1
|
Shaikh NI, Sethi RS. Impairment of apoptosis pathway via Apaf1 downregulation during chlorpyrifos and/or cypermethrin induced lung damage. Anim Biotechnol 2021:1-8. [PMID: 34559034 DOI: 10.1080/10495398.2021.1981918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chlorpyrifos is an organophosphate and the cypermethrin is type 2 pyrethroid insecticide that are used for indoor and outdoor pest control. The present study aimed to investigate differential transcriptional profiling to identify the candidate gene associated with lung injury following exposure to chlorpyrifos and/or cypermethrin in a mouse model system. Swiss male albino mice (n = 24) were divided into three treatment groups (n = 6 each) that were given chlorpyrifos (2.76 mg kg-1 body weight), cypermethrin (2 mg kg-1 body weight) and the combination of both pesticides orally dissolved in corn oil and one control group (n = 6) that received corn oil for 90 days. The pulmonary expression of the Apaf1 was observed using RT2 Profiler PCR Array. The results showed that chronic exposure to chlorpyrifos, cypermethrin and their combination downregulated (67, 63 and 66 genes) and upregulated (4, 2 and 2 genes), respectively. The pulmonary expression of Apaf1 that plays important role in apoptosis was found to be downregulated. The immunohistochemistry depicted reduced expression of Apaf1 in both airway epithelium and alveolar septa following exposure to chlorpyrifos and/or cypermethrin. In conclusion, results demonstrated that exposure to chlorpyrifos, cypermethrin and their combination cause lung damage by the dysregulation of Apaf1 gene expression.
Collapse
Affiliation(s)
- Nasrul I Shaikh
- Department of Animal Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, India
| | - R S Sethi
- Department of Animal Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, India
| |
Collapse
|
2
|
Isubakova DS, Tsymbal OS, Bronikovskaya EV, Litviakov NV, Milto IV, Takhauov RМ. Methylation of Promoters of Apoptosis-Related Genes in Blood Lymphocytes of Workers Exposed to Occupational External Irradiation. Bull Exp Biol Med 2021; 171:357-361. [PMID: 34297287 DOI: 10.1007/s10517-021-05227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 10/20/2022]
Abstract
We studied the effect of technogenic radiation on the degree of promoter methylation in genes involved in apoptosis in blood lymphocytes of workers exposed to long-term γ-radiation during their professional activities. Blood samples for the analysis were obtained from 11 conventionally healthy men aged from 54 to 71 years (mean 66 years), workers of the Siberian Group of Chemical Enterprises working experience from 27 to 40 years (mean 30 years); the external exposure dose was 175.88 mSv (158.20-207.81 mSv). In all examined subjects, the degree of methylation of the promoters of apoptosis-related genes ranged from 0.22 to 50.00%. A correlation was found between the degree of methylation of BCLAF1 promoters (p=0.035) with the age of workers, BAX promoters (p=0.0289) with high content of aberrant cells, and APAF1 promoters (p=0.0152) with increased number of dicentric chromosomes. A relationship was found between the dose of external irradiation and the degree of methylation of gene promoters of BAD (p=0.0388), BID (р=0.0426), and HRK (р=0.0101) genes.
Collapse
Affiliation(s)
- D S Isubakova
- Seversk Biophysical Research Center, Federal Medical-Biological Agency of Russia, Seversk, Russia.
| | - O S Tsymbal
- Seversk Biophysical Research Center, Federal Medical-Biological Agency of Russia, Seversk, Russia
| | - E V Bronikovskaya
- Seversk Biophysical Research Center, Federal Medical-Biological Agency of Russia, Seversk, Russia
| | - N V Litviakov
- Seversk Biophysical Research Center, Federal Medical-Biological Agency of Russia, Seversk, Russia.,Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - I V Milto
- Seversk Biophysical Research Center, Federal Medical-Biological Agency of Russia, Seversk, Russia.,Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - R М Takhauov
- Seversk Biophysical Research Center, Federal Medical-Biological Agency of Russia, Seversk, Russia.,Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| |
Collapse
|
3
|
Contribution of Apaf-1 to the pathogenesis of cancer and neurodegenerative diseases. Biochimie 2021; 190:91-110. [PMID: 34298080 DOI: 10.1016/j.biochi.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
Deregulation of apoptosis is associated with various pathologies, such as neurodegenerative disorders at one end of the spectrum and cancer at the other end. Generally speaking, differentiated cells like cardiomyocytes, skeletal myocytes and neurons exhibit low levels of Apaf-1 (Apoptotic protease activating factor 1) protein suggesting that down-regulation of Apaf-1 is an important event contributing to the resistance of these cells to apoptosis. Nonetheless, upregulation of Apaf-1 has not emerged as a common phenomenon in pathologies associated with enhanced neuronal cell death, i.e., neurodegenerative diseases. In cancer, on the other hand, Apaf-1 downregulation is a common phenomenon, which occurs through various mechanisms including mRNA hyper-methylation, gene methylation, Apaf-1 localization in lipid rafts, inhibition by microRNAs, phosphorylation, and interaction with specific inhibitors. Due to the diversity of these mechanisms and involvement of other factors, defining the exact contribution of Apaf-1 to the development of cancer in general and neurodegenerative disorders, in particular, is complicated. The current review is an attempt to provide a comprehensive image of Apaf-1's contribution to the pathologies observed in cancer and neurodegenerative diseases with the emphasis on the therapeutic aspects of Apaf-1 as an important target in these pathologies.
Collapse
|
4
|
Jia MX, Chen J. Apoptotic protease activating factor-1 and tumors. Shijie Huaren Xiaohua Zazhi 2015; 23:3729-3735. [DOI: 10.11569/wcjd.v23.i23.3729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptotic protease activating factor-1 (Apaf-1) functions as a core apoptosis factor in the mitochondrial apoptosis pathway. Apaf-1 promoter methylation and loss of heterozygosity are the main causes of cancer, and lower expression of Apaf-1 is closely related to malignant tumors. Apaf-1 expression deletion and methylation can be used as markers for deeper tumor invasion, frequent lymph node metastasis, tumor differentiation and poor prognosis. Apaf-1 can be used as a molecular target for anticancer therapy and prognosis prediction. Further research on Apaf-1 will contribute to the development of effective anti-tumor drugs. In this paper, we will review the biochemical structure and function of Apaf-1, Apaf-1 signal transduction pathway, expression of Apaf-1 in a variety of tumors, as well as its role in tumor occurrence, drug resistance and treatment.
Collapse
|
5
|
Tanase C, Albulescu R, Codrici E, Calenic B, Popescu ID, Mihai S, Necula L, Cruceru ML, Hinescu ME. Decreased expression of APAF-1 and increased expression of cathepsin B in invasive pituitary adenoma. Onco Targets Ther 2015; 8:81-90. [PMID: 25565868 PMCID: PMC4278787 DOI: 10.2147/ott.s70886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Apoptotic protease-activating factor-1 (APAF-1) and cathepsin B are important functional proteins in apoptosis; the former is involved in the intrinsic (mitochondrial) pathway, while the latter is associated with both intrinsic and extrinsic pathways. Changes in the expression of apoptosome-related proteins could be useful indicators of tumor development since a priori defects in the mitochondrial pathway might facilitate the inception and progression of human neoplasms. Our aim was to evaluate the profiles of APAF-1 and cathepsin B in relation with other molecules involved in apoptosis/proliferation and to correlate them with the aggressive behavior of invasive pituitary adenomas. MATERIALS AND METHODS APAF-1 and cathepsin B were assessed in tissue samples from 30 patients with pituitary adenomas, of which 16 were functional adenomas and 22 were invasive adenomas. RESULTS A positive relationship between high proliferation and invasiveness was observed in invasive pituitary adenomas when compared to their noninvasive counterparts (Ki-67 labeling index - 4.72% versus 1.75%). Decreased expression of APAF-1 was recorded in most of the invasive adenomas with a high proliferation index, while the cathepsin B level was elevated in this group. We have noticed a negative correlation between the low level of APAF-1 and invasiveness (63.63%; P<0.01); at the same time, a positive correlation between cathepsin B expression and invasiveness (59.09%; P<0.01) was found. In all, 81.25% out of the total APAF-1-positive samples were cathepsin B negative (P<0.01); 76.92% out of the total cathepsin B-positive samples were APAF-1-negative (P<0.01). These results were reinforced by an apoptosis protein array examination, which showed inhibition of the extrinsic apoptotic pathway in an invasive pituitary adenoma. CONCLUSION A bidirectional-inverted relationship between APAF-1 and cathepsin B expressions was noticed. One might hypothesize that shifting the balance between mediators of cell death could result in changes in tumor behavior.
Collapse
Affiliation(s)
- Cristiana Tanase
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
- Correspondence: Cristiana Tanase, “Victor Babes” National Institute of Pathology, no 99-101 Splaiul Independentei, 050096, Sector 5 Bucharest, Romania, Tel +40 213 194 528, Fax +40 213 194 528, Email
| | - Radu Albulescu
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
- National Institute for Chemical Pharmaceutical R&D, Department of Biochemistry, Bucharest, Romania
| | - Elena Codrici
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
| | - Bogdan Calenic
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Department of Biochemistry, Bucharest, Romania
| | - Ionela Daniela Popescu
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
| | - Simona Mihai
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
| | - Laura Necula
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Cellular and Molecular Pathology, Cellular and Molecular Medicine Department, Bucharest, Romania
| | - Maria Linda Cruceru
- “Carol Davila” University of Medicine and Pharmacy, Cellular and Molecular Medicine Department, Bucharest, Romania
| | - Mihail Eugen Hinescu
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Cellular and Molecular Medicine Department, Bucharest, Romania
| |
Collapse
|
6
|
Ando S, Matsuoka T, Kawai K, Sugita S, Joraku A, Kojima T, Suetomi T, Miyazaki J, Fujita J, Nishiyama H. Expression of the oncoprotein gankyrin and phosphorylated retinoblastoma protein in human testis and testicular germ cell tumor. Int J Urol 2014; 21:992-8. [PMID: 24861729 DOI: 10.1111/iju.12484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/06/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The oncoprotein, gankyrin, is known to facilitate cell proliferation through phosphorylation and degradation of retinoblastoma protein. In the present study, we evaluated the expression of gankyrin and phosphorylated retinoblastoma protein in human testis and testicular germ cell tumors. METHODS The effects of suppression of gankyrin by locked nucleic acid on phosphorylation status of retinoblastoma and cell proliferation were analyzed using western blot analysis and testicular tumor cell line NEC8. The expressions of gankyrin, retinoblastoma and retinoblastoma protein were analyzed in 93 testicular germ cell tumor samples and five normal human testis by immunohistochemistry. The retinoblastoma protein expression was determined using an antibody to retinoblastoma protein, Ser795. RESULTS Gankyrin was expressed in NEC8 cells as well as a normal human testis and testicular tumors. Suppression of gankyrin by locked nucleic acid led to suppression of retinoblastoma protein and cell proliferation in NEC8 cells. Immunohistochemistry of normal testis showed that gankyrin is expressed dominantly in spermatocytes. In testicular germ cell tumors, high expressions of gankyrin and phosphorylated-retinoblastoma protein were observed in seminoma and embryonal carcinoma, whereas the expressions of both proteins were weak in histological subtypes of non-seminoma. Growing teratoma and testicular malignant transformation tissues expressed phosphorylated-retinoblastoma protein strongly, but gankyrin faintly. CONCLUSION Gankyrin is dominantly expressed in normal spermatocytes and seminoma/embryonal carcinoma, and its expression correlates well with retinoblastoma protein expression except in the growing teratoma and testicular malignant transformation cases. These data provide new insights into the molecular mechanisms of normal spermatogenesis and pathogenesis of testicular germ cell tumors.
Collapse
Affiliation(s)
- Satoshi Ando
- Department of Urology, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
He M, Fan J, Jiang R, Tang WX, Wang ZW. Expression of DNMTs and genomic DNA methylation in gastric signet ring cell carcinoma. Mol Med Rep 2013; 8:942-8. [PMID: 23820855 DOI: 10.3892/mmr.2013.1566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/24/2013] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the protein expression of DNA methyltransferases (DNMTs) and genomic DNA methylation status of genomes in gastric signet ring cell carcinoma (SRC). Immunohistochemistry was performed to analyze DNMT expression and methylated DNA immunoprecipitation microarray (MeDIP‑chip) and MeDIP quantitative real‑time PCR (MeDIP‑qPCR) were performed to analyze the genomic DNA methylation status in gastric SRC tissue. An increase in DNMT1 and decrease in DNMT3A expression in SRC tissue was observed compared with matched non‑cancerous tissue. However, expression of other DNMTs, DNMT2, DNMT3B and DNMT3L, was not found to differ significantly between carcinoma and control. The MeDIP‑chip assay revealed that methylation of gene promoters and CpG islands in SRC was higher than those in matched control tissue. However, MeDIP‑qPCR analysis demonstrated that specific tumor‑related genes, including ABL2, FGF18, TRAF2, EGFL7 and RAB33A were aberrantly hypomethylated in SRC tissue. Results of the current study indicate that gastric SRC may produce complex patterns of aberrant DNA methylation and DNMT expression.
Collapse
Affiliation(s)
- Miao He
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | | | | | | | | |
Collapse
|
8
|
Solá S, Morgado AL, Rodrigues CMP. Death receptors and mitochondria: two prime triggers of neural apoptosis and differentiation. Biochim Biophys Acta Gen Subj 2012; 1830:2160-6. [PMID: 23041071 DOI: 10.1016/j.bbagen.2012.09.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Stem cell therapy is a strategy far from being satisfactory and applied in the clinic. Poor survival and differentiation levels of stem cells after transplantation or neural injury have been major problems. Recently, it has been recognized that cell death-relevant proteins, notably those that operate in the core of the executioner apoptosis machinery are functionally involved in differentiation of a wide range of cell types, including neural cells. SCOPE OF REVIEW This article will review recent studies on the mechanisms underlying the non-apoptotic function of mitochondrial and death receptor signaling pathways during neural differentiation. In addition, we will discuss how these major apoptosis-regulatory pathways control the decision between differentiation, self-renewal and cell death in neural stem cells and how levels of activity are restrained to prevent cell loss as final outcome. MAJOR CONCLUSIONS Emerging evidence suggests that, much like p53, caspases and Bcl-2 family members, the two prime triggers of cell death pathways, death receptors and mitochondria, may influence proliferation and differentiation potential of stem cells, neuronal plasticity, and astrocytic versus neuronal stem cell fate decision. GENERAL SIGNIFICANCE A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation as an alternative to cell death will surely contribute to improve neuro-replacement strategies.
Collapse
Affiliation(s)
- Susana Solá
- Research Institute for Medicines and Pharmaceutical Sciences, Lisbon, Portugal.
| | | | | |
Collapse
|
9
|
Kim WY, Lee SY, Jung YJ, Chae HB, Nawkar GM, Shin MR, Kim SY, Park JH, Kang CH, Chi YH, Ahn IP, Yun DJ, Lee KO, Kim YM, Kim MG, Lee SY. Inhibitor of apoptosis (IAP)-like protein lacks a baculovirus IAP repeat (BIR) domain and attenuates cell death in plant and animal systems. J Biol Chem 2011; 286:42670-42678. [PMID: 21926169 DOI: 10.1074/jbc.m111.262204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel Arabidopsis thaliana inhibitor of apoptosis was identified by sequence homology to other known inhibitor of apoptosis (IAP) proteins. Arabidopsis IAP-like protein (AtILP) contained a C-terminal RING finger domain but lacked a baculovirus IAP repeat (BIR) domain, which is essential for anti-apoptotic activity in other IAP family members. The expression of AtILP in HeLa cells conferred resistance against tumor necrosis factor (TNF)-α/ActD-induced apoptosis through the inactivation of caspase activity. In contrast to the C-terminal RING domain of AtILP, which did not inhibit the activity of caspase-3, the N-terminal region, despite displaying no homology to known BIR domains, potently inhibited the activity of caspase-3 in vitro and blocked TNF-α/ActD-induced apoptosis. The anti-apoptotic activity of the AtILP N-terminal domain observed in plants was reproduced in an animal system. Transgenic Arabidopsis lines overexpressing AtILP exhibited anti-apoptotic activity when challenged with the fungal toxin fumonisin B1, an agent that induces apoptosis-like cell death in plants. In AtIPL transgenic plants, suppression of cell death was accompanied by inhibition of caspase activation and DNA fragmentation. Overexpression of AtILP also attenuated effector protein-induced cell death and increased the growth of an avirulent bacterial pathogen. The current results demonstrated the existence of a novel plant IAP-like protein that prevents caspase activation in Arabidopsis and showed that a plant anti-apoptosis gene functions similarly in plant and animal systems.
Collapse
Affiliation(s)
- Woe Yeon Kim
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Sun Yong Lee
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Young Jun Jung
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Ho Byoung Chae
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Ganesh M Nawkar
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Mi Rim Shin
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Sun Young Kim
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Jin Ho Park
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Chang Ho Kang
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Yong Hun Chi
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Il Pyung Ahn
- National Academy of Agricultural Science, RDA, Suwon 441-856, Korea
| | - Dae Jin Yun
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Kyun Oh Lee
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University, Chunchon, Korea
| | - Min Gab Kim
- National Academy of Agricultural Science, RDA, Suwon 441-856, Korea; College of Pharmacy, Gyeongsang National University, Jinju 660-751, Korea.
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea.
| |
Collapse
|