ten published genome-wide SCNA studies, which strongly enhanced the power of our analyses (N = 310). RESULTS Comprehensive recurrence analysis of SCNAs in all studies integrated with gene expression data allowed us to reduce candidate gene lists for 1q, 2p, 6p, 7q and 13q to a limited gene set. Besides the well-established driver genes RB1 (13q-loss) and MYCN (2p-gain) we identified CRB1 and NEK7 (1q-gain), SOX4 (6p-gain) and NUP205 (7q-gain) as novel retinoblastoma driver candidates. Depending on the sample subset and algorithms used, alternative candidates were identified including MIR181 (1q-gain) and DEK (6p gain). Remarkably, our study showed that copy number gains rarely exceeded change of one copy, even in pure tumor samples with 100% homozygosity at the RB1 locus (N = 34), which is indicative for intra-tumor heterogeneity. In addition, profound between-tumor variability was observed that was associated with age at diagnosis and differentiation grades. INTERPRETATION Since focal alterations at commonly altered chromosome regions were rare except for 2p24.3 (MYCN), further functional validation of the oncogenic potential of the described candidate genes is now required. For further investigations, our study provides a refined and revised set of candidate retinoblastoma driver genes.
Collapse
Affiliation(s)
- Irsan E. Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Berber M. Mol
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Maarten P. G. Massink
- Department of Bio-medical Genetics, University Medical center Utrecht, Utrecht, The Netherlands
| | - Marcus C. de Jong
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul van der Valk
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan J. L. Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Annette C. Moll
- Department of Ophthalmology, VU University Medical Center, Amsterdam, the Netherlands
| | - Hein te Riele
- Division of Biological Stress Response, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Josephine C. Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Kooi IE, Mol BM, Moll AC, van der Valk P, de Jong MC, de Graaf P, van Mil SE, Schouten-van Meeteren AY, Meijers-Heijboer H, Kaspers GL, te Riele H, Cloos J, Dorsman JC. Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression. EBioMedicine 2015; 2:660-70. [PMID: 26288838 PMCID: PMC4534696 DOI: 10.1016/j.ebiom.2015.06.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Retinoblastoma is a pediatric eye cancer associated with RB1 loss or MYCN amplification (RB1 (+/+) MYCN(A) ). There are controversies concerning the existence of molecular subtypes within RB1(-/-) retinoblastoma. To test whether these molecular subtypes exist, we performed molecular profiling. METHODS Genome-wide mRNA expression profiling was performed on 76 primary human retinoblastomas. Expression profiling was complemented by genome-wide DNA profiling and clinical, histopathological, and ex vivo drug sensitivity data. FINDINGS RNA and DNA profiling identified major variability between retinoblastomas. While gene expression differences between RB1 (+/+) MYCN(A) and RB1(-/-) tumors seemed more dichotomous, differences within the RB1(-/-) tumors were gradual. Tumors with high expression of a photoreceptor gene signature were highly differentiated, smaller in volume and diagnosed at younger age compared with tumors with low photoreceptor signature expression. Tumors with lower photoreceptor expression showed increased expression of genes involved in M-phase and mRNA and ribosome synthesis and increased frequencies of somatic copy number alterations. INTERPRETATION Molecular, clinical and histopathological differences between RB1(-/-) tumors are best explained by tumor progression, reflected by a gradual loss of differentiation and photoreceptor expression signature. Since copy number alterations were more frequent in tumors with less photoreceptorness, genomic alterations might be drivers of tumor progression. RESEARCH IN CONTEXT Retinoblastoma is an ocular childhood cancer commonly caused by mutations in the RB1 gene. In order to determine optimal treatment, tumor subtyping is considered critically important. However, except for very rare retinoblastomas without an RB1 mutation, there are controversies as to whether subtypes of retinoblastoma do exist. Our study shows that retinoblastomas are highly diverse but rather than reflecting distinct tumor types with a different etiology, our data suggests that this diversity is a result of tumor progression driven by cumulative genetic alterations. Therefore, retinoblastomas should not be categorized in distinct subtypes, but be described according to their stage of progression.
Collapse
Affiliation(s)
- Irsan E. Kooi
- Department of Clinical Genetics, VU University Medical Center, Room J-376, Van der Boechorststraat 7, 108 1BT Amsterdam, The Netherlands
| | - Berber M. Mol
- Department of Clinical Genetics, VU University Medical Center, Room J-376, Van der Boechorststraat 7, 108 1BT Amsterdam, The Netherlands
| | - Annette C. Moll
- Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul van der Valk
- Department of Pathology, VU University Medical Center, 3E47, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marcus C. de Jong
- Department of Radiology and Nuclear Medicine, VU University Medical Center, 4 F005, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, 4 F005, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Saskia E. van Mil
- Department of Clinical Genetics, VU University Medical Center, Room J-376, Van der Boechorststraat 7, 108 1BT Amsterdam, The Netherlands
| | | | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, VU University Medical Center, Room J-376, Van der Boechorststraat 7, 108 1BT Amsterdam, The Netherlands
| | - Gertjan L. Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, 9D28, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Hein te Riele
- Department of Clinical Genetics, VU University Medical Center, Room J-376, Van der Boechorststraat 7, 108 1BT Amsterdam, The Netherlands
- Division of Biological Stress Response, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, 9D28, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Hematology, VU University Medical Center, CCA 3.26, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Josephine C. Dorsman
- Department of Clinical Genetics, VU University Medical Center, Room J-376, Van der Boechorststraat 7, 108 1BT Amsterdam, The Netherlands
- Corresponding author at: J-376, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Next generation sequencing in sporadic retinoblastoma patients reveals somatic mosaicism. Eur J Hum Genet 2015; 23:1523-30. [PMID: 25712084 DOI: 10.1038/ejhg.2015.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 12/03/2014] [Accepted: 12/25/2014] [Indexed: 11/08/2022] Open
Abstract
In about 50% of sporadic cases of retinoblastoma, no constitutive RB1 mutations are detected by conventional methods. However, recent research suggests that, at least in some of these cases, there is somatic mosaicism with respect to RB1 normal and mutant alleles. The increased availability of next generation sequencing improves our ability to detect the exact percentage of patients with mosaicism. Using this technology, we re-tested a series of 40 patients with sporadic retinoblastoma: 10 of them had been previously classified as constitutional heterozygotes, whereas in 30 no RB1 mutations had been found in lymphocytes. In 3 of these 30 patients, we have now identified low-level mosaic variants, varying in frequency between 8 and 24%. In 7 out of the 10 cases previously classified as heterozygous from testing blood cells, we were able to test additional tissues (ocular tissues, urine and/or oral mucosa): in three of them, next generation sequencing has revealed mosaicism. Present results thus confirm that a significant fraction (6/40; 15%) of sporadic retinoblastoma cases are due to postzygotic events and that deep sequencing is an efficient method to unambiguously distinguish mosaics. Re-testing of retinoblastoma patients through next generation sequencing can thus provide new information that may have important implications with respect to genetic counseling and family care.
Collapse
|
18
|
Pentimalli F, Indovina P, Giordano A. Retinoblastoma beyondRB1: recent advances in genetic biomarkers. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Mol BM, Massink MPG, van der Hout AH, Dommering CJ, Zaman JMA, Bosscha MI, Kors WA, Meijers-Heijboer HE, Kaspers GJL, Riele HT, Moll AC, Cloos J, Dorsman JC. High resolution SNP array profiling identifies variability in retinoblastoma genome stability. Genes Chromosomes Cancer 2013; 53:1-14. [PMID: 24249257 DOI: 10.1002/gcc.22111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/21/2013] [Indexed: 12/18/2022] Open
Abstract
Both hereditary and nonhereditary retinoblastoma (Rb) are commonly initiated by loss of both copies of the retinoblastoma tumor suppressor gene (RB1), while additional genomic changes are required for tumor initiation and progression. Our aim was to determine whether there is genomic heterogeneity between different clinical Rb subtypes. Therefore, 21 Rb tumors from 11 hereditary patients and 10 nonhereditary Rb patients were analyzed using high-resolution single nucleotide polymorphism (SNP) arrays and gene losses and gains were validated with Multiplex Ligation-dependent Probe Amplification. In these tumors only a few focal aberrations were detected. The most frequent was a focal gain on chromosome 2p24.3, the minimal region of gain encompassing the oncogene MYCN. The genes BAZ1A, OTX2, FUT8, and AKT1 were detected in four focal regions on chromosome 14 in one nonhereditary Rb. There was a large difference in number of copy number aberrations between tumors. A subset of nonhereditary Rbs turned out to be the most genomic unstable, while especially very young patients with hereditary Rb display stable genomes. Established Rb copy number aberrations, including gain of chromosome arm 1q and loss of chromosome arm 16q, turned out to be preferentially associated with the nonhereditary Rbs with later age of diagnosis. In contrast, copy number neutral loss of heterozygosity was detected mainly on chromosome 13, where RB1 resides, irrespective of hereditary status or age. Focal amplifications and deletions and copy number neutral loss of heterozygosity besides chromosome 13 appear to be rare events in retinoblastoma.
Collapse
Affiliation(s)
- Berber M Mol
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Venturi C, Bracco S, Cerase A, Cioni S, Galluzzi P, Gennari P, Vallone IM, Tinturini R, Vittori C, De Francesco S, Caini M, D'Ambrosio A, Toti P, Renieri A, Hadjistilianou T. Superselective ophthalmic artery infusion of melphalan for intraocular retinoblastoma: preliminary results from 140 treatments. Acta Ophthalmol 2013; 91:335-42. [PMID: 22268993 DOI: 10.1111/j.1755-3768.2011.02296.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To report our experience in superselective ophthalmic artery infusion of melphalan (SOAIM) for intraocular retinoblastoma. METHODS From June 2008 to October 2010, 38 patients (18 women, 20 men; age range at first treatment, 7 months to 22 years) with 41 eyes with retinoblastoma were scheduled for SOAIM, for 17 newly diagnosed retinoblastomas Tumour, Node and Metastasis (TNM) 7th Edition 1a (n = 1), 1b (n = 1), 2a (n = 7), 2b (n = 4) and 3a (n = 4) and 24 retinoblastomas with partial remission/relapse TNM 7th Edition 1b (n = 13), 2a (n = 1) and 2b (n = 10). Eight patients (ten eyes) have been treated by SOAIM alone. Follow-up was 6-27 months in 28 patients (30 eyes). RESULTS Ophthalmic artery cannulation failed in two patients. Thirty-six patients underwent 140 treatments by internal (n = 112) or external (n = 28) carotid arteries. No major procedural complications occurred. Two patients have been lost to follow-up. Remaining 34 patients (37 eyes) had no metastatic disease. Four patients suffered permanent ocular complications: chorioretinal dystrophy (n = 2), ptosis (n = 1) and strabismus/exotropia (n = 1). Eight (22%) eyes in eight (24%) patients underwent enucleation: 7/16 (43%) newly diagnosed retinoblastomas and 1/22 (4.5%) retinoblastomas undergoing partial remission/relapse. For all treated eyes, Kaplan-Meier eye enucleation-free rates (K-M) were 85.4% (95% CI, 73.3-97.5%), 74.4% (95% CI, 57-91.8%) and still stable at 6, 12 months and 2 years, respectively. For eyes with partial remission/relapse, and eyes at presentation, K-M at 2 years were 95.5% (95% CI, 86.9-100%) and 45.6% (95% CI, 16.6-74.6%), respectively. CONCLUSION Superselective ophthalmic artery infusion of melphalan was safe and powerful, especially following other therapies. Superselective ophthalmic artery infusion of melphalan should be added to focal therapies spectrum. In selected cases, melphalan should be combined with other chemotherapeutic agents.
Collapse
Affiliation(s)
- Carlo Venturi
- Unit NINT Neuroimaging and Neurointervention, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico Santa Maria alle Scotte, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Thériault BL, Dimaras H, Gallie BL, Corson TW. The genomic landscape of retinoblastoma: a review. Clin Exp Ophthalmol 2013; 42:33-52. [PMID: 24433356 DOI: 10.1111/ceo.12132] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/07/2013] [Indexed: 12/13/2022]
Abstract
Retinoblastoma is a paediatric ocular tumour that continues to reveal much about the genetic basis of cancer development. Study of genomic aberrations in retinoblastoma tumours has exposed important mechanisms of cancer development and identified oncogenes and tumour suppressors that offer potential points of therapeutic intervention. The recent development of next-generation genomic technologies has allowed further refinement of the genomic landscape of retinoblastoma at high resolution. In a relatively short period of time, a wealth of genetic and epigenetic data has emerged on a small number of tumour samples. These data highlight the inherent molecular complexity of this cancer despite the fact that most retinoblastomas are initiated by the inactivation of a single tumour suppressor gene. This review outlines the current understanding of the genomic, genetic and epigenetic changes in retinoblastoma, highlighting recent genome-wide analyses that have identified exciting candidate genes worthy of further validation as potential prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Brigitte L Thériault
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol 2013; 14:327-34. [PMID: 23498719 DOI: 10.1016/s1470-2045(13)70045-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Retinoblastoma is the childhood retinal cancer that defined tumour-suppressor genes. Previous work shows that mutation of both alleles of the RB1 retinoblastoma suppressor gene initiates disease. We aimed to characterise non-familial retinoblastoma tumours with no detectable RB1 mutations. METHODS Of 1068 unilateral non-familial retinoblastoma tumours, we compared those with no evidence of RB1 mutations (RB1(+/+)) with tumours carrying a mutation in both alleles (RB1(-/-)). We analysed genomic copy number, RB1 gene expression and protein function, retinal gene expression, histological features, and clinical data. FINDINGS No RB1 mutations (RB1(+/+)) were reported in 29 (2·7%) of 1068 unilateral retinoblastoma tumours. 15 of the 29 RB1(+/+) tumours had high-level MYCN oncogene amplification (28-121 copies; RB1(+/+)MYCN(A)), whereas none of 93 RB1(-/-) primary tumours tested showed MYCN amplification (p<0·0001). RB1(+/+)MYCN(A) tumours expressed functional RB1 protein, had fewer overall genomic copy-number changes in genes characteristic of retinoblastoma than did RB1(-/-) tumours, and showed distinct aggressive histological features. MYCN amplification was the sole copy-number change in one RB1(+/+)MYCN(A) retinoblastoma. One additional MYCN(A) tumour was discovered after the initial frequencies were determined, and this is included in further analyses. Median age at diagnosis of the 17 children with RB1(+/+)MYCN(A) tumours was 4·5 months (IQR 3·5-10), compared with 24 months (15-37) for 79 children with non-familial unilateral RB1(-/-) retinoblastoma. INTERPRETATION Amplification of the MYCN oncogene might initiate retinoblastoma in the presence of non-mutated RB1 genes. These unilateral RB1(+/+)MYCN(A) retinoblastomas are characterised by distinct histological features, only a few of the genomic copy-number changes that are characteristic of retinoblastoma, and very early age of diagnosis. FUNDING National Cancer Institute-National Institutes of Health, Canadian Institutes of Health Research, German Research Foundation, Canadian Retinoblastoma Society, Hyland Foundation, Toronto Netralaya and Doctors Lions Clubs, Ontario Ministry of Health and Long Term Care, UK-Essen, and Foundations Avanti-STR and KiKa.
Collapse
|
23
|
Livide G, Epistolato MC, Amenduni M, Disciglio V, Marozza A, Mencarelli MA, Toti P, Lazzi S, Hadjistilianou T, De Francesco S, D'Ambrosio A, Renieri A, Ariani F. Epigenetic and copy number variation analysis in retinoblastoma by MS-MLPA. Pathol Oncol Res 2012; 18:703-12. [PMID: 22278416 DOI: 10.1007/s12253-012-9498-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/03/2012] [Indexed: 12/31/2022]
Abstract
Retinoblastoma is the most common primary intraocular malignancy in children. Two step inactivation of RB1 (M1-M2) represents the key event in the pathogenesis of retinoblastoma but additional genetic and epigenetic events (M3-Mn) are required for tumor development. In the present study, we employed Methylation Specific Multiplex Ligation Probe Assay to investigate methylation status and copy number changes of 25 and 39 oncosuppressor genes, respectively. This technique was applied to analyse 12 retinoblastomas (5 bilateral and 7 unilateral) and results were compared to corresponding normal retina. We identified hypermethylation in seven new genes: MSH6 (50%), CD44 (42%), PAX5 (42%), GATA5 (25%), TP53 (8%), VHL (8%) and GSTP1 (8%) and we confirmed the previously reported hypermethylation of MGMT (58%), RB1 (17%) and CDKN2 (8%). These genes belong to key pathways including DNA repair, pRB and p53 signalling, transcriptional regulation, protein degradation, cell-cell interaction, cellular adhesion and migration. In the same group of retinoblastomas, a total of 29 copy number changes (19 duplications and 10 deletions) have been identified. Interestingly, we found deletions of the following oncosuppressor genes that might contribute to drive retinoblastoma tumorigenesis: TP53, CDH13, GATA5, CHFR, TP73 and IGSF4. The present data highlight the importance of epigenetic changes in retinoblastoma and indicate seven hypermethylated oncosuppressors never associated before to retinoblastoma pathogenesis. This study also confirms the presence of copy number variations in retinoblastoma, expecially in unilateral cases (mean 3 ± 1.3) where these changes were found more frequently respect to bilateral cases (mean 1.4 ± 1.1).
Collapse
|
24
|
Hadjistilianou T, Giglioni S, Micheli L, Vannoni D, Brogi E, Cevenini G, Cortelazzo A, De Francesco S, Menicacci F, Leoncini R. Analysis of aqueous humour proteins in patients with retinoblastoma. Clin Exp Ophthalmol 2011; 40:e8-e15. [PMID: 22003840 DOI: 10.1111/j.1442-9071.2011.02711.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND To investigate aqueous humour protein composition from retinoblastoma patients. DESIGN Prospective, hospital-based study. PARTICIPANTS Eighteen retinoblastoma patients (Reese-Ellsworth stage V or ABC classification group E RB) undergoing ocular enucleation, and 10 normal subjects undergoing cataract surgery. Five of 18 patients presented with associated secondary glaucoma whereas 13 had no secondary glaucoma; 5 of 13 patients with no secondary glaucoma received chemotherapeutical treatment with melphalan. METHODS Aqueous humour samples were collected by limbal paracentesis of the anterior chamber after ocular enucleation in patients and after the stab peripheral corneal incision in controls. Total protein concentration according to Bradford method and sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the samples were performed. MAIN OUTCOME MEASURE Aqueous humour protein concentration. RESULTS Aqueous humour protein concentration was significantly higher in retinoblastoma patients than controls (P < 0.01); patients with secondary glaucoma presented the highest values (P < 0.05 vs. controls); patients treated with melphalan presented a significant decrease (P < 0.01) versus non-treated; controls did not significantly differ from treated patients. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis pattern in retinoblastoma patients who did not receive any treatment was very different either from treated or from controls. CONCLUSION This study represents a preliminary step towards a more accurate two dimensional electrophoresis (2DE) pattern, which will be combined with mass spectrometry analysis to clarify the potential role of specific proteins in tumour development and progression; although these results suggest that aqueous humour protein pattern in retinoblastoma is characteristic, several aspects of the study are still under investigation.
Collapse
|
25
|
Khetan V, Gupta A, Gopal L. Retinoblastoma: Recent trends A mini review based on published literature. Oman J Ophthalmol 2011; 4:108-15. [PMID: 22279397 PMCID: PMC3263162 DOI: 10.4103/0974-620x.91265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinoblastoma (RB) is the most common intraocular malignancy in children. Recently, there have been significant advances made in the molecular pathology and the management of the disease. Last decade has witnessed better understanding of the genetics of RB, the discovery of new tumor markers expressed by the RB tumors, the identification of high-risk histopathological factors following enucleation, and newer methods of treatment including periocular chemotherapy and superselective intraarterial chemotherapy. All these advances have translated in improved survival rates for the affected children, improved rates of eye salvage, and improved visual outcomes. This article briefly reviews these advances.Method of Literature Search: Literature on the Medline database was searched using the PubMed interface. The search strategy included MeSH and natural language terms using the keywords mentioned. Reference lists in retrieved articles and textbooks were also searched for relevant references.
Collapse
Affiliation(s)
- Vikas Khetan
- Bhagwan Mahaveer Vitreoretinal Services, Sankara Nethralaya, 18, College Road, Chennai, India
| | - Aditi Gupta
- Bhagwan Mahaveer Vitreoretinal Services, Sankara Nethralaya, 18, College Road, Chennai, India
| | - Lingam Gopal
- Department of Ophthalmology, National University Health System, Singapore
| |
Collapse
|
26
|
Epistolato MC, Disciglio V, Livide G, Berchialla P, Mencarelli MA, Marozza A, Amenduni M, Hadjistilianou T, De Francesco S, Acquaviva A, Toti P, Cetta F, Ariani F, De Marchi M, Renieri A, Giachino D. p53 Arg72Pro and MDM2 309 SNPs in hereditary retinoblastoma. J Hum Genet 2011; 56:685-6. [DOI: 10.1038/jhg.2011.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Artuso R, Papa FT, Grillo E, Mucciolo M, Yasui DH, Dunaway KW, Disciglio V, Mencarelli MA, Pollazzon M, Zappella M, Hayek G, Mari F, Renieri A, Lasalle JM, Ariani F. Investigation of modifier genes within copy number variations in Rett syndrome. J Hum Genet 2011; 56:508-15. [PMID: 21593744 PMCID: PMC3145144 DOI: 10.1038/jhg.2011.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MECP2 mutations are responsible for two different phenotypes in females, classical Rett syndrome and the milder Zappella variant (Z-RTT). We investigated whether Copy Number Variants (CNVs) may modulate the phenotype by comparison of array-CGH data from two discordant pairs of sisters and four additional discordant pairs of unrelated girls matched by mutation type. We also searched for potential MeCP2 targets within CNVs by ChIP-chip analysis. We did not identify one major common gene/region, suggesting that modifiers may be complex and variable between cases. However, we detected CNVs correlating with disease severity that contain candidate modifiers. CROCC (1p36.13) is a potential MeCP2 target in which a duplication in a Z-RTT and a deletion in a classic patient were observed. CROCC encodes a structural component of ciliary motility that is required for correct brain development. CFHR1 and CFHR3, on 1q31.3, may be involved in the regulation of complement during synapse elimination and were found to be deleted in a Z-RTT but duplicated in two classic patients. The duplication of 10q11.22, present in two Z-RTT patients, includes GPRIN2, a regulator of neurite outgrowth and PPYR1, involved in energy homeostasis. Functional analyses are necessary to confirm candidates and to define targets for future therapies.
Collapse
Affiliation(s)
- Rosangela Artuso
- Biotechnology Department, Medical Genetics Section, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Indovina P, Acquaviva A, De Falco G, Rizzo V, Onnis A, Luzzi A, Giorgi F, Hadjistilianou T, Toti P, Tomei V, Pentimalli F, Carugi A, Giordano A. Downregulation and aberrant promoter methylation of p16INK4A: a possible novel heritable susceptibility marker to retinoblastoma. J Cell Physiol 2010; 223:143-50. [PMID: 20039270 DOI: 10.1002/jcp.22019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RB loss has long been recognized as the causative genetic alteration underlying retinoblastoma but it is increasingly evident that other alterations are required for the tumor to develop. Therefore, we set out to identify additional inheritable susceptibility markers and new potential preventive and therapeutic targets for retinoblastoma. We focused on the p16INK4A tumor suppressor gene because of its possible role in retinoblastoma pathogenesis and its involvement in predisposition to familial cancer. p16INK4A expression was analyzed in tumor samples from retinoblastoma patients by immunohistochemistry and in peripheral blood cells from both patients and their parents by real-time quantitative reverse transcription-PCR (qRT-PCR). Since promoter methylation is a common mechanism regulating p16INK4A expression, the methylation status of its promoter was also analyzed in blood samples from patients and their parents by methylation-specific PCR. A downregulation of p16INK4A was observed in 55% of retinoblastoma patients. Interestingly, in 56% of the cases showing p16INK4A downregulation at least one of the patients' parents bore the same alteration in blood cells. Analysis of p16INK4A promoter methylation showed hypermethylation in most patients with p16INK4A downregulation and in the parents with the same alteration in p16INK4A expression. The finding that p16INK4A was downregulated both in patients and their parents suggests that this alteration could be a novel inheritable susceptibility marker to retinoblastoma. The observation that p16INK4A downregulation seems to be due to its promoter hypermethylation opens the way for the development of new preventive and therapeutic strategies using demethylating agents.
Collapse
Affiliation(s)
- Paola Indovina
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Retinoblastoma is a pediatric eye tumor that serves as a paradigm for understanding the genetic basis of cancer. This review will highlight recent advances in retinoblastoma genetic research and discuss how these new findings influence our knowledge of retinoblastoma tumorigenesis and management. RECENT FINDINGS Current data demonstrate that retinomas, benign retinal tumors found in some retinoblastoma patients, exhibit bi-allelic mutations in RB1, the retinoblastoma gene, and lack of expression of the retinoblastoma protein. Interestingly, retinomas demonstrate a low level of genomic instability that becomes progressively more severe in retinoblastoma tumors. Additionally, a subset of retinomas share genomic alterations with retinoblastoma. Collectively, these data suggest that retinomas represent true premalignant lesions and not regressed retinoblastoma tumors, as previously thought. Translational advances in retinoblastoma genetic research include development of an allele-specific assay that now enables the identification of mutational mosaicism, thereby increasing the rate of RB1 mutation detection in bilaterally affected patients to as high as 95%. SUMMARY These and related research efforts reveal novel data that enhance our understanding of the biology of retinoblastoma. These observations may facilitate new therapeutic approaches to further decrease the morbidity and mortality associated with retinoblastoma and other more common forms of cancer.
Collapse
|
30
|
Bibliography. Current world literature. Curr Opin Ophthalmol 2009; 20:417-22. [PMID: 19684489 DOI: 10.1097/icu.0b013e32833079c5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|