1
|
Zhou K, Wu C, Cheng W, Zhang B, Wei R, Cheng D, Li Y, Cao Y, Zhang W, Yao Z, Zhang X. Transglutaminase 3 regulates cutaneous squamous carcinoma differentiation and inhibits progression via PI3K-AKT signaling pathway-mediated Keratin 14 degradation. Cell Death Dis 2024; 15:252. [PMID: 38589352 PMCID: PMC11001918 DOI: 10.1038/s41419-024-06626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Cutaneous squamous carcinoma is the second most common epithelial malignancy, associated with significant morbidity, mortality, and economic burden. However, the mechanisms underlying cSCC remain poorly understood. In this study, we identified TGM3 as a novel cSCC tumor suppressor that acts via the PI3K-AKT axis. RT-qPCR, IHC and western blotting were employed to assess TGM3 levels. TGM3-overexpression/knockdown cSCC cell lines were utilized to detect TGM3's impact on epithelial differentiation as well as tumor cell proliferation, migration, and invasion in vitro. Additionally, subcutaneous xenograft tumor models were employed to examine the effect of TGM3 knockdown on tumor growth in vivo. Finally, molecular and biochemical approaches were employed to gain insight into the tumor-suppressing mechanisms of TGM3. TGM3 expression was increased in well-differentiated cSCC tumors, whereas it was decreased in poor-differentiated cSCC tumors. Loss of TGM3 is associated with poor differentiation and a high recurrence rate in patients with cSCC. TGM3 exhibited tumor-suppressing activity by regulating cell proliferation, migration, and invasion both in vitro and in vivo. As a novel cSCC tumor differentiation marker, TGM3 expression was positively correlated with cell differentiation. In addition, our results demonstrated an interaction between TGM3 and KRT14 that aids in the degradation of KRT14. TGM3 deficiency disrupts keratinocytes differentiation, and ultimately leads to tumorigenesis. Furthermore, RNA-sequence analysis revealed that loss of TGM3 enhanced EMT via the PI3K-AKT signaling pathway. Deguelin, a PI3K-AKT inhibitor, blocked cSCC tumor growth induced by TGM3 knockdown in vivo. Taken together, TGM3 inhibits cSCC tumor growth via PI3K-AKT signaling, which could also serve as a tumor differentiation marker and a potential therapeutic target for cSCC. Proposed model depicted the mechanism by which TGM3 suppress cSCC development. TGM3 reduces the phosphorylation level of AKT and degrades KRT14. In the epithelial cell layer, TGM3 exhibits a characteristic pattern of increasing expression from bottom to top, while KRT14 and pAKT are the opposite. Loss of TGM3 leads to reduced degradation of KRT14 and activation of pAKT, disrupting keratinocyte differentiation, and eventually resulting in the occurrence of low-differentiated cSCC.
Collapse
Affiliation(s)
- Kaili Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenglong Wu
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjie Cheng
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Boyuan Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoqu Wei
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Daian Cheng
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Li
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Cao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Wenqing Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xue Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zhang S, Yao HF, Li H, Su T, Jiang SH, Wang H, Zhang ZG, Dong FY, Yang Q, Yang XM. Transglutaminases are oncogenic biomarkers in human cancers and therapeutic targeting of TGM2 blocks chemoresistance and macrophage infiltration in pancreatic cancer. Cell Oncol (Dordr) 2023; 46:1473-1492. [PMID: 37246171 DOI: 10.1007/s13402-023-00824-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/30/2023] Open
Abstract
PURPOSE Transglutaminases (TGs) are multifunctional enzymes exhibiting transglutaminase crosslinking, as well as atypical GTPase/ATPase and kinase activities. Here, we used an integrated comprehensive analysis to assess the genomic, transcriptomic and immunological landscapes of TGs across cancers. METHODS Gene expression and immune cell infiltration patterns across cancers were obtained from The Cancer Genome Atlas (TCGA) database and Gene Set Enrichment Analysis (GSEA) datasets. Western blotting, immunofluorescence staining, enzyme-linked immunosorbent assays, and orthotopic xenograft models were used to validate our database-derived results. RESULTS We found that the overall expression of TGs (designated as the TG score) is significantly upregulated in multiple cancers and related to a worse patient survival. The expression of TG family members can be regulated through multiple mechanisms at the genetic, epigenetic and transcriptional levels. The expression of transcription factors crucial for epithelial-to-mesenchymal transition (EMT) is commonly correlated with the TG score in many cancer types. Importantly, TGM2 expression displays a close connection with chemoresistance to a wide range of chemotherapeutic drugs. We found that TGM2 expression, F13A1 expression and the overall TG score were positively correlated with the infiltration of immune cells in all cancer types tested. Functional and clinical verification revealed that a higher TGM2 expression is linked with a worse patient survival, an increased IC50 value of gemcitabine, and a higher abundance of tumor-infiltrating macrophages in pancreatic cancer. Mechanistically, we found that increased C-C motif chemokine ligand 2 (CCL2) release mediated by TGM2 contributes to macrophage infiltration into the tumor microenvironment. CONCLUSIONS Our results reveal the relevance and molecular networks of TG genes in human cancers and highlight the importance of TGM2 in pancreatic cancer, which may provide promising directions for immunotherapy and for addressing chemoresistance.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hong-Fei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, People's Republic of China
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tong Su
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Pudong District, Shanghai, 200123, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Fang-Yuan Dong
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China.
| | - Qin Yang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
3
|
Zhang W, Wu C, Zhou K, Cao Y, Zhou W, Zhang X, Deng D. Clinical and immunological characteristics of TGM3 in pan-cancer: A potential prognostic biomarker. Front Genet 2023; 13:993438. [PMID: 36685895 PMCID: PMC9852731 DOI: 10.3389/fgene.2022.993438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/09/2023] Open
Abstract
Background: Recent studies have identified that transglutaminases (TGMs) are involved in a widespread epigenetic modification in tumorigenesis. However, it remains unclear how transglutaminase 3 (TGM3) affects in pan-cancer. The present study aimed to explore the clinical and prognostic function of TGM3 in pan-cancer as well as to explore the relationship of TGM3 expression with clinical stage, survival rate, prognosis condition, immune infiltration and mutation indicators. Methods: The relevant data of tumors were obtained from The Cancer Genome Atlas (TCGA), TARGET, Cancer Cell Line Encyclopedia (CCLE) and Genotype-Tissue Expression (GTEx) databases. According to the Human Protein Atlas (HPA) and TIMER databases, we evaluated the protein expression levels of TGM3 in different organs and tissues as well as their association with immune cell infiltration and immunotherapeutic response in pan-cancers. Expression differences between normal and tumor tissues as well as survival and prognosis situation, clinical data characteristics, tumor mutational burden (TMB), microsatellite instability (MSI), and RNA methylation were also assessed. Oncogenic analyses were also evaluated by GSEA. Results: Compared to normal tissues, some tumor tissues had a lower expression level of TGM3, while other tumor tissues had a high expression level of TGM3. Further studies showed that high TGM3 expression had a certain risk impact on pan-cancer as high TGM3 expression levels were detrimental to the survival of several cancers, except for pancreatic cancer (PAAD). High expression level of TGM3 was also related to higher clinical stages in most cancers. The expression level of TGM3 was significantly negatively correlated with the expression of immune infiltration-related cells, including B cells, CD8+ T cells, CD4+ T cells, neutrophils, macrophages and dendritic cells (DCs). Furthermore, in most cancer types, TGM3 was inversely correlated with TMB, MSI, and methylation, suggesting that TGM3 expression can be used to assess potential therapeutic response, especially immune-related targeted therapy. GSEA analysis elucidated the biological and molecular function of TGM3 in various cancer types. Taken together, these bioinformatic analyses identified TGM3 as an important biomarker for clinical tumor prognosis and evaluation of treatment efficacy. Conclusion: We comprehensively analyzed the clinical characteristics, tumor stages, immune infiltration, methylation level, gene mutation, functional enrichment analysis and immunotherapeutic value of TGM3 in pan-cancer, providing implications for the function of TGM3 and its role in clinical treatment.
Collapse
Affiliation(s)
- Wenqing Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenglong Wu
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaili Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Cao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wange Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xue Zhang, ; Dan Deng,
| | - Dan Deng
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xue Zhang, ; Dan Deng,
| |
Collapse
|
4
|
Comprehensive Review on Development of Early Diagnostics on Oral Cancer with a Special Focus on Biomarkers. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
One of the most frequent head and neck cancers is oral cancer, with less than half of those diagnosed surviving five years. Despite breakthroughs in the treatment of many other cancers, the prognosis for people with OSCC remains dismal. The conventional methods of detection include a thorough clinical examination, biochemical investigations, and invasive biopsies. Early identification and treatment are important for a better chance of extending a patient’s life. Early diagnosis may be possible by identifying biomarkers in biological fluids. Currently, the primary method for diagnosing oral lesions is a visual oral examination; however, such a technique has certain drawbacks, as individuals are recognized after their cancer has advanced to a severe degree. The first section of this review discusses several diagnostic techniques for cancer detection, while the second section discusses the present state of knowledge about known existing predictive markers for the timely identification of malignant lesions, as well as disease activity tracking. The aim of the paper is to conduct a critical review of existing oral cancer diagnostic processes and to consider the possible application of innovative technology for early detection. This might broaden our diagnostic choices and enhance our capacity to identify and treat oral malignant tumors more effectively.
Collapse
|
5
|
Pillai J, Chincholkar T, Dixit R, Pandey M. A systematic review of proteomic biomarkers in oral squamous cell cancer. World J Surg Oncol 2021; 19:315. [PMID: 34711249 PMCID: PMC8555221 DOI: 10.1186/s12957-021-02423-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Head and neck squamous cell cancer (HNSCC) is the most common cancer associated with chewing tobacco, in the world. As this is divided in to sites and subsites, it does not make it to top 10 cancers. The most common subsite is the oral cancer. At the time of diagnosis, more than 50% of patients with oral squamous cell cancers (OSCC) had advanced disease, indicating the lack of availability of early detection and risk assessment biomarkers. The new protein biomarker development and discovery will aid in early diagnosis and treatment which lead to targeted treatment and ultimately a good prognosis. METHODS This systematic review was performed as per PRISMA guidelines. All relevant studies assessing characteristics of oral cancer and proteomics were considered for analysis. Only human studies published in English were included, and abstracts, incomplete articles, and cell line or animal studies were excluded. RESULTS A total of 308 articles were found, of which 112 were found to be relevant after exclusion. The present review focuses on techniques of cancer proteomics and discovery of biomarkers using these techniques. The signature of protein expression may be used to predict drug response and clinical course of disease and could be used to individualize therapy with such knowledge. CONCLUSIONS Prospective use of these markers in the clinical setting will enable early detection, prediction of response to treatment, improvement in treatment selection, and early detection of tumor recurrence for disease monitoring. However, most of these markers for OSCC are yet to be validated.
Collapse
Affiliation(s)
| | | | - Ruhi Dixit
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
6
|
Mohanty V, Subbannayya Y, Patil S, Puttamallesh VN, Najar MA, Datta KK, Pinto SM, Begum S, Mohanty N, Routray S, Abdulla R, Ray JG, Sidransky D, Gowda H, Prasad TSK, Chatterjee A. Molecular alterations in oral cancer using high-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue. J Cell Commun Signal 2021; 15:447-459. [PMID: 33683571 DOI: 10.1007/s12079-021-00609-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
Loss of cell differentiation is a hallmark for the progression of oral squamous cell carcinoma (OSCC). Archival Formalin-Fixed Paraffin-Embedded (FFPE) tissues constitute a valuable resource for studying the differentiation of OSCC and can offer valuable insights into the process of tumor progression. In the current study, we performed LC-MS/MS-based quantitative proteomics of FFPE specimens from pathologically-confirmed well-differentiated, moderately-differentiated, and poorly-differentiated OSCC cases. The data were analyzed in four technical replicates, resulting in the identification of 2376 proteins. Of these, 141 and 109 were differentially expressed in moderately-differentiated and poorly differentiated OSCC cases, respectively, compared to well-differentiated OSCC. The data revealed significant metabolic reprogramming with respect to lipid metabolism and glycolysis with proteins belonging to both these processes downregulated in moderately-differentiated OSCC when compared to well-differentiated OSCC. Signaling pathway analysis indicated the alteration of extracellular matrix organization, muscle contraction, and glucose metabolism pathways across tumor grades. The extracellular matrix organization pathway was upregulated in moderately-differentiated OSCC and downregulated in poorly differentiated OSCC, compared to well-differentiated OSCC. PADI4, an epigenetic enzyme transcriptional regulator, and its transcriptional target HIST1H1B were both found to be upregulated in moderately differentiated and poorly differentiated OSCC, indicating epigenetic events underlying tumor differentiation. In conclusion, the findings support the advantage of using high-resolution mass spectrometry-based FFPE archival blocks for clinical and translational research. The candidate signaling pathways identified in the study could be used to develop potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Shankargouda Patil
- Division of Oral Pathology, College of Dentistry, Department of Maxillofacial Surgery and Diagnostic Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Keshava K Datta
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Sameera Begum
- Department of Oral Pathology, Yenepoya Dental College, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Neeta Mohanty
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha'O'Anusandhan University, Bhubaneswar, Odisha, 751003, India
| | - Samapika Routray
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha'O'Anusandhan University, Bhubaneswar, Odisha, 751003, India.,Department of Dental Surgery, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India
| | - Riaz Abdulla
- Department of Oral Pathology, Yenepoya Dental College, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, West Bengal, 700 014, India.,Department of Pathology, Burdwan Dental College and Hospital, Burdwan, West Bengal, 713101, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India. .,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India. .,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Shojaeian S, Moazeni-Roodi A, Allameh A, Garajei A, Kazemnejad A, Kabir K, Zarnani AH. Methylation of TGM-3 Promoter and Its Association with Oral Squamous Cell Carcinoma (OSCC). Avicenna J Med Biotechnol 2021; 13:65-73. [PMID: 34012521 PMCID: PMC8112137 DOI: 10.18502/ajmb.v13i2.5523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: Oral Squamous Cell Carcinoma (OSCC) is among the ten most common cancers worldwide. Hypermethylation of CpG sites in the promoter region and subsequent down-regulation of a tumor suppressor gene, TGM-3 has been proposed to be linked to different types of human cancers including OSCC. In this study, methylation status of CpG sites in the promoter region of TGM-3 has been evaluated in a cohort of patients with OSCC compared to normal controls. Methods: Forty fresh tissue samples were obtained from newly diagnosed OSCC patients and normal individuals referred to dentistry clinic for tooth extraction. DNA was extracted, bisulfite conversion was performed and it was subjected to PCR using bisulfite-sequencing PCR (BSP) primers. Prepared samples were sequenced on a DNA analyzer with both forward and reverse primers of the region of interest. The peak height values of cytosine and thymine were calculated and methylation levels for each CpG site within the DNA sequence was quantified. Results: Quantitative DNA methylation analyses in CpG islands revealed that it was significantly higher in OSCC patients compared to controls. DNA methylation at CpG1/CpG3/CpG5 (p=0.004–0.01) and CpG1/CpG3 (p=0.001–0.019) sites was associated with tumor stage and grade, respectively. Male OSCC patients had higher methylation rate at CpG3 (p=0.032), while smoker patients showed higher methylation rate at CpG6 (p=0.045). Conclusion: These results manifested the contribution of DNA methylation of TGM-3 in OSCC and its potential association with clinico-pathologic parameters in OSCC.
Collapse
Affiliation(s)
- Sorour Shojaeian
- Department of Biochemistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ata Garajei
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Department of Head and Neck Surgical Oncology and Reconstructive Surgery, The Cancer Institute, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Anoshirvan Kazemnejad
- Department of Bio-statistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kourosh Kabir
- Department of Community Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Chermnykh ES, Alpeeva EV, Vorotelyak EA. Transglutaminase 3: The Involvement in Epithelial Differentiation and Cancer. Cells 2020; 9:cells9091996. [PMID: 32872587 PMCID: PMC7563467 DOI: 10.3390/cells9091996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGMs) contribute to the formation of rigid, insoluble macromolecular complexes, which are essential for the epidermis and hair follicles to perform protective and barrier functions against the environment. During differentiation, epidermal keratinocytes undergo structural alterations being transformed into cornified cells, which constitute a highly tough outermost layer of the epidermis, the stratum corneum. Similar processes occur during the hardening of the hair follicle and the hair shaft, which is provided by the enzymatic cross-linking of the structural proteins and keratin intermediate filaments. TGM3, also known as epidermal TGM, is one of the pivotal enzymes responsible for the formation of protein polymers in the epidermis and the hair follicle. Numerous studies have shown that TGM3 is extensively involved in epidermal and hair follicle physiology and pathology. However, the roles of TGM3, its substrates, and its importance for the integument system are not fully understood. Here, we summarize the main advances that have recently been achieved in TGM3 analyses in skin and hair follicle biology and also in understanding the functional role of TGM3 in human tumor pathology as well as the reliability of its prognostic clinical usage as a cancer diagnosis biomarker. This review also focuses on human and murine hair follicle abnormalities connected with TGM3 mutations.
Collapse
|
9
|
Duarte L, Matte CR, Bizarro CV, Ayub MAZ. Transglutaminases: part I-origins, sources, and biotechnological characteristics. World J Microbiol Biotechnol 2020; 36:15. [PMID: 31897837 DOI: 10.1007/s11274-019-2791-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
The transglutaminases form a large family of intracellular and extracellular enzymes that catalyze cross-links between protein molecules. Transglutaminases crosslinking properties are widely applied to various industrial processes, to improve the firmness, viscosity, elasticity, and water-holding capacity of products in the food and pharmaceutical industries. However, the extremely high costs of obtaining transglutaminases from animal sources have prompted scientists to search for new sources of these enzymes. Therefore, research has been focused on producing transglutaminases by microorganisms, which may present wider scope of use, based on enzyme-specific characteristics. In this review, we present an overview of the literature addressing the origins, types, reactions, and general characterizations of this important enzyme family. A second review will deal with transglutaminases applications in the area of food industry, medicine, pharmaceuticals and biomaterials, as well as applications in the textile and leather industries.
Collapse
Affiliation(s)
- Lovaine Duarte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Carla Roberta Matte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A Building at TECNOPUC, 4592 Bento Gonçalves Avenue, Porto Alegre, 90650-001, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
10
|
Öktem EK, Yazar M, Gulfidan G, Arga KY. Cancer Drug Repositioning by Comparison of Gene Expression in Humans and Axolotl (Ambystoma mexicanum) During Wound Healing. ACTA ACUST UNITED AC 2019; 23:389-405. [DOI: 10.1089/omi.2019.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elif Kubat Öktem
- Department of Genetics and Bioengineering, Istanbul Okan University, Istanbul, Turkey
| | - Metin Yazar
- Department of Genetics and Bioengineering, Istanbul Okan University, Istanbul, Turkey
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
11
|
Eckert RL. Transglutaminase 2 takes center stage as a cancer cell survival factor and therapy target. Mol Carcinog 2019; 58:837-853. [PMID: 30693974 DOI: 10.1002/mc.22986] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Transglutaminase 2 (TG2) has emerged as a key cancer cell survival factor that drives epithelial to mesenchymal transition, angiogenesis, metastasis, inflammation, drug resistance, cancer stem cell survival and stemness, and invasion and migration. TG2 can exist in a GTP-bound signaling-active conformation or in a transamidase-active conformation. The GTP bound conformation of TG2 contributes to cell survival and the transamidase conformation can contribute to cell survival or death. We present evidence suggesting that TG2 has a role in human cancer, summarize what is known about the TG2 mechanism of action in a range of cancer types, and discuss TG2 as a cancer therapy target.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Kaburagi Y, Takahashi E, Kajio H, Yamashita S, Yamamoto-Honda R, Shiga T, Okumura A, Goto A, Fukazawa Y, Seki N, Tobe K, Matsumoto M, Noda M, Unoki-Kubota H. Urinary afamin levels are associated with the progression of diabetic nephropathy. Diabetes Res Clin Pract 2019. [PMID: 29522788 DOI: 10.1016/j.diabres.2018.02.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS In this study, we applied quantitative proteomic analysis to identify urinary proteins associated with diabetic nephropathy (DN). METHODS Two-dimensional image-converted analysis of liquid chromatography and mass spectrometry detected the proteins differentially excreted between normoalbuminuric and macroalbuminuric patients with type 2 diabetes mellitus (T2DM) (n = 6 each). Urinary levels of excreted proteins were measured by multiple reaction monitoring (MRM) analysis using an independent sample set (n = 77). Urinary afamin levels were measured by ELISA in T2DM and DN patients enrolled in this cohort study (n = 203). RESULTS One-hundred-four proteins displayed significant alterations in excretion. Nine of these candidates were validated by MRM analysis. Among them, the levels of afamin, CD44 antigen, and lysosome-associated membrane glycoprotein 2, which have not previously been implicated in DN, were significantly associated with both the urinary albumin to creatinine ratio (ACR) and eGFR. We further measured afamin levels in urine collected from T2DM patients who did not yet have significant kidney disease (ACR < 300 mg/g or eGFR change rate ≤ 3.3%/year). The urinary afamin to creatinine ratio (Afa/Cre) was significantly higher in patients who progressed to a more severe DN stage or had early renal decline than in patients who did not. CONCLUSIONS Afa/Cre was significantly increased in T2DM patients who subsequently developed DN. Afa/Cre may be useful to predict patients with T2DM at high risk of nephropathy before the development of macroalbuminuria or reduced kidney function, although further validation studies in a larger population are needed.
Collapse
Affiliation(s)
- Yasushi Kaburagi
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Eri Takahashi
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shigeo Yamashita
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Tokyo Yamate Medical Center, Japan Community Health Care Organization, Tokyo, Japan
| | - Ritsuko Yamamoto-Honda
- Health Management Center and Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Tomoko Shiga
- Department of Complete Medical Checkup, Center Hospital, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akinori Okumura
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Atsushi Goto
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Yuka Fukazawa
- Department of Diabetes and Endocrinology, JR Tokyo General Hospital, Tokyo, Japan
| | - Naoto Seki
- Department of Clinical Research, National Hospital Organization Chiba-East Hospital, Chiba, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mitsuhiko Noda
- Department of Endocrinology and Diabetes, Saitama Medical University, Saitama, Japan
| | - Hiroyuki Unoki-Kubota
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
13
|
Transglutaminase 3 contributes to malignant transformation of oral leukoplakia to cancer. Int J Biochem Cell Biol 2018; 104:34-42. [PMID: 30172723 DOI: 10.1016/j.biocel.2018.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023]
|
14
|
Oria VO, Bronsert P, Thomsen AR, Föll MC, Zamboglou C, Hannibal L, Behringer S, Biniossek ML, Schreiber C, Grosu AL, Bolm L, Rades D, Keck T, Werner M, Wellner UF, Schilling O. Proteome Profiling of Primary Pancreatic Ductal Adenocarcinomas Undergoing Additive Chemoradiation Link ALDH1A1 to Early Local Recurrence and Chemoradiation Resistance. Transl Oncol 2018; 11:1307-1322. [PMID: 30172883 PMCID: PMC6121830 DOI: 10.1016/j.tranon.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis with frequent post-surgical local recurrence. The combination of adjuvant chemotherapy with radiotherapy is under consideration to achieve a prolonged progression-free survival (PFS). To date, few studies have determined the proteome profiles associated with response to adjuvant chemoradiation. We herein analyzed the proteomes of primary PDAC tumors subjected to additive chemoradiation after surgical resection and achieving short PFS (median 6 months) versus prolonged PFS (median 28 months). Proteomic analysis revealed the overexpression of Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) and Monoamine Oxidase A (MAOA) in the short PFS cohort, which were corroborated by immunohistochemistry. In vitro, specific inhibition of ALDH1A1 by A37 in combination with gemcitabine, radiation, and chemoradiation lowered cell viability and augmented cell death in MiaPaCa-2 and Panc 05.04 cells. ALDH1A1 silencing in both cell lines dampened cell proliferation, cell metabolism, and colony formation. In MiaPaCa-2 cells, ALDH1A1 silencing sensitized cells towards treatment with gemcitabine, radiation or chemoradiation. In Panc 05.04, increased cell death was observed upon gemcitabine treatment only. These findings are in line with previous studies that have suggested a role of ALDH1A1 chemoradiation resistance, e.g., in esophageal cancer. In summary, we present one of the first proteome studies to investigate the responsiveness of PDAC to chemoradiation and provide further evidence for a role of ALDH1A1 in therapy resistance.
Collapse
Affiliation(s)
- V O Oria
- Institute of Molecular Medicine and Cell Research, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Freiburg, Germany
| | - P Bronsert
- Institute of Surgical Pathology, University Medical Center, Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; Tumorbank Comprehensive Cancer Center Freiburg, Medical Center- University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - A R Thomsen
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Medicine, University of Freiburg, Germany; Department of Radiation Oncology, Medical Center - University of Freiburg, Germany
| | - M C Föll
- Institute of Molecular Medicine and Cell Research, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - C Zamboglou
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Medicine, University of Freiburg, Germany; Department of Radiation Oncology, Medical Center - University of Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department for Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany
| | - S Behringer
- Laboratory of Clinical Biochemistry and Metabolism, Department for Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany
| | - M L Biniossek
- Institute of Molecular Medicine and Cell Research, Freiburg, Germany
| | - C Schreiber
- Institute of Pathology, UKSH Campus Lübeck, Lübeck, Germany
| | - A L Grosu
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Medicine, University of Freiburg, Germany; Department of Radiation Oncology, Medical Center - University of Freiburg, Germany
| | - L Bolm
- Clinic of Surgery, UKSH Campus Lübeck, Lübeck, Germany
| | - D Rades
- Department of Radiation Oncology, UKSH Campus Lübeck, Lübeck, Germany
| | - T Keck
- Clinic of Surgery, UKSH Campus Lübeck, Lübeck, Germany
| | - M Werner
- Institute of Surgical Pathology, University Medical Center, Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; Tumorbank Comprehensive Cancer Center Freiburg, Medical Center- University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - U F Wellner
- Clinic of Surgery, UKSH Campus Lübeck, Lübeck, Germany
| | - O Schilling
- Institute of Molecular Medicine and Cell Research, Freiburg, Germany; Institute of Surgical Pathology, University Medical Center, Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Nayak S, Bhatt MLB, Goel MM, Gupta S, Mahdi AA, Mishra A, Mehrotra D. Tissue and serum expression of TGM-3 may be prognostic marker in patients of oral squamous cell carcinoma undergoing chemo-radiotherapy. PLoS One 2018; 13:e0199665. [PMID: 29953521 PMCID: PMC6023195 DOI: 10.1371/journal.pone.0199665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Radioresistance is one of the main determinants of treatment outcome in oral squamous cell carcinoma (OSCC), but its prediction is difficult. Several authors aimed to establish radioresistant OSCC cell lines to identify genes with altered expression in response to radioresistance. The development of OSCC is a multistep carcinogenic process that includes activation of several oncogenes and inactivation of tumour suppressor genes. TGM-3 is a tumour suppressor gene and contributes to carcinogenesis process. The aim of this study was to estimate serum and tissue expression of TGM-3 and its correlation with clinico-pathological factors and overall survival in patients of OSCC undergoing chemo-radiotherapy. Tissue expression was observed in formalin fixed tissue biopsies of 96 cases of OSCC and 32 healthy controls were subjected to immunohistochemistry (IHC) by using antibody against TGM-3 and serum level was estimated by ELISA method. mRNA expression was determined by using Real-Time PCR. Patients were followed for 2 year for chemo radiotherapy response. In OSCC, 76.70% cases and in controls 90.62% were positive for TGM-3 IHC expression. TGM-3 expression was cytoplasmic and nuclear staining expressed in keratinized layer, stratum granulosum and stratum spinosum in controls and tumour cells. Mean serum TGM-3 in pre chemo-radiotherapy OSCC cases were 1304.83±573.55, post chemo-radiotherapy samples were 1530.64±669.33 and controls were 1869.16±1377.36, but difference was significant in pre chemo-radiotherapy samples as compared to controls (p<0.018). This finding was also confirmed by real- time PCR analysis in which down regulation (-7.92 fold change) of TGM-3 in OSCC as compared to controls. TGM-3 expression was significantly associated with response to chemo-radiotherapy treatment (p<0.007) and overall survival (p<0.015). Patents having higher level of TGM-3 expression have good response to chemo-radiotherapy and also have better overall survival. TGM-3 may serve as a candidate biomarker for responsiveness to chemo-radiotherapy treatment in OSCC patients.
Collapse
Affiliation(s)
- Seema Nayak
- Department of Radiotherapy, King George’s Medical University Lucknow, Uttar Pradesh, India
| | - M. L. B. Bhatt
- Department of Radiotherapy, King George’s Medical University Lucknow, Uttar Pradesh, India
| | - Madhu Mati Goel
- Department of Pathology, King George’s Medical University Lucknow, Uttar Pradesh, India
| | - Seema Gupta
- Department of Radiotherapy, King George’s Medical University Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University Lucknow, Uttar Pradesh, India
| | - Anupam Mishra
- Department of Otorhinolaryngology, King George’s Medical University Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, King George’s Medical University Lucknow, Uttar Pradesh, India
| |
Collapse
|
16
|
Proteomic and histopathological characterization of the interface between oral squamous cell carcinoma invasion fronts and non-cancerous epithelia. Exp Mol Pathol 2017; 102:327-336. [DOI: 10.1016/j.yexmp.2017.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/23/2017] [Indexed: 11/21/2022]
|
17
|
Li W, Zhang Z, Zhao W, Han N. Transglutaminase 3 protein modulates human esophageal cancer cell growth by targeting the NF-κB signaling pathway. Oncol Rep 2016; 36:1723-30. [DOI: 10.3892/or.2016.4921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/13/2016] [Indexed: 11/05/2022] Open
|
18
|
Lai ZW, Weisser J, Nilse L, Costa F, Keller E, Tholen M, Kizhakkedathu JN, Biniossek M, Bronsert P, Schilling O. Formalin-Fixed, Paraffin-Embedded Tissues (FFPE) as a Robust Source for the Profiling of Native and Protease-Generated Protein Amino Termini. Mol Cell Proteomics 2016; 15:2203-13. [PMID: 27087653 PMCID: PMC5083106 DOI: 10.1074/mcp.o115.056515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Dysregulated proteolysis represents a hallmark of numerous diseases. In recent years, increasing number of studies has begun looking at the protein termini in hope to unveil the physiological and pathological functions of proteases in clinical research. However, the availability of cryopreserved tissue specimens is often limited. Alternatively, formalin-fixed, paraffin-embedded (FFPE) tissues offer an invaluable resource for clinical research. Pathologically relevant tissues are often stored as FFPE, which represent the most abundant resource of archived human specimens. In this study, we established a robust workflow to investigate native and protease-generated protein N termini from FFPE specimens. We demonstrate comparable N-terminomes of cryopreserved and formalin-fixed tissue, thereby showing that formalin fixation/paraffin embedment does not proteolytically damage proteins. Accordingly, FFPE specimens are fully amenable to N-terminal analysis. Moreover, we demonstrate feasibility of FFPE-degradomics in a quantitative N-terminomic study of FFPE liver specimens from cathepsin L deficient or wild-type mice. Using a machine learning approach in combination with the previously determined cathepsin L specificity, we successfully identify a number of potential cathepsin L cleavage sites. Our study establishes FFPE specimens as a valuable alternative to cryopreserved tissues for degradomic studies.
Collapse
Affiliation(s)
- Zon Weng Lai
- From the ‡Institute of Molecular Medicine and Cell Research
| | | | - Lars Nilse
- From the ‡Institute of Molecular Medicine and Cell Research
| | | | - Eva Keller
- From the ‡Institute of Molecular Medicine and Cell Research
| | - Martina Tholen
- From the ‡Institute of Molecular Medicine and Cell Research
| | - Jayachandran N Kizhakkedathu
- ¶Department of Pathology and Laboratory Medicine and Department of Chemistry, Centre of Chemistry, University of British Columbia, Vancouver, Canada
| | | | - Peter Bronsert
- ‖Department of Pathology, **German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Schilling
- From the ‡Institute of Molecular Medicine and Cell Research, **German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany ‡‡BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany;
| |
Collapse
|
19
|
Oral squamous cell carcinoma: Key clinical questions, biomarker discovery, and the role of proteomics. Arch Oral Biol 2016; 63:53-65. [PMID: 26691574 DOI: 10.1016/j.archoralbio.2015.11.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 09/08/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
|
20
|
Altekruse SF, Rosenfeld GE, Carrick DM, Pressman EJ, Schully SD, Mechanic LE, Cronin KA, Hernandez BY, Lynch CF, Cozen W, Khoury MJ, Penberthy LT. SEER cancer registry biospecimen research: yesterday and tomorrow. Cancer Epidemiol Biomarkers Prev 2015; 23:2681-7. [PMID: 25472677 DOI: 10.1158/1055-9965.epi-14-0490] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The National Cancer Institute's (NCI) Surveillance, Epidemiology, and End Results (SEER) registries have been a source of biospecimens for cancer research for decades. Recently, registry-based biospecimen studies have become more practical, with the expansion of electronic networks for pathology and medical record reporting. Formalin-fixed paraffin-embedded specimens are now used for next-generation sequencing and other molecular techniques. These developments create new opportunities for SEER biospecimen research. We evaluated 31 research articles published during 2005 to 2013 based on authors' confirmation that these studies involved linkage of SEER data to biospecimens. Rather than providing an exhaustive review of all possible articles, our intent was to indicate the breadth of research made possible by such a resource. We also summarize responses to a 2012 questionnaire that was broadly distributed to the NCI intra- and extramural biospecimen research community. This included responses from 30 investigators who had used SEER biospecimens in their research. The survey was not intended to be a systematic sample, but instead to provide anecdotal insight on strengths, limitations, and the future of SEER biospecimen research. Identified strengths of this research resource include biospecimen availability, cost, and annotation of data, including demographic information, stage, and survival. Shortcomings include limited annotation of clinical attributes such as detailed chemotherapy history and recurrence, and timeliness of turnaround following biospecimen requests. A review of selected SEER biospecimen articles, investigator feedback, and technological advances reinforced our view that SEER biospecimen resources should be developed. This would advance cancer biology, etiology, and personalized therapy research. See all the articles in this CEBP Focus section, "Biomarkers, Biospecimens, and New Technologies in Molecular Epidemiology." Cancer Epidemiol Biomarkers Prev; 23(12); 2681-7. ©2014 AACR.
Collapse
Affiliation(s)
- Sean F Altekruse
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland.
| | - Gabriel E Rosenfeld
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | - Danielle M Carrick
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | - Emilee J Pressman
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | - Sheri D Schully
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | - Leah E Mechanic
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | - Kathleen A Cronin
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | | | - Charles F Lynch
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - Wendy Cozen
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California (USC), USC Norris Comprehensive Cancer Center, Los Angeles, California. Department of Pathology, Keck School of Medicine of the University of Southern California (USC), USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Muin J Khoury
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland. Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lynne T Penberthy
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| |
Collapse
|
21
|
Irimie AI, Braicu C, Cojocneanu-Petric R, Berindan-Neagoe I, Campian RS. Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics. Acta Odontol Scand 2015; 73:161-8. [PMID: 25598447 DOI: 10.3109/00016357.2014.986754] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a highly prevalent malignant pathology of the oral cavity. Despite the significant progress accomplished in the field of OSCC, the diagnosis is performed mostly in advanced stages; thus, novel biomarkers need to be developed for the diagnostic and prognostic of this malignancy. Many new technologies are used to provide indispensable information related to the pathogenesis of OSCC. The molecular profiling studies that incorporate genetic and epigenetic alterations need to be integrated in clinical practice as routine approaches to facilitate a better diagnostic and prognostic. REVIEW In this review, the authors present a summary of these novel technologies in the field of genomics, transcriptomics or proteomics, capable of generating data related to personalized diagnostic and treatment.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthodontics and Dental Materials, Faculty of Dental Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | | | | |
Collapse
|
22
|
Ni YH, Ding L, Hu QG, Hua ZC. Potential biomarkers for oral squamous cell carcinoma: proteomics discovery and clinical validation. Proteomics Clin Appl 2014; 9:86-97. [PMID: 25431113 DOI: 10.1002/prca.201400091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/23/2014] [Accepted: 11/24/2014] [Indexed: 12/31/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the worldwide concerned cancer. In spite of the advances in treatment, the 5-year survival rate has only increased subtly during the past two decades, which is largely due to the advanced stages of disease at diagnosis and the frequent development of relapse and second primary tumors. Therefore, the identification of underlying OSCC protein biomarker during cancer initiation and progression could aid the diagnosis and treatment of OSCC. In this review, recent researches on proteomics analysis of tissue, saliva, and serum for early detection and evaluation aggressiveness and occurrence of OSCC were summarized. The emphasis is placed on early detection by tissues, saliva, and serum of patients with histologically defined OSCC patients. Although lots of researches for searching OSCC protein biomarker have done, few common protein biomarkers have been detected. Low-redundant protein in tissues, saliva, and serum from OSCC may more accurately reflected the progression of OSCC, so novel approach for the depth research strategy and the sample choice for proteomics are of importance in OSCC biomarker discovery.
Collapse
Affiliation(s)
- Yan-hong Ni
- Nanjing Stomatological Hospital and the State Key Laboratory of Pharmaceutical Biotechnology, School of Stomatology, Nanjing University, Nanjing, P. R. China
| | | | | | | |
Collapse
|
23
|
Gustafsson OJR, Arentz G, Hoffmann P. Proteomic developments in the analysis of formalin-fixed tissue. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:559-80. [PMID: 25315853 DOI: 10.1016/j.bbapap.2014.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/22/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Retrospective proteomic studies, including those which aim to elucidate the molecular mechanisms driving cancer, require the assembly and characterization of substantial patient tissue cohorts. The difficulty of maintaining and accessing native tissue archives has prompted the development of methods to access archives of formalin-fixed tissue. Formalin-fixed tissue archives, complete with patient meta data, have accumulated for decades, presenting an invaluable resource for these retrospective studies. This review presents the current knowledge concerning formalin-fixed tissue, with descriptions of the mechanisms of formalin fixation, protein extraction, top-down proteomics, bottom-up proteomics, quantitative proteomics, phospho- and glycoproteomics as well as imaging mass spectrometry. Particular attention has been given to the inclusion of proteomic investigations of archived tumour tissue. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Ove J R Gustafsson
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Georgia Arentz
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005.
| |
Collapse
|
24
|
Matsukawa S, Morita KI, Negishi A, Harada H, Nakajima Y, Shimamoto H, Tomioka H, Tanaka K, Ono M, Yamada T, Omura K. Galectin-7 as a potential predictive marker of chemo- and/or radio-therapy resistance in oral squamous cell carcinoma. Cancer Med 2014; 3:349-61. [PMID: 24515895 PMCID: PMC3987084 DOI: 10.1002/cam4.195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/20/2013] [Accepted: 12/26/2013] [Indexed: 12/15/2022] Open
Abstract
Treatment of advanced oral squamous cell carcinoma (OSCC) requires the integration of multimodal approaches. The aim of this study was to identify predictors of tumor sensitivity to preoperative radiotherapy/chemotherapy for OSCC in order to allow oncologists to determine optimum therapeutic strategies without the associated adverse effects. Here, the protein expression profiles of formalin-fixed paraffin-embedded (FFPE) tissue samples from 18 OSCC patients, termed learning cases, who received preoperative chemotherapy and/or radiotherapy followed by surgery were analyzed by quantitative proteomics and validated by immunohistochemistry in 68 test cases as well as in the 18 learning cases. We identified galectin-7 as a potential predictive marker of chemotherapy and/or radiotherapy resistance, and the sensitivity and specificity of the galectin-7 prediction score (G7PS) in predicting this resistance was of 96.0% and 39.5%, respectively, in the 68 test cases. The cumulative 5-year disease-specific survival rate was 75.2% in patients with resistant prediction using G7PS and 100% in patients with sensitive prediction. In vitro overexpression of galectin-7 significantly decreased cell viability in OSCC cell line. Therefore, our findings suggest that galectin-7 is a potential predictive marker of chemotherapy and/or radiotherapy resistance in patients with OSCC. Identification of proteins differentially expressed in OSSC samples from patients sensitive or resistant. The samples were processed by LC-MS and analyzed with 2DICAL.
Collapse
Affiliation(s)
- Sho Matsukawa
- Oral and Maxillofacial Surgery, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pham TV, Piersma SR, Oudgenoeg G, Jimenez CR. Label-free mass spectrometry-based proteomics for biomarker discovery and validation. Expert Rev Mol Diagn 2014; 12:343-59. [DOI: 10.1586/erm.12.31] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Wu X, Cao W, Wang X, Zhang J, Lv Z, Qin X, Wu Y, Chen W. TGM3, a candidate tumor suppressor gene, contributes to human head and neck cancer. Mol Cancer 2013; 12:151. [PMID: 24289313 PMCID: PMC4176127 DOI: 10.1186/1476-4598-12-151] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/25/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In our previous study using oligonucleotide microarrays, we revealed that transglutaminase 3 (TGM3) was remarkably down-regulated in head and neck cancer (HNC). However, the potential of TGM3 as a useful biomarker or molecular target for HNC is unclear. METHODS The transcriptional and post-translational status of TGM3 in HNC cell lines and specimens was detected using real-time PCR and western blot analysis. Bisulfate-treated DNA sequencing was used to analyze the molecular mechanism of TGM3 gene silencing. In addition, the effects of TGM3 on the proliferation, colony formation and induction of apoptosis in vitro and tumorigenicity in vivo were investigated through exogenous expression of TGM3 in HNC cells. Immunohistochemistry was used to evaluate TGM3 expression in large HNC samples. RESULTS TGM3 was down-regulated in HNC samples and cell lines (P < 0.0001). The hypermethylation of a promoter CpG island was one of the mechanisms of silencing the TGM3 gene in HNC. Exogenous expression of TGM3 in HNC cells could inhibit the proliferation and enhance the apoptosis of HNC cells in vitro and suppress tumor growth in vivo. In addition, TGM3 protein levels were strongly associated with the pathological differentiation of HNC tissues (P = 0.0037). Survival analysis revealed that low TGM3 expression was associated with worse overall survival (P = 0.0002), and TGM3 expression level was an independent predictor in patients with HNC. CONCLUSIONS The studies prove that TGM3, as a candidate tumor suppressor, contributes to the carcinogenesis and development of HNC and may serve as a useful biomarker for patients with HNC.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Apoptosis
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/secondary
- Cell Line, Tumor
- DNA Methylation
- Down-Regulation
- Enzyme Repression
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, Tumor Suppressor
- Head and Neck Neoplasms/enzymology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/mortality
- Head and Neck Neoplasms/pathology
- Humans
- Kaplan-Meier Estimate
- Lymphatic Metastasis
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Neoplasm Transplantation
- Promoter Regions, Genetic
- Proportional Hazards Models
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transglutaminases/genetics
- Tumor Burden
Collapse
Affiliation(s)
- Xiangbing Wu
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhongjing Lv
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yadi Wu
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
27
|
Giusti L, Lucacchini A. Proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev Proteomics 2013; 10:165-77. [PMID: 23573783 DOI: 10.1586/epr.13.3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a valuable informational resource of histologically characterized specimens for proteomic studies. In this article, the authors review the advancement performed in the field of FFPE proteomics focusing on formaldehyde treatment and on strategies addressed to obtain the best recovery in the protein/peptide extraction. A variety of approaches have been used to characterize protein tissue extracts, and many efforts have been performed demonstrating the comparability between fresh/frozen and FFPE proteomes. Finally, the authors report and discuss the large numbers of works aimed at developing new strategies and sophisticated platforms in the analysis of FFPE samples to validate known potential biomarkers and to discover new ones.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | |
Collapse
|
28
|
OralCard: A bioinformatic tool for the study of oral proteome. Arch Oral Biol 2013; 58:762-72. [DOI: 10.1016/j.archoralbio.2012.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 11/26/2012] [Accepted: 12/30/2012] [Indexed: 10/27/2022]
|
29
|
Analysis of the formalin-fixed paraffin-embedded tissue proteome: pitfalls, challenges, and future prospectives. Amino Acids 2013; 45:205-18. [PMID: 23592010 DOI: 10.1007/s00726-013-1494-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are a real treasure for retrospective analysis considering the amount of samples present in hospital archives, combined with pathological, clinical, and outcome information available for every sample. Although unlocking the proteome of these tissues is still a challenge, new approaches are being developed. In this review, we summarize the different mass spectrometry platforms that are used in human clinical studies to unravel the FFPE proteome. The different ways of extracting crosslinked proteins and the analytical strategies are pointed out. Also, the pitfalls and challenges concerning the quality of FFPE proteomic approaches are depicted. We also evaluated the potential of these analytical methods for future clinical FFPE proteomics applications.
Collapse
|
30
|
Vincenti DC, Murray GI. The proteomics of formalin-fixed wax-embedded tissue. Clin Biochem 2013; 46:546-51. [DOI: 10.1016/j.clinbiochem.2012.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/06/2012] [Accepted: 10/01/2012] [Indexed: 01/16/2023]
|
31
|
Craven RA, Cairns DA, Zougman A, Harnden P, Selby PJ, Banks RE. Proteomic analysis of formalin-fixed paraffin-embedded renal tissue samples by label-free MS: assessment of overall technical variability and the impact of block age. Proteomics Clin Appl 2013; 7:273-82. [PMID: 23027403 DOI: 10.1002/prca.201200065] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/04/2012] [Accepted: 09/12/2012] [Indexed: 01/17/2023]
Abstract
PURPOSE Protein profiling of formalin-fixed paraffin-embedded (FFPE) tissues has enormous potential for the discovery and validation of disease biomarkers. The aim of this study was to systematically characterize the effect of length of time of storage of such tissue blocks in pathology archives on the quality of data produced using label-free MS. EXPERIMENTAL DESIGN Normal kidney and clear cell renal cell carcinoma tissues routinely collected up to 10 years prior to analysis were profiled using LC-MS/MS and the data analyzed using MaxQuant. Protein identities and quantification data were analyzed to examine differences between tissue blocks of different ages and assess the impact of technical and biological variability. RESULTS An average of over 2000 proteins was seen in each sample with good reproducibility in terms of proteins identified and quantification for normal kidney tissue, with no significant effect of block age. Greater biological variability was apparent in the renal cell carcinoma tissue, possibly reflecting disease heterogeneity, but again there was good correlation between technical replicates and no significant effect of block age. CONCLUSIONS AND CLINICAL RELEVANCE These results indicate that archival storage time does not have a detrimental effect on protein profiling of FFPE tissues, supporting the use of such tissues in biomarker discovery studies.
Collapse
Affiliation(s)
- Rachel A Craven
- Cancer Research UK Centre,, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds, UK
| | | | | | | | | | | |
Collapse
|
32
|
Thompson SM, Craven RA, Nirmalan NJ, Harnden P, Selby PJ, Banks RE. Impact of pre-analytical factors on the proteomic analysis of formalin-fixed paraffin-embedded tissue. Proteomics Clin Appl 2013; 7:241-51. [PMID: 23027712 DOI: 10.1002/prca.201200086] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 12/14/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a tremendous potential resource for biomarker discovery, with large numbers of samples in hospital pathology departments and links to clinical information. However, the cross-linking of proteins and nucleic acids by formalin fixation has hampered analysis and proteomic studies have been restricted to using frozen tissue, which is more limited in availability as it needs to be collected specifically for research. This means that rare disease subtypes cannot be studied easily. Recently, improved extraction techniques have enabled analysis of FFPE tissue by a number of proteomic techniques. As with all clinical samples, pre-analytical factors are likely to impact on the results obtained, although overlooked in many studies. The aim of this review is to discuss the various pre-analytical factors, which include warm and cold ischaemic time, size of sample, fixation duration and temperature, tissue processing conditions, length of storage of archival tissue and storage conditions, and to review the studies that have considered these factors in more detail. In those areas where investigations are few or non-existent, illustrative examples of the possible importance of specific factors have been drawn from studies using frozen tissue or from immunohistochemical studies of FFPE tissue.
Collapse
Affiliation(s)
- Seonaid M Thompson
- Clinical and Biomedical Proteomics Group, Leeds Institute of Molecular Medicine, St. James's University Hospital, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Pan S, Brentnall TA, Kelly K, Chen R. Tissue proteomics in pancreatic cancer study: discovery, emerging technologies, and challenges. Proteomics 2013; 13:710-21. [PMID: 23125171 DOI: 10.1002/pmic.201200319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is a highly lethal disease that is difficult to diagnose and treat. The advances in proteomics technology, especially quantitative proteomics, have stimulated a great interest in applying this technology for pancreatic cancer study. A variety of tissue proteomics approaches have been applied to investigate pancreatic cancer and the associated diseases. These studies were carried out with various goals, aiming to better understand the molecular mechanisms underlying pancreatic tumorigenesis, to improve therapeutic treatment and to identify cancer associated protein signatures, signaling events as well as interactions between cancer cells and tumor microenvironment. Here, we provide an overview on the tissue proteomics studies of pancreatic cancer reported in the past few years in light of discovery and technology development.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
34
|
Klockenbusch C, O'Hara JE, Kast J. Advancing formaldehyde cross-linking towards quantitative proteomic applications. Anal Bioanal Chem 2012; 404:1057-67. [PMID: 22610548 DOI: 10.1007/s00216-012-6065-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
Abstract
Formaldehyde is a key fixation reagent. This review explores its application in combination with qualitative and quantitative mass spectrometry (MS). Formalin-fixed and paraffin-embedded (FFPE) tissues form a large reservoir of biologically valuable samples and their investigation by MS has only recently started. Furthermore, formaldehyde can be used to stabilise protein-protein interactions in living cells. Because formaldehyde is able to modify proteins, performing MS analysis on these samples can pose a challenge. Here we discuss the chemistry of formaldehyde cross-linking, describe the problems of and progress in these two applications and their common aspects, and evaluate the potential of these methods for the future.
Collapse
Affiliation(s)
- Cordula Klockenbusch
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
35
|
Identification of 14-3-3γ as a Mieap-interacting protein and its role in mitochondrial quality control. Sci Rep 2012; 2:379. [PMID: 22532927 PMCID: PMC3334856 DOI: 10.1038/srep00379] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/23/2012] [Indexed: 11/08/2022] Open
Abstract
Mieap, a p53-inducible protein, controls mitochondrial integrity by inducing the accumulation of lysosomal proteins within mitochondria. This phenomenon is designated MALM, for Mieap-induced accumulation of lysosome-like organelles within mitochondria. To identify this novel Mieap-interacting protein(s), we performed a two-dimensional image-converted analysis of liquid chromatography and mass spectrometry (2DICAL) on the proteins immunoprecipitated by an anti-Mieap antibody. We indentified 14-3-3γ as one of the proteins that was included in the Mieap-binding protein complex when MALM was induced. The interaction between Mieap and 14-3-3γ was confirmed on the exogenous and endogenous proteins. Interestingly, 14-3-3γ was localized within mitochondria when MALM occurred. A 14-3-3γ deficiency did not affect the accumulation of Mieap and lysosomal proteins within mitochondria, but dramatically inhibited the elimination of oxidized mitochondrial proteins. These results suggest that 14-3-3γ plays a critical role in eliminating oxidized mitochondrial proteins during the MALM process by interacting with Mieap within mitochondria.
Collapse
|
36
|
From the salivary proteome to the OralOme: comprehensive molecular oral biology. Arch Oral Biol 2012; 57:853-64. [PMID: 22284344 DOI: 10.1016/j.archoralbio.2011.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/24/2011] [Accepted: 12/28/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVES There have been several efforts to identify the protein components of saliva. Some of these studies were conducted in healthy individuals and other in individuals with different oral and systemic disorders. However, a resource compiling and reviewing all of the proteins identified in proteomic studies is still lacking. The aim of this project is to develop such a resource. DESIGN The proteins identified by proteomic studies were compiled and all information concerning them was manually curated according to "IPI History search" and UniProt. Proteins were classified according to gene ontology using PANTHER. The involvement of each protein in disease was scrutinized using DAVID and a classification into protein disease classes was performed. RESULTS This survey of proteins in the oral cavity lead to the identification of 3397 non-redundant proteins, 605 altered in pathological conditions and 51 present only in disease. These proteins originate from different sources: 3115 from saliva, 990 from oral mucosa and 1929 from plasma. All protein sources contribute with different numbers and types of proteins to identical functions. However, each source produces specific proteins. Examples of the use of this proteomics database of saliva included the analysis of the changes in the proteome associated with periodontitis and a survey of systemic disease potential biomarkers in saliva. CONCLUSION The database generated with this work and the information therein stands as a resource for investigators/clinicians studying the oral biology, searching for molecular disease markers, developing diagnostic and prognostic tests, and contributing to the discovery of new therapeutic agents.
Collapse
|
37
|
García MPS, García-García A. Epigenome and DNA methylation in oral squamous cell carcinoma. Methods Mol Biol 2012; 863:207-19. [PMID: 22359295 DOI: 10.1007/978-1-61779-612-8_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetics studies and defines inherited changes in gene expression that are not encoded in the DNA sequence. The most studied epigenetic change in mammalian DNA is cytosine methylation in CpG dinucleotide areas. The other main group in epigenetic changes includes the posttranslational modifications of histones, mainly phosphorylation, deacetylation changes, and in the ubiquitinylation status. Oral squamous cell carcinoma is the most common malignancy of the oral cavity, and epigenetic changes are very common, as described in this chapter. Alterations in the DNA methylation status resulting from exposure to environmental stress agents have been documented even before birth. Although many epigenetic markers are potentially reversible, the mechanism still remains unclear and many epigenetic changes persist across cell lines and the life of the organism.
Collapse
|
38
|
Tanca A, Pagnozzi D, Addis MF. Setting proteins free: Progresses and achievements in proteomics of formalin-fixed, paraffin-embedded tissues. Proteomics Clin Appl 2011; 6:7-21. [DOI: 10.1002/prca.201100044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 12/25/2022]
|
39
|
|
40
|
Evaluation of formalin-fixed paraffin-embedded tissues in the proteomic analysis of parathyroid glands. Proteome Sci 2011; 9:29. [PMID: 21651755 PMCID: PMC3123619 DOI: 10.1186/1477-5956-9-29] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/08/2011] [Indexed: 01/12/2023] Open
Abstract
Background Proteomic research in the field of parathyroid tissues is limited by the very small dimension of the glands and by the low incidence of cancer lesions (1%). Formalin-fixed paraffin-embedded (FFPE) tissue specimens are a potentially valuable resource for discovering protein cancer biomarkers. In this study we have verified the applicability of a heat induced protein extraction from FFPE parathyroid adenoma tissues followed by a gel-based or gel-free proteomic approach in order to achieve protein separation and identification. Results The best results for high quality MS spectra and parameters, were obtained by using a gel-free approach, and up to 163 unique proteins were identified. Similar results were obtained by applying both SDS-out and SDS-out + TCA/Acetone techniques during the gel-free method. Western blot analysis carried out with specific antibodies suggested that the antigenicity was not always preserved, while specific immunoreactions were detected for calmodulin, B box and SPRY domain-containing protein (BSPRY), peroxiredoxin 6 (PRDX 6) and parvalbumin. Conclusions In spite of some limitations mainly due to the extensive formalin-induced covalent cross-linking, our results essentially suggest the applicability of a proteomic approach to FFPE parathyroid specimens. From our point of view, FFPE extracts might be an alternative source, especially in the validation phase of protein biomarkers when a large cohort of samples is required and the low availability of frozen tissues might be constraining.
Collapse
|
41
|
Wiśniewski JR, Ostasiewicz P, Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J Proteome Res 2011; 10:3040-9. [PMID: 21526778 DOI: 10.1021/pr200019m] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteomic analysis of samples isolated by laser capture microdissection from clinical specimens requires sample preparation and fractionation methods suitable for small amounts of protein. Here we describe a streamlined filter-aided sample preparation (FASP) workflow that allows efficient analysis of lysates from low numbers of cells. Addition of carrier substances such as polyethylene glycol or dextran to the processed samples improves the peptide yields in the low to submicrogram range. In a single LC-MS/MS run, analyses of 500, 1000, and 3000 cells allowed identification of 905, 1536, and 2055 proteins, respectively. Incorporation of an additional SAX fractionation step at somewhat higher amounts enabled the analysis of formalin fixed and paraffin embedded human tissues prepared by LCM to a depth of 3600-4400 proteins per single experiment. We applied this workflow to compare archival neoplastic and matched normal colonic mucosa cancer specimens for three patients. Label-free quantification of more than 6000 proteins verified this technology through the differential expression of 30 known colon cancer markers. These included Carcino-Embryonic Antigen (CEA), the most widely used colon cancer marker, complement decay accelerating factor (DAF, CD55) and Metastasis-associated in colon cancer protein 1 (MACC1). Concordant with literature knowledge, mucin 1 was overexpressed and mucin 2 underexpressed in all three patients. These results show that FASP is suitable for the low level analysis of microdissected tissue and that it has the potential for exploration of clinical samples for biomarker and drug target discovery.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
42
|
Wada K, Ogiwara A, Nagasaka K, Tanaka N, Komatsu Y. i-RUBY: a novel software for quantitative analysis of highly accurate shotgun-proteomics liquid chromatography/tandem mass spectrometry data obtained without stable-isotope labeling of proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:960-968. [PMID: 21416533 DOI: 10.1002/rcm.4943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/15/2011] [Accepted: 01/17/2011] [Indexed: 05/30/2023]
Abstract
We developed a novel software named i-RUBY (identification-Related qUantification-Based strategY algorithm for liquid chromatography/tandem mass spectrometry (LC/MS/MS) data) that enables us to perform fully automatic ion current-based spectral feature analysis of highly accurate data obtained by LC/MS/MS. At the 1st step, this software utilizes accurate peptide/protein identification information for peak detection and peak matching among measurements. Then, at the 2nd step, it picks yet unidentified peaks and matches them to the peaks identified at the 1st step by a linear interpolation algorithm. The analysis of human plasma externally spiked with a known amount of yeast alcohol dehydrogenase 1 showed a good linear relationship between the amount of protein spiked and the quantitative values obtained by i-RUBY analysis. Experiment using human plasma digests spiked with a mixture of known amounts of synthetic peptides derived from two yeast proteins, alcohol dehydrogenase 1 and glucose-6-phospate isomerase, showed the expansion by the 2nd step of i-RUBY of the lower quantification limits to 1/10 to 1/1000 of those reached only by identified peaks at the 1st step. Good correlations between the i-RUBY results and the amount of proteins were confirmed by the analysis of real samples, i.e., sera of normal subjects and cancer patients, by comparing quantitative values of acute-phase proteins obtained by i-RUBY analysis of LC/MS/MS data with those obtained by an immunological method using Bio-Plex. These results taken together show that i-RUBY is a useful tool for obtaining dependable quantitative information from highly accurate shotgun-proteomics LC/MS/MS data.
Collapse
Affiliation(s)
- Kazuya Wada
- Medical ProteoScope Co., Ltd., Tachibana-Kameido Bldg. 2F, 2-26-10 Kameido, Tokyo 136-0071, Japan
| | | | | | | | | |
Collapse
|
43
|
Ralton LD, Murray GI. The use of formalin fixed wax embedded tissue for proteomic analysis: Table 1. J Clin Pathol 2011; 64:297-302. [DOI: 10.1136/jcp.2010.086835] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The potential of proteomic approaches to elucidate disease pathogenesis and biomarker discovery is increasingly being recognised. These studies are usually based on the use of fresh tissue samples. Problems in obtaining and storing fresh frozen samples, especially either for the investigation of rare diseases or for the study of microscopic disease foci, have led to the investigation of the possible use of formalin fixed wax embedded tissue for proteomic biomarker detection Overcoming problems with protein cross-linking associated with formalin fixation of tissues, especially by using heat-mediated retrieval techniques combined with highly sensitive methods for protein separation and identification are now emerging, giving promise to the use of formalin fixed wax embedded tissues for proteomic analysis. Formalin fixed wax embedded tissues, together with their associated clinical and pathological information outcome may provide significant potential opportunities for proteomics research. Such studies of formalin fixed wax embedded tissue will allow access to already acquired clinical tissue samples which can be readily correlated with clinical, pathological and outcome data. It also provides access to rare types of tissue/diseases that would be either difficult to collect prospectively in a timely manner or are unlikely to be available as fresh samples. The purpose of this review is to provide an overview of the issues associated with the use of formalin fixed wax embedded tissues for proteomics.
Collapse
|
44
|
Fowler CB, O'Leary TJ, Mason JT. Protein mass spectrometry applications on FFPE tissue sections. Methods Mol Biol 2011; 724:281-295. [PMID: 21370020 DOI: 10.1007/978-1-61779-055-3_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissue archives and their associated diagnostic records represent an invaluable source of proteomic information on diseases where the patient outcomes are already known. Over the last few years, advances in methodology have made it possible to recover peptides from FFPE tissues that yield a reasonable representation of the proteins recovered from identical fresh or frozen specimens. These new methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, have developed sufficiently to allow at least a qualitative analysis of the proteome of FFPE archival tissues. This chapter describes the approaches for performing proteomic analysis on FFPE tissues by liquid chromatography and mass spectrometry.
Collapse
Affiliation(s)
- Carol B Fowler
- Armed Forces Institute of Pathology, Washington, DC, USA.
| | | | | |
Collapse
|
45
|
DeSouza LV, Krakovska O, Darfler MM, Krizman DB, Romaschin AD, Colgan TJ, Siu KWM. mTRAQ-based quantification of potential endometrial carcinoma biomarkers from archived formalin-fixed paraffin-embedded tissues. Proteomics 2010; 10:3108-16. [PMID: 20661955 DOI: 10.1002/pmic.201000082] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are the primary and preferred medium for archiving patients' samples. Here we demonstrate relative quantifications of protein biomarkers in extracts of laser microdissected epithelial cells from FFPE endometrial carcinoma tissues versus those from normal proliferative endometria by means of targeted proteomic analyses using LC-multiple reaction monitoring (MRM) MS with MRM Tags for Relative and Absolute Quantitation (mTRAQ) labeling. Comparable results of differential expressions for pyruvate kinase isoform M2 (PK-M2) and polymeric Ig receptor were observed between analyses on laser microdissected epithelial cells from FFPE tissues and corresponding homogenates from frozen tissues of the same individuals that had previously been analyzed and reported. We also identified PK-M2 in the normal proliferative phase of the endometrium. Other biomarkers in addition to PK-M2 and polymeric Ig receptor were also observed but not consistently and/or were at levels below the threshold for quantification.
Collapse
Affiliation(s)
- Leroi V DeSouza
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Schaaij-Visser TB, Brakenhoff RH, Leemans CR, Heck AJ, Slijper M. Protein biomarker discovery for head and neck cancer. J Proteomics 2010; 73:1790-803. [DOI: 10.1016/j.jprot.2010.01.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/18/2010] [Accepted: 01/26/2010] [Indexed: 02/07/2023]
|
47
|
Végvári A, Marko-Varga G. Clinical protein science and bioanalytical mass spectrometry with an emphasis on lung cancer. Chem Rev 2010; 110:3278-98. [PMID: 20415473 DOI: 10.1021/cr100011x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Akos Végvári
- Division of Clinical Protein Science & Imaging, Biomedical Center, Department of Measurement Technology and Industrial Electrical Engineering, Lund University, BMC C13, SE-221 84 Lund, Sweden
| | | |
Collapse
|
48
|
Liu Y, Messadi DV, Wu H, Hu S. Oral lichen planus is a unique disease model for studying chronic inflammation and oral cancer. Med Hypotheses 2010; 75:492-4. [PMID: 20674185 DOI: 10.1016/j.mehy.2010.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease, which has been defined by the World Health Organization as a potential precancerous condition, representing a generalized state associated with a significantly increased risk of oral cancer. We would like to put forward a hypothesis that inflammatory mediators such as cytokines and chemokines released from infiltrating T lymphocytes induce fundamental changes of proteins in oral epithelial cells, leading to the progression of OLP to oral squamous cell carcinoma (OSCC). These altered proteins can act as the key risk factors associated with the local microenvironment and development of OSCC. Identification of these proteins would add to our understanding of the connection between chronic inflammation and OSCC.
Collapse
Affiliation(s)
- Yi Liu
- School of Dentistry and Dental Research Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
49
|
Xiao Z, Li G, Chen Y, Li M, Peng F, Li C, Li F, Yu Y, Ouyang Y, Xiao Z, Chen Z. Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal carcinoma using iTRAQ labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. J Histochem Cytochem 2010; 58:517-27. [PMID: 20124091 DOI: 10.1369/jhc.2010.955526] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissue specimens represent a potentially valuable resource for protein biomarker investigations. In this study, proteins were extracted by a heat-induced antigen retrieval technique combined with a retrieval solution containing 2% SDS from FFPE tissues of normal nasopharyngeal epithelial tissues (NNET) and three histological types of nasopharyngeal carcinoma (NPC) with diverse differentiation degrees. Then two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed to quantitatively identify the differentially expressed proteins among the types of NPC FFPE tissues. Our study resulted in the identification of 730 unique proteins, the distributions of subcellular localizations and molecular functions of which were similar to those of the proteomic database of human NPC and NNET that we had set up based on the frozen tissues. Additionally, the relative expression levels of cathepsin D, keratin8, SFN, and stathmin1 identified and quantified in this report were consistent with the immunohistochemistry results acquired in our previous study. In conclusion, we have developed an effective approach to identifying protein changes in FFPE NPC tissues utilizing iTRAQ technology in conjunction with an economical and easily accessible sample preparation method.
Collapse
Affiliation(s)
- Zhefeng Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha 410008, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|