1
|
Mansky RH, Greguske EA, Yu D, Zarate N, Intihar TA, Tsai W, Brown TG, Thayer MN, Kumar K, Gomez-Pastor R. Tumor suppressor p53 regulates heat shock factor 1 protein degradation in Huntington's disease. Cell Rep 2023; 42:112198. [PMID: 36867535 PMCID: PMC10128052 DOI: 10.1016/j.celrep.2023.112198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/08/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
p53 and HSF1 are two major transcription factors involved in cell proliferation and apoptosis, whose dysregulation contributes to cancer and neurodegeneration. Contrary to most cancers, p53 is increased in Huntington's disease (HD) and other neurodegenerative diseases, while HSF1 is decreased. p53 and HSF1 reciprocal regulation has been shown in different contexts, but their connection in neurodegeneration remains understudied. Using cellular and animal models of HD, we show that mutant HTT stabilized p53 by abrogating the interaction between p53 and E3 ligase MDM2. Stabilized p53 promotes protein kinase CK2 alpha prime and E3 ligase FBXW7 transcription, both of which are responsible for HSF1 degradation. Consequently, p53 deletion in striatal neurons of zQ175 HD mice restores HSF1 abundance and decrease HTT aggregation and striatal pathology. Our work shows the mechanism connecting p53 stabilization with HSF1 degradation and pathophysiology in HD and sheds light on the broader molecular differences and commonalities between cancer and neurodegeneration.
Collapse
Affiliation(s)
- Rachel H Mansky
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin A Greguske
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dahyun Yu
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicole Zarate
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taylor A Intihar
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Tsai
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taylor G Brown
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mackenzie N Thayer
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kompal Kumar
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Guo R, Xu Q, Liu L, Liu H, Liu Y, Wei W, Qin Y. Bioactive Hexapeptide Reduced the Resistance of Ovarian Cancer Cells to DDP by Affecting HSF1/HSP70 Signaling Pathway. J Cancer 2021; 12:6081-6093. [PMID: 34539881 PMCID: PMC8425193 DOI: 10.7150/jca.62285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Ovarian cancer is the leading cause of death in gynecologic malignancies. Ovarian cancer as a metastatic malignant tumor is highly recurrent and prone to drug resistance. Bioactive peptides are an emerging area of biomedical research in reducing resistance of tumor cell to drugs. In this paper, we investigated the effects and mechanisms of bioactive hexapeptide (PGPIPN) derived in milk protein on the sensitivity of ovarian cancer cells to cis-dichlorodiammine platinum (DDP). Human ovarian cancer cell lines (SKOV3 and COC1), their DDP-resistant sublines (SKOV3/DDP and COC1/DDP) and human primary ovarian cancer cells were cultured in vitro under the combined treatment of DDP (close to IC50) and different concentrations of PGPIPN. The viabilities, apoptosis and cell cycle changes were respectively measured by WST-8 and flow cytometry. The mRNA and protein expression levels of HSF1, HSP70, MDR1, ERCC1 and β-actin gene were respectively assayed by RT-qPCR and western blotting. The results showed that PGPIPN significantly increased the sensitivity of human ovarian cancer cells to DDP in inhibiting viability and inducing apoptosis in vitro. But the effects in sensitive cells were lower than DDP-resistant cells. PGPIPN significantly changed the cell cycles in all human ovarian cancer cells, which leaded to a significant increase in the percentage of cells blocked at G2/M phase and decrease the percentage of cells at G1 phases in a dose-dependent manner. PGPIPN affected the expression levels of HSF1, HSP70, MDR1 and ERCC1 genes. Compared with cells in DDP treatment alone, the expression levels of HSF1 and HSP70 in human ovarian cancer cells treated with DDP and PGPIPN together significantly decreased in dose-dependent manner. PGPIPN significantly decreased MDR1 and ERCC1 of drug-resistant ovarian cancer cell lines and human primary ovarian cancer cell in a dose-dependent manner. Pifithrin-μ (PFTμ, HSP70 inhibitor) decreased or removed the effects of peptide in increasing the sensitivity of ovarian cancer cells to DDP. This suggests that PGPIPN enhanced the sensitivity of ovarian cancer cells to DDP partially via reducing the activity of HSF1/HSP70 signaling pathway, thus inducing cell apoptosis and decreasing repairment of DNA damage.
Collapse
Affiliation(s)
- Ruowen Guo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qia Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liwei Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Medical Laboratory Centre, PLA Clinical College (901 Hospital) of Anhui Medical University, Hefei, Anhui 230031, P.R. China
| | - Hui Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wenmei Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yide Qin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
3
|
Njemini R, Verhaeghen K, Mets T, Weets I, Bautmans I. A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70. Pathogens 2020; 9:pathogens9110863. [PMID: 33105839 PMCID: PMC7690633 DOI: 10.3390/pathogens9110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Heat shock proteins (HSPs) play an essential role in protecting proteins from denaturation and are implicated in diverse pathophysiological conditions like cardiovascular diseases, cancer, infections, and neurodegenerative diseases. Scientific evidence indicates that if HSP expression falls below a certain level, cells become sensitive to oxidative damage that accelerates protein aggregation diseases. On the other hand, persistently enhanced levels of HSP can lead to inflammatory and oncogenic changes. To date, although techniques for measuring HSPs exist, these assays are limited for use in specific sample types or are time consuming. Therefore, in the present study, we developed a single-molecule assay digital ELISA technology (Single Molecule Array—SIMOA) for the measurement of HSPs, which is time effective and can be adapted to measure multiple analytes simultaneously from a single sample. This technique combines two distinct HSP-specific antibodies that recognize different epitopes on the HSP molecule. A recombinant human HSP protein was used as the standard material. The assay performance characteristics were evaluated by repeated testing of samples spiked with HSP peptide at different levels. The limit of detection was 0.16 and 2 ng/mL for HSP27 and HSP70, respectively. The inter- and intra-assay coefficients of variation were less than 20% in all tested conditions for both HSPs. The HSP levels assayed after serial dilution of samples portrayed dilutional linearity (on average 109%, R2 = 0.998, p < 0.001, for HSP27 and 93%, R2 = 0.994, p < 0.001, for HSP70). A high linear response was also demonstrated with admixtures of plasma exhibiting relatively very low and high levels of HSP70 (R2 = 0.982, p < 0.001). Analyte spike recovery varied between 57% and 95%. Moreover, the relative HSP values obtained using Western blotting correlated significantly with HSP values obtained with the newly developed SIMOA assay (r = 0.815, p < 0.001 and r = 0.895, p < 0.001 for HSP70 and HSP27, respectively), indicating that our method is reliable. In conclusion, the assay demonstrates analytical performance for the accurate assessment of HSPs in various sample types and offers the advantage of a huge range of dilution linearity, indicating that samples with HSP concentration highly above the calibration range can be diluted into range without affecting the precision of the assay.
Collapse
Affiliation(s)
- Rose Njemini
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-477-42-41; Fax: +32-2-477-63-64
| | - Katrijn Verhaeghen
- Laboratory of Clinical Chemistry and Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium; (K.V.); (I.W.)
| | - Tony Mets
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Geriatric Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
| | - Ilse Weets
- Laboratory of Clinical Chemistry and Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium; (K.V.); (I.W.)
| | - Ivan Bautmans
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Geriatric Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
| |
Collapse
|
4
|
Xiao X, Oswald JT, Wang T, Zhang W, Li W. Use of Anticancer Platinum Compounds in Combination Therapies and Challenges in Drug Delivery. Curr Med Chem 2020; 27:3055-3078. [PMID: 30394206 DOI: 10.2174/0929867325666181105115849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
Abstract
As one of the leading and most important metal-based drugs, platinum-based pharmaceuticals are widely used in the treatment of solid malignancies. Despite significant side effects and acquired drug resistance have limited their clinical applications, platinum has shown strong inhibitory effects for a wide assortment of tumors. Drug delivery systems using emerging technologies such as liposomes, dendrimers, polymers, nanotubes and other nanocompositions, all show promise for the safe delivery of platinum-based compounds. Due to the specificity of nano-formulations; unwanted side-effects and drug resistance can be largely averted. In addition, combinational therapy has been shown to be an effective way to improve the efficacy of platinum based anti-tumor drugs. This review first introduces drug delivery systems used for platinum and combinational therapeutic delivery. Then we highlight some of the recent advances in the field of drug delivery for combinational therapy; specifically progress in leveraging the cytotoxic nature of platinum-based drugs, the combinational effect of other drugs with platinum, while evaluating the drug targeting, side effect reducing and sitespecific nature of nanotechnology-based delivery platforms.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Jilin Medical University, Jilin, 132013, China
| | - James Trevor Oswald
- School of Nanotechnology Engineering, University Of Waterloo, Waterloo, Canada
| | - Ting Wang
- Department of the Gastrointestinal Surgery, The first Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Weina Zhang
- Common Subjects Department, Shangqiu Medical College, Henan 476100, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, 132013, China
| |
Collapse
|
5
|
Toma-Jonik A, Vydra N, Janus P, Widłak W. Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction. Cell Oncol (Dordr) 2019; 42:579-589. [DOI: 10.1007/s13402-019-00452-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
|
6
|
Kim SJ, Lee SC, Kang HG, Gim J, Lee KH, Lee SH, Chun KH. Heat Shock Factor 1 Predicts Poor Prognosis of Gastric Cancer. Yonsei Med J 2018; 59:1041-1048. [PMID: 30328318 PMCID: PMC6192884 DOI: 10.3349/ymj.2018.59.9.1041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/25/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Heat shock factor 1 (HSF1) is a key regulator of the heat shock response and plays an important role in various cancers. However, the role of HSF1 in gastric cancer is still unknown. The present study evaluated the function of HSF1 and related mechanisms in gastric cancer. MATERIALS AND METHODS The expression levels of HSF1 in normal and gastric cancer tissues were compared using cDNA microarray data from the NCBI Gene Expression Omnibus (GEO) dataset. The proliferation of gastric cancer cells was analyzed using the WST assay. Transwell migration and invasion assays were used to evaluate the migration and invasion abilities of gastric cancer cells. Protein levels of HSF1 were analyzed using immunohistochemical staining of tissue microarrays from patients with gastric cancer. RESULTS HSF1 expression was significantly higher in gastric cancer tissue than in normal tissue. Knockdown of HSF1 reduced the proliferation, migration, and invasion of gastric cancer cells, while HSF1 overexpression promoted proliferation, migration, and invasion of gastric cancer cells. Furthermore, HSF1 promoted the proliferation of gastric cancer cells in vivo. In Kaplan-Meier analysis, high levels of HSF1 were associated with poor prognosis for patients with gastric cancer (p=0.028). CONCLUSION HSF1 may be closely associated with the proliferation and motility of gastric cancer cells and poor prognosis of patients with gastric cancer. Accordingly, HSF1 could serve as a prognostic marker for gastric cancer.
Collapse
Affiliation(s)
- Seok Jun Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea.
| | - Seok Cheol Lee
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea
| | - Hyun Gu Kang
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea
| | - Jungsoo Gim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung Hyun Lee
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Chun
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
HSF1 upregulates ATG4B expression and enhances epirubicin-induced protective autophagy in hepatocellular carcinoma cells. Cancer Lett 2017; 409:81-90. [DOI: 10.1016/j.canlet.2017.08.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
|
8
|
Singh S, Chouhan S, Mohammad N, Bhat MK. Resistin causes G1 arrest in colon cancer cells through upregulation of SOCS3. FEBS Lett 2017; 591:1371-1382. [PMID: 28417458 DOI: 10.1002/1873-3468.12655] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022]
Abstract
Resistin, a proinflammatory cytokine, is elevated in a number of pathological disorders, including cancer. The serum resistin level in colon cancer patients is elevated and correlates with tumor grade. However, the implications of increased resistin on colon cancer cells remain unclear. In the present study, we find that resistin binds to TLR4 on colon cancer cell membrane and initiates TLR4-MyD88-dependent activation of ERK. In addition, the upregulation of SOCS3 by ERK downregulates the JAK2/TAT3 pathway and causes the arrest of cells in G1 phase. Interestingly, we observe that resistin-exposed cells survive 5-fluorouracil treatment because of a decrease in drug uptake due to the arrest of cells in G1 phase.
Collapse
|
9
|
Miova B, Dinevska-Kjovkarovska S, Esplugues JV, Apostolova N. Heat Stress Induces Extended Plateau of Hsp70 Accumulation--A Possible Cytoprotection Mechanism in Hepatic Cells. J Cell Biochem 2016; 116:2365-74. [PMID: 25857363 DOI: 10.1002/jcb.25187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 12/24/2022]
Abstract
The relevance of heat preconditioning resides in its ability to protect cells from different kinds of injury by induction of heat shock proteins, a process in which the intensity of heat stress (HS) and duration of subsequent recovery are vital. This study evaluates the effects of moderate HS (45 min/43°C) and the time-dependent changes during recovery period of HSP70, Bcl-2 and p53 gene and protein expression in HepG2 cells. We also evaluated the effects of 0.4 mM aspirin (ASA) as a potential pharmacological co-inducer of HSP, both alone and in a combination with HS (ASA + HS). HS alone and ASA + HS caused a major up-regulation of HSP70 mRNA in the first 2 h, while HSP70 protein increased gradually and was especially abundant from 2 h to 24 h. Regarding Bcl-2, all treatments rendered similar results: gene expression was down-regulated in the first 2 h, after which there was protein elevation (12-48 h after HS). mRNA expression of p53 in HS- and (ASA + HS)-cells was down-regulated in the first 12 h. The immediate decrease of p53 protein after HS was followed by a biphasic increase. In conclusion, 0.4 mM ASA + HS does not act as a co-inducer of HSP70 in HepG2 cells, but promotes Bcl-2 protein expression during prolonged treatment. Our suggestion is that hepatic cells are most vulnerable in the first 2-6 h, but may have a high capacity for combating stress 12-24 h after HS. Finally, short-term exposure HS might be a "physiological conditioner" for liver cells to accumulate HSP and Bcl-2 proteins and thus obtain cytoprotection against an additional stress.
Collapse
Affiliation(s)
- Biljana Miova
- Department of Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius,", 1000, Skopje, Republic of Macedonia
| | - Suzana Dinevska-Kjovkarovska
- Department of Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius,", 1000, Skopje, Republic of Macedonia
| | - Juan V Esplugues
- Departamento de Farmacolog, í, a, Facultad de Medicina- CIBERehd, Universidad de Valencia, Valencia, Spain.,FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| | - Nadezda Apostolova
- Departamento de Farmacolog, í, a, Facultad de Medicina- CIBERehd, Universidad de Valencia, Valencia, Spain.,FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain.,Facultad de Ciencias de la Salud, Universitat Jaume I, Castell, o, n de la Plana, Spain
| |
Collapse
|
10
|
ERK-dependent phosphorylation of HSF1 mediates chemotherapeutic resistance to benzimidazole carbamates in colorectal cancer cells. Anticancer Drugs 2015; 26:657-66. [PMID: 25811962 DOI: 10.1097/cad.0000000000000231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drugs containing the benzimidazole carbamate scaffold include anthelmintic and antifungal agents, and they are now also recognized as having potential applications in the treatment of colorectal and other cancers. These agents act by binding to β-tubulin, and in doing so they disrupt microtubules, arrest cell division, and promote apoptotic cell death in malignant cells. We have evaluated several commercially available benzimidazole carbamates for cytotoxic activity in colorectal cancer cells. In addition to cytotoxicity, we also observe activation of the transcription factor, heat shock factor-1 (HSF1). HSF1 is well known to mediate a cytoprotective response that promotes tumor cell survival and drug resistance. Here, we show that biochemical inhibition with the HSF1 inhibitor KRIBB11 or siRNA-based silencing of HSF1 results in a significant enhancement of drug potency, causing an approximately two-fold decrease in IC50 values of parbendazole and nocodazole. We also define a mechanism for drug-induced HSF1 activation, which results from a phosphorylation event at Ser326 that is dependent on the activation of the extracellular regulated protein kinase-1/2 (ERK-1/2) mitogen-activated protein kinase pathway. Inhibition of the upstream kinase MEK-1/2 with U0126 attenuates the phosphorylation of both ERK-1/2 and HSF1, and significantly enhances drug cytotoxicity. From these data we propose a unique model whereby the ERK-1/2-dependent activation of HSF1 promotes chemotherapeutic resistance to benzimidazole carbamates. Therefore, targeting the ERK-1/2 signaling cascade is a potential strategy for HSF1 inhibition and a means of enhancing the cytotoxicity of these agents.
Collapse
|
11
|
Vydra N, Toma A, Widlak W. Pleiotropic role of HSF1 in neoplastic transformation. Curr Cancer Drug Targets 2015; 14:144-55. [PMID: 24467529 PMCID: PMC4435066 DOI: 10.2174/1568009614666140122155942] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 01/06/2014] [Accepted: 01/22/2014] [Indexed: 01/13/2023]
Abstract
HSF1 (Heat Shock transcription Factor 1) is the main transcription factor activated in response to proteotoxic stress. Once activated, it induces an expression of heat shock proteins (HSPs) which enables cells to survive in suboptimal conditions. HSF1 could be also activated by altered kinase signaling characteristic for cancer cells, which is a probable reason for its high activity found in a broad range of tumors. There is rapidly growing evidence that HSF1 supports tumor initiation and growth, as well as metastasis and angiogenesis. It also modulates the sensitivity of cancer cells to therapy. Functions of HSF1 in cancer are connected with HSPs’ activity, which generally protects cells from apoptosis, but also are independent of its classical targets. HSF1-dependent regulation of non-HSPs genes plays a role in cell cycle
progression, glucose metabolism, autophagy and drug efflux. HSF1 affects the key cell-survival and regulatory pathways, including p53, RAS/MAPK, cAMP/PKA, mTOR and insulin signaling. Although the exact mechanism of HSF1 action is still somewhat obscure, HSF1 is becoming an attractive target in anticancer therapies, whose inhibition could enhance the effects of other treatments.
Collapse
Affiliation(s)
| | | | - Wieslawa Widlak
- Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland.
| |
Collapse
|
12
|
Wang X, Jiang Q, Wang W, Su L, Han Y, Wang C. Molecular mechanism of polypeptides from Chlamys farreri (PCF)’s anti-apoptotic effect in UVA-exposed HaCaT cells involves HSF1/HSP70, JNK, XO, iNOS and NO/ROS. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:47-56. [DOI: 10.1016/j.jphotobiol.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/01/2022]
|
13
|
Vydra N, Toma A, Glowala-Kosinska M, Gogler-Piglowska A, Widlak W. Overexpression of Heat Shock Transcription Factor 1 enhances the resistance of melanoma cells to doxorubicin and paclitaxel. BMC Cancer 2013; 13:504. [PMID: 24165036 PMCID: PMC4231344 DOI: 10.1186/1471-2407-13-504] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background Heat Shock Transcription Factor 1 (HSF1) is activated under stress conditions. In turn, it induces expression of Heat Shock Proteins (HSPs), which are well-known regulators of protein homeostasis. Elevated levels of HSF1 and HSPs were observed in many types of tumors. The aim of the present study was to determine whether HSF1 could have an effect on the survival of cancer cells treated with chemotherapeutic cytotoxic agents. Methods We constructed mouse (B16F10) and human (1205Lu, WM793B) melanoma cells overexpressing full or mutant form of human HSF1: a constitutively active one with a deletion in regulatory domain or a dominant negative one with a deletion in the activation domain. The impact of different forms of HSF1 on the expression of HSP and ABC genes was studied by RT-PCR and Western blotting. Cell cultures were treated with increasing amounts of doxorubicin, paclitaxel, cisplatin, vinblastine or bortezomib. Cell viability was determined by MTT, and IC50 was calculated. Cellular accumulation of fluorescent dyes and side population cells were studied using flow cytometry. Results Cells overexpressing HSF1 and characterized by increased HSPs accumulation were more resistant to doxorubicin or paclitaxel, but not to cisplatin, vinblastine or bortezomib. This resistance correlated with the enhanced efflux of fluorescent dyes and the increased number of side population cells. The expression of constitutively active mutant HSF1, also resulting in HSPs overproduction, did not reduce the sensitivity of melanoma cells to drugs, unlike in the case of dominant negative form expression. Cells overexpressing a full or dominant negative form of HSF1, but not a constitutively active one, had higher transcription levels of ABC genes when compared to control cells. Conclusions HSF1 overexpression facilitates the survival of melanoma cells treated with doxorubicin or paclitaxel. However, HSF1-mediated chemoresistance is not dependent on HSPs accumulation but on an increased potential for drug efflux by ABC transporters. Direct transcriptional activity of HSF1 is not necessary for increased expression of ABC genes, which is probably mediated by HSF1 regulatory domain.
Collapse
Affiliation(s)
- Natalia Vydra
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, Poland.
| | | | | | | | | |
Collapse
|
14
|
Meena AS, Sharma A, Kumari R, Mohammad N, Singh SV, Bhat MK. Inherent and acquired resistance to paclitaxel in hepatocellular carcinoma: molecular events involved. PLoS One 2013; 8:e61524. [PMID: 23613870 PMCID: PMC3629035 DOI: 10.1371/journal.pone.0061524] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and is a major cause of cancer related deaths worldwide. Only 10 to 20% of HCC can be surgically excised. Therefore, chemotherapeutic intervention and treatment is essential for achieving favorable prognosis. However, therapeutic outcome of chemotherapy is generally poor owing to inherent resistance of cancer cells to the treatment or due to development of acquired resistance. To differentiate and delineate the molecular events, we developed drug resistant Hep3B cells (DRC) by treating cells with the increasing concentration of paclitaxel. We also developed a unique single cell clone of Hep3B cells (SCC) by selecting single cell colonies and screening them for resistant phenotype. Interestingly, both DRC and SCC were resistant to paclitaxel in comparison to parental Hep3B cells. We analyzed the contributory factors that may be involved in the development of resistance. As expected, level of P-glycoprotein (P-gp) was elevated in DRC. In addition, Caveolin-1 (Cav-1), Fatty acid synthase (FASN) and Cytochrome P450 (CYP450) protein levels were elevated in DRC whereas in SCC, FASN and CYP450 levels were elevated. Downregulation of these molecules by respective siRNAs and/or by specific pharmacological inhibitors resensitized cells to paclitaxel. Interestingly, these drug resistant cells were also less sensitive to vinblastine, doxorubicin and methotrexate with the exception of cisplatin. Our results suggested that differential levels of P-gp, Cav-1 and FASN play a major role in acquired resistant phenotype whereas FASN level was associated with the presentation of inherent resistant phenotype in HCC.
Collapse
Affiliation(s)
| | - Aanchal Sharma
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Ratna Kumari
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | | | | |
Collapse
|
15
|
The molecular mechanism and potential role of heat shock-induced p53 protein accumulation. Mol Cell Biochem 2013; 378:161-9. [PMID: 23456460 DOI: 10.1007/s11010-013-1607-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/23/2013] [Indexed: 02/08/2023]
Abstract
Workers who are exposed to extreme heat or work in hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational illnesses and injuries. On the other hand, local and regional heat therapy has been used for the treatment of some cancers, such as liver cancer, lung cancer, and kidney cancer. Although heat stress has been shown to induce the accumulation of p53 protein, a key regulator of cell cycle, apoptosis, DNA repair, and autophagy, how it regulates p53 protein accumulation and what the p53 targets are remain unclear. Here, we show that, among various genotoxic stresses, including ionizing radiation (IR) and ultraviolet (UV) radiation, heat stress contributes significantly to increase p53 protein levels in normal liver cells and liver cancer cells. Heat stress did not increase p53 mRNA expression as well as p53 promoter activity. However, heat stress enhanced the half-life of p53 protein. Moreover, heat stress increased the expression of puma and light chain 3 (LC-3), which are associated with the apoptotic and autophagic function of p53, respectively, whereas it did not change the expression of the cell cycle regulators p21, 14-3-3δ, and GADD45α, suggesting that heat-triggered alteration of p53 selectively modulates the downstream targets of p53. Our study provides a novel mechanism by which heat shock stimulates p53 protein accumulation, which is different from common DNA damages, such as IR and UV, and also provides new molecular basis for heat injuries or heat therapy.
Collapse
|
16
|
QIN CH, LI YG, WU J, HE HJ. Curcumin Reverses Adriamycin-resistance of Thermotolerant Hepatocarcinoma Cells by Down-regulating P-glycoprotein and Heat Shock Protein 70*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Cerbone A, Toaldo C, Pizzimenti S, Pettazzoni P, Dianzani C, Minelli R, Ciamporcero E, Roma G, Dianzani MU, Canaparo R, Ferretti C, Barrera G. AS601245, an Anti-Inflammatory JNK Inhibitor, and Clofibrate Have a Synergistic Effect in Inducing Cell Responses and in Affecting the Gene Expression Profile in CaCo-2 Colon Cancer Cells. PPAR Res 2012; 2012:269751. [PMID: 22619672 PMCID: PMC3349252 DOI: 10.1155/2012/269751] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/29/2011] [Accepted: 11/01/2011] [Indexed: 12/13/2022] Open
Abstract
PPARαs are nuclear receptors highly expressed in colon cells. They can be activated by the fibrates (clofibrate, ciprofibrate etc.) used to treat hyperlipidemia. Since PPARα transcriptional activity can be negatively regulated by JNK, the inhibition of JNK activity could increase the effectiveness of PPARα ligands. We analysed the effects of AS601245 (a JNK inhibitor) and clofibrate alone or in association, on proliferation, apoptosis, differentiation and the gene expression profile of CaCo-2 human colon cancer cells. Proliferation was inhibited in a dose-dependent way by clofibrate and AS601245. Combined treatment synergistically reduced cell proliferation, cyclin D1 and PCNA expression and induced apoptosis and differentiation. Reduction of cell proliferation, accompanied by the modulation of p21 expression was observed in HepG2 cells, also. Gene expression analysis revealed that some genes were highly modulated by the combined treatment and 28 genes containing PPRE were up-regulated, while clofibrate alone was ineffective. Moreover, STAT3 signalling was strongly reduced by combined treatment. After combined treatment, the binding of PPARα to PPRE increased and paralleled with the expression of the PPAR coactivator MED1. Results demonstrate that combined treatment increases the effectiveness of both compounds and suggest a positive interaction between PPARα ligands and anti-inflammatory agents in humans.
Collapse
Affiliation(s)
- Angelo Cerbone
- 1MerckSerono Ivrea, Istituto di Ricerche Biomediche “A. Marxer”, RBM S.p.A., 10010 Colleretto Giacosa, Italy
| | - Cristina Toaldo
- 2Department of Medicine and Experimental Oncology, Section of General Pathology, University of Turin, 10125 Turin, Italy
- *Cristina Toaldo:
| | - Stefania Pizzimenti
- 2Department of Medicine and Experimental Oncology, Section of General Pathology, University of Turin, 10125 Turin, Italy
| | - Piergiorgio Pettazzoni
- 2Department of Medicine and Experimental Oncology, Section of General Pathology, University of Turin, 10125 Turin, Italy
| | - Chiara Dianzani
- 3Department of Anatomy, Pharmacology and Forensic Medicine, Section of Pharmacology and Pharmacognosy, University of Turin,10125 Turin, Italy
| | - Rosalba Minelli
- 3Department of Anatomy, Pharmacology and Forensic Medicine, Section of Pharmacology and Pharmacognosy, University of Turin,10125 Turin, Italy
| | - Eric Ciamporcero
- 2Department of Medicine and Experimental Oncology, Section of General Pathology, University of Turin, 10125 Turin, Italy
| | - Guglielmo Roma
- 1MerckSerono Ivrea, Istituto di Ricerche Biomediche “A. Marxer”, RBM S.p.A., 10010 Colleretto Giacosa, Italy
| | - Mario Umberto Dianzani
- 2Department of Medicine and Experimental Oncology, Section of General Pathology, University of Turin, 10125 Turin, Italy
| | - Roberto Canaparo
- 4Department of Anatomy, Pharmacology, and Forensic Medicine, Section of Pharmacology and Experimental Therapy, University of Turin, 10125 Turin, Italy
| | - Carlo Ferretti
- 4Department of Anatomy, Pharmacology, and Forensic Medicine, Section of Pharmacology and Experimental Therapy, University of Turin, 10125 Turin, Italy
| | - Giuseppina Barrera
- 2Department of Medicine and Experimental Oncology, Section of General Pathology, University of Turin, 10125 Turin, Italy
| |
Collapse
|
18
|
Sharma A, Bhat MK. Enhancement of carboplatin- and quercetin-induced cell death by roscovitine is Akt dependent and p53 independent in hepatoma cells. Integr Cancer Ther 2011; 10:NP4-14. [PMID: 21994207 DOI: 10.1177/1534735411423922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a common malignancy worldwide and has an annual occurrence of one million new cases. Novel therapeutic strategies of increased efficacy in the treatment of HCC-bearing patients would certainly be helpful. Hence, the authors explored the effect of combination treatment of roscovitine with chemotherapeutic drugs or quercetin (Qctn) in hepatoma cells, HepG2 and Hep3B. METHODS Cell viability was assessed by MTT assay, cell growth assay, and nuclear morphological changes by DAPI staining. The altered expression of signaling proteins and apoptotic molecules was established by Western blotting. RESULTS Roscovitine pretreatment considerably enhanced the drugs and Qctn-induced cell death in HepG2 and Hep3B cells. The exploratory studies revealed that augmented cell killing in HepG2 and Hep3B was mediated via Akt pathway and was independent of p53. pAkt was found to be significantly downregulated in combination treatment of roscovitine with carboplatin or Qctn. Corresponding to reduced expression of pAkt, the downstream molecules Bcl-2 and proactive forms of caspase 9 and caspase 3 were also downregulated indicating apoptosis. CONCLUSIONS The present study reports for the first time, in hepatoma cells, the potentiation of carboplatin- and Qctn-induced cell death by the cell cycle inhibitor roscovitine. Roscovitine can thus be considered as a potential therapeutic target in combination with chemotherapeutic drugs or Qctn for treatment of HCC.
Collapse
|
19
|
Ginet P, Montagne K, Akiyama S, Rajabpour A, Taniguchi A, Fujii T, Sakai Y, Kim B, Fourmy D, Volz S. Towards single cell heat shock response by accurate control on thermal confinement with an on-chip microwire electrode. LAB ON A CHIP 2011; 11:1513-1520. [PMID: 21394336 DOI: 10.1039/c0lc00701c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Metal electrodes with micron scale width enable the heating of less than a dozen cells in a confluent layer at predictable temperatures up to 85 °C with an accuracy of ±2 °C. Those performances were obtained by a preliminary robust temperature calibration based on biotin-rhodamine fluorescence and by controlling the temperature map on the substrate through thermal modeling. The temperature accuracy was proved by inducing the expression of heat shock proteins (HSP) in a few NIH-3T3 cells through a confined and precise temperature rise. Our device is therefore effective to locally induce a heat shock response with almost single-cell resolution. Furthermore, we show that cells heated at a higher temperature than the one of heat shock remain alive without producing HSP. Electrode deposition being one of the most common engineering processes, the fabrication of electrode arrays with a simple control circuit is clearly within reach for parallel testing. This should enable the study of several key mechanisms such as cell heat shock, death or signaling. In nanomedicine, controlled drug release by external stimuli such as for example temperature has attracted much attention. Our device could allow fast and efficient testing of thermoactivable drug delivery systems.
Collapse
Affiliation(s)
- Patrick Ginet
- Laboratory of Integrated Micro and Mechatronics Systems/IIS UMI CNRS 2820, Institute of Industrial Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Allegra A, Sant'antonio E, Penna G, Alonci A, D'Angelo A, Russo S, Cannavò A, Gerace D, Musolino C. Novel therapeutic strategies in multiple myeloma: role of the heat shock protein inhibitors. Eur J Haematol 2010; 86:93-110. [PMID: 21114539 DOI: 10.1111/j.1600-0609.2010.01558.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite advances in understanding the molecular pathogenesis of multiple myeloma and promising new therapies, almost all patients eventually relapse with resistant disease. There is therefore a strong rationale for combining novel therapies that target intrinsic molecular pathways mediating multiple myeloma cell resistance. One such protein family is the heat shock proteins (HSP), especially the HSP90 family. Heat shock protein inhibitors have been identified as promising cancer treatments as, while they only inhibit a single biologic function, the chaperone-protein association, their effect is widespread as it results in the destruction of numerous client proteins. This article reviews the preclinical and clinical data, which support the testing of HSP90 inhibitors as cancer drugs and update the reader on the current status of the ongoing clinical trials of HSP90 inhibitors in multiple myeloma.
Collapse
|
21
|
Huang CT, Lu YH, Jen CP. Investigation on supraphysiological thermal injury in two well-differentiated human hepatoma cell lines, HepG2 and Hep3B. J Therm Biol 2010. [DOI: 10.1016/j.jtherbio.2010.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Wang T, Yu Q, Chen J, Deng B, Qian L, Le Y. PP2A mediated AMPK inhibition promotes HSP70 expression in heat shock response. PLoS One 2010; 5. [PMID: 20957029 PMCID: PMC2948495 DOI: 10.1371/journal.pone.0013096] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/07/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Under stress, AMP-activated protein kinase (AMPK) plays a central role in energy balance, and the heat shock response is a protective mechanism for cell survival. The relationship between AMPK activity and heat shock protein (HSP) expression under stress is unclear. METHODOLOGY/PRINCIPAL FINDINGS We found that heat stress induced dephosphorylation of AMPKα subunit (AMPKα) in various cell types from human and rodent. In HepG2 cells, the dephosphorylation of AMPKα under heat stress in turn caused dephosphorylation of acetyl-CoA carboxylase and upregulation of phosphoenolpyruvate carboxykinase, two downstream targets of AMPK, confirming the inhibition of AMPK activity by heat stress. Treatment of HepG2 cells with phosphatase 2A (PP2A) inhibitor okadaic acid or inhibition of PP2A expression by RNA interference efficiently reversed heat stress-induced AMPKα dephosphorylation, suggesting that heat stress inhibited AMPK through activation of PP2A. Heat stress- and other HSP inducer (CdCl(2), celastrol, MG132)-induced HSP70 expression could be inhibited by AICAR, an AMPK specific activator. Inhibition of AMPKα expression by RNA interference reversed the inhibitory effect of AICAR on HSP70 expression under heat stress. These results indicate that AMPK inhibition under stress contribute to HSP70 expression. Mechanistic studies showed that activation of AMPK by AICAR had no effect on heat stress-induced HSF1 nuclear translocation, phosphorylation and binding with heat response element in the promoter region of HSP70 gene, but significantly decreased HSP70 mRNA stability. CONCLUSIONS/SIGNIFICANCE These results demonstrate that during heat shock response, PP2A mediated AMPK inhibition upregulates HSP70 expression at least partially through stabilizing its mRNA, which suggests a novel mechanism for HSP induction under stress.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Qiujing Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Juan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Bo Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Lihua Qian
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Yingying Le
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
- * E-mail: .
| |
Collapse
|