1
|
Barrett L, Coopman K. Cell microencapsulation techniques for cancer modelling and drug discovery. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:345-354. [PMID: 38829715 DOI: 10.1080/21691401.2024.2359996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Cell encapsulation into spherical microparticles is a promising bioengineering tool in many fields, including 3D cancer modelling and pre-clinical drug discovery. Cancer microencapsulation models can more accurately reflect the complex solid tumour microenvironment than 2D cell culture and therefore would improve drug discovery efforts. However, these microcapsules, typically in the range of 1 - 5000 µm in diameter, must be carefully designed and amenable to high-throughput production. This review therefore aims to outline important considerations in the design of cancer cell microencapsulation models for drug discovery applications and examine current techniques to produce these. Extrusion (dripping) droplet generation and emulsion-based techniques are highlighted and their suitability to high-throughput drug screening in terms of tumour physiology and ease of scale up is evaluated.
Collapse
Affiliation(s)
- Lisa Barrett
- Department of Chemical Engineering, School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough, UK
| | - Karen Coopman
- Department of Chemical Engineering, School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
2
|
Kazama R, Sakai S. Effect of cell adhesiveness of Cell Dome shell on enclosed HeLa cells. J Biosci Bioeng 2024; 137:313-320. [PMID: 38307767 DOI: 10.1016/j.jbiosc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/17/2023] [Accepted: 01/06/2024] [Indexed: 02/04/2024]
Abstract
The Cell Dome is a dome-shaped structure (diameter: 1 mm, height: 270 μm) with cells enclosed within a cavity, covered by a hemispherical hydrogel shell, and immobilized on a glass plate. Given that the cells within Cell Dome are in contact with the inner walls of the hydrogel shell, the properties of the shell are anticipated to influence cell behavior. To date, the impact of the hydrogel shell properties on the enclosed cells has not been investigated. In this study, we explored the effects of the cell adhesiveness of hydrogel shell on the behavior of enclosed cancer cells. Hydrogel shells with varying degrees of cell adhesiveness were fabricated using aqueous solutions containing either an alginate derivative with phenolic hydroxyl moieties exclusively or a mixture of alginate and gelatin derivatives with phenolic hydroxyl moieties. Hydrogel formation was mediated by horseradish peroxidase. We used the HeLa human cervical cancer cell line, which expresses fucci2, a cell cycle marker, to observe cell behavior. Cells cultured in hydrogel shells with cell adhesiveness proliferated along the inner wall of the hydrogel shell. Conversely, cells in hydrogel shells without cell adhesiveness grew uniformly at the bottom of the cavities. Furthermore, cells in non-adhesive hydrogel shells had a higher percentage of cells in the G1/G0 phase compared to those in adhesive shells and exhibited increased resistance to mitomycin hydrochloride when the cavities became filled with cells. These results highlight the need to consider the cell adhesiveness of the hydrogel shell when selecting materials for constructing Cell Dome.
Collapse
Affiliation(s)
- Ryotaro Kazama
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Shinji Sakai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
3
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
4
|
Rossi M, Blasi P. Multicellular Tumor Spheroids in Nanomedicine Research: A Perspective. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:909943. [PMID: 35782575 PMCID: PMC9240201 DOI: 10.3389/fmedt.2022.909943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Multicellular tumor spheroids are largely exploited in cancer research since they are more predictive than bi-dimensional cell cultures. Nanomedicine would benefit from the integration of this three-dimensional in vitro model in screening protocols. In this brief work, we discuss some of the issues that cancer nanomedicine will need to consider in the switch from bi-dimensional to three-dimensional multicellular tumor spheroid models.
Collapse
|
5
|
Antunes J, Gaspar VM, Ferreira L, Monteiro M, Henrique R, Jerónimo C, Mano JF. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta Biomater 2019; 94:392-409. [PMID: 31200118 DOI: 10.1016/j.actbio.2019.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Three-dimensional (3D) in vitro tumor spheroids are becoming popular as pre-clinical platforms for testing the performance of existing drugs or for discovery of innovative anti-cancer therapeutics. This focus is correlated with in vitro 3D tumor models ability to mimic the multicellular compact structure and spatial architecture of human solid tumors. However, these microphysiological systems generally lack the pre-existence of tumor-ECM, a critical aspect that can affect the overall therapeutic performance and the decision of advancing candidate drugs to later stages of the pipeline. Aiming to face this drawback and mimic tumors-ECM, herein we rapidly fabricated in-air hyaluronan-methacrylate (HA-MA) and gelatin-methacrylate (GelMA) photocrosslinkable 3D spheroid microgels by using superhydrophobic surfaces. These platforms were used for establishing heterotypic 3D co-culture models of prostate cancer cells (PC-3) and human osteoblasts (hOB) to mimic prostate cancer-to-bone metastasis cellular heterogeneity and the tumor-ECM microenvironment. 3D microgel microtumors morphology, size and cell number were easily controlled via digital droplet generation on polystyrene superhydrophobic surfaces and under solvent-free conditions when compared to microfluidics or electrospray. Co-culture 3D microgels formed by 2.5%HA-MA-5%GelMA and 5%HA-MA-5%GelMA ratios showed the highest calcium deposition after 14 days of culture, evidencing osteoblasts viability and the establishment of functional mineralization in the 3D hydrogel matrix. Cisplatin cytotoxicity evaluation showed that 3D microgels are more resistant to platin chemotherapeutics than single or co-culture 3D multicellular spheroid counterparts. Overall, our findings indicate that solvent-free, in-air produced 3D microgel microenvironments are cost-effective and robust tumor mimicking platforms for in vitro high-throughput screening of therapeutics targeted to prostate-to-bone metastasis microenvironments. STATEMENT OF SIGNIFICANCE: The generation of robust microphysiological systems that recapitulate the complexity of the metastatic prostate-to-bone tumor microenvironment is crucial for pre-clinical evaluation of new therapeutics that can eradicate these secondary tumors. In this study, we employed superhydrophobic (SH) surfaces to rapidly fabricate photocrosslinkable hyaluronan-methacrylate/gelatin-methacrylate 3D spheroid microgels for prostate cancer cells and human osteoblasts co-culture models that simultaneously mimic the cellular and ECM tumor components. The use of SH platforms overcomes the issues of standard in-liquid microgel production technologies by providing a robust control over 3D microgels size/morphology and cell-cell co-encapsulation numbers, while avoiding the use of oil-based microgel droplets generation. Overall, SH surfaces allowed a solvent-free, cost-effective, reproducible and adaptable fabrication of heterotypic 3D spherical microgels for high throughput drug screening.
Collapse
Affiliation(s)
- Jéssica Antunes
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Luís Ferreira
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Monteiro
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Lee IC. Cancer-on-a-chip for Drug Screening. Curr Pharm Des 2019; 24:5407-5418. [DOI: 10.2174/1381612825666190206235233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 12/24/2022]
Abstract
:
The oncology pharmaceutical research spent a shocking amount of money on target validation and
drug optimization in preclinical models because many oncology drugs fail during clinical trial phase III. One of
the most important reasons for oncology drug failures in clinical trials may due to the poor predictive tool of
existing preclinical models. Therefore, in cancer research and personalized medicine field, it is critical to improve
the effectiveness of preclinical predictions of the drug response of patients to therapies and to reduce costly failures
in clinical trials. Three dimensional (3D) tumor models combine micro-manufacturing technologies mimic
critical physiologic parameters present in vivo, including complex multicellular architecture with multicellular
arrangement and extracellular matrix deposition, packed 3D structures with cell–cell interactions, such as tight
junctions, barriers to mass transport of drugs, nutrients and other factors, which are similar to in vivo tumor tissues.
These systems provide a solution to mimic the physiological environment for improving predictive accuracy
in oncology drug discovery.
:
his review gives an overview of the innovations, development and limitations of different types of tumor-like
construction techniques such as self-assemble spheroid formation, spheroids formation by micro-manufacturing
technologies, micro-dissected tumor tissues and tumor organoid. Combination of 3D tumor-like construction and
microfluidic techniques to achieve tumor on a chip for in vitro tumor environment modeling and drug screening
were all included. Eventually, developmental directions and technical challenges in the research field are also
discussed. We believe tumor on chip models have provided better sufficient clinical predictive power and will
bridge the gap between proof-of-concept studies and a wider implementation within the oncology drug development
for pathophysiological applications.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Biopolymer gels as a basis of cryoprotective medium for testicular tissue of rats. Cell Tissue Bank 2018; 19:819-826. [PMID: 30465307 DOI: 10.1007/s10561-018-9740-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022]
Abstract
Cryopreservation of testis tissue is a promising approach to save fertility in prepubertal boys under going gonadotoxic cancer therapies. The using biopolymers as a basis of cryoprotective medium can be effective for the optimization of cryopreservation protocols of immature testicular tissue. The research purpose was to determine morphological parameters and metabolic activity of seminiferous tubules of immature rat testes under exposure to cryoprotective solution (DMSO) based on collagen or fibrin gels (CG or FG) as one of the first stages of developing the cryopreservation protocol. It was found that 30-min exposure of tissue samples to CG and FG with 0.6 M DMSO did not impair the spermatogenic epithelium and metabolic activity of the cells (MTT test and total lactate dehydrogenase activity). The use of FG at the time of exposure of 45 min did not lead to significant changes in the metabolic activity in contrast to other groups. The findings could be used to substantiate and develop the effective techniques for cryopreservation of immature seminiferous tubules.
Collapse
|
8
|
Marconi A, Quadri M, Saltari A, Pincelli C. Progress in melanoma modelling in vitro. Exp Dermatol 2018; 27:578-586. [DOI: 10.1111/exd.13670] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Alessandra Marconi
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Marika Quadri
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Annalisa Saltari
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
9
|
Liu Y, Nambu NO, Taya M. Cell-laden microgel prepared using a biocompatible aqueous two-phase strategy. Biomed Microdevices 2017; 19:55. [DOI: 10.1007/s10544-017-0198-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Ozawa F, Ino K, Shiku H, Matsue T. Cell Sheet Fabrication Using RGD Peptide-coupled Alginate Hydrogels Fabricated by an Electrodeposition Method. CHEM LETT 2017. [DOI: 10.1246/cl.170003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fumisato Ozawa
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki, Aoba, Sendai, Miyagi 980-8579
- WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8579
| | - Kosuke Ino
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki, Aoba, Sendai, Miyagi 980-8579
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki, Aoba, Sendai, Miyagi 980-8579
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki, Aoba, Sendai, Miyagi 980-8579
- WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8579
| |
Collapse
|
11
|
Kingsley DM, Dias AD, Corr DT. Microcapsules and 3D customizable shelled microenvironments from laser direct-written microbeads. Biotechnol Bioeng 2016; 113:2264-74. [PMID: 27070458 PMCID: PMC9202818 DOI: 10.1002/bit.25987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 01/05/2023]
Abstract
Microcapsules are shelled 3D microenvironments, with a liquid core. These core-shelled structures enable cell-cell contact, cellular proliferation and aggregation within the capsule, and can be utilized for controlled release of encapsulated contents. Traditional microcapsule fabrication methods provide limited control of capsule size, and are unable to control capsule placement. To overcome these limitations, we demonstrate size and spatial control of poly-l-lysine and chitosan microcapsules, using laser direct-write (LDW) printing, and subsequent processing, of alginate microbeads. Additionally, microbeads were used as volume pixels (voxels) to form continuous 3D hydrogel structures, which were processed like capsules, to form custom shelled aqueous-core 3D structures of prescribed geometry; such as strands, rings, and bifurcations. Heterogeneous structures were also created with controlled initial locations of different cell types, to demonstrate the ability to prescribe cell signaling (heterotypic and homotypic) in co-culture conditions. Herein, we demonstrate LDW's ability to fabricate intricate 3D structures, essentially with "printed macroporosity," and to precisely control structural composition by bottom-up fabrication in a bead-by-bead manner. The structural and compositional control afforded by this process enables the creation of a wide range of new constructs, with many potential applications in tissue engineering and regenerative medicine. Biotechnol. Bioeng. 2016;113: 2264-2274. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Kingsley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, New York 12180
| | - Andrew D Dias
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, New York 12180
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, New York 12180.
| |
Collapse
|
12
|
Microtissues in Cardiovascular Medicine: Regenerative Potential Based on a 3D Microenvironment. Stem Cells Int 2016; 2016:9098523. [PMID: 27073399 PMCID: PMC4814701 DOI: 10.1155/2016/9098523] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/01/2016] [Accepted: 02/21/2016] [Indexed: 02/06/2023] Open
Abstract
More people die annually from cardiovascular diseases than from any other cause. In particular, patients who suffer from myocardial infarction may be affected by ongoing adverse remodeling processes of the heart that may ultimately lead to heart failure. The introduction of stem and progenitor cell-based applications has raised substantial hope for reversing these processes and inducing cardiac regeneration. However, current stem cell therapies using single-cell suspensions have failed to demonstrate long-lasting efficacy due to the overall low retention rate after cell delivery to the myocardium. To overcome this obstacle, the concept of 3D cell culture techniques has been proposed to enhance therapeutic efficacy and cell engraftment based on the simulation of an in vivo-like microenvironment. Of great interest is the use of so-called microtissues or spheroids, which have evolved from their traditional role as in vitro models to their novel role as therapeutic agents. This review will provide an overview of the therapeutic potential of microtissues by addressing primarily cardiovascular regeneration. It will accentuate their advantages compared to other regenerative approaches and summarize the methods for generating clinically applicable microtissues. In addition, this review will illustrate the unique properties of the microenvironment within microtissues that makes them a promising next-generation therapeutic approach.
Collapse
|
13
|
Mohapatra S, Nandi S, Chowdhury R, Das G, Ghosh S, Bhattacharyya K. Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy. Phys Chem Chem Phys 2016; 18:18381-90. [DOI: 10.1039/c6cp02748b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor micro-environment of 3D multicellular spheroids and their interaction with a drug molecule are studied using time resolved confocal microscopy.
Collapse
Affiliation(s)
- Saswat Mohapatra
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Somen Nandi
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Rajdeep Chowdhury
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Gaurav Das
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Kankan Bhattacharyya
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
14
|
Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015; 17:1-15. [PMID: 25622895 PMCID: PMC4309685 DOI: 10.1016/j.neo.2014.12.004] [Citation(s) in RCA: 779] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.
Collapse
Affiliation(s)
- Louis-Bastien Weiswald
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Laboratoire d'Oncobiologie, Hôpital René Huguenin, Institut Curie, St Cloud, France; Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, Paris, France.
| | - Dominique Bellet
- Laboratoire d'Oncobiologie, Hôpital René Huguenin, Institut Curie, St Cloud, France; Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, UMR 8151 CNRS-U1022 Inserm, Sorbonne Paris Cité, Paris, France
| | - Virginie Dangles-Marie
- Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, Paris, France; Département de Recherche Translationnelle, Research Center, Institut Curie, Paris, France.
| |
Collapse
|
15
|
Sakai S, Inamoto K, Ashida T, Takamura R, Taya M. Cancer stem cell marker-expressing cell-rich spheroid fabrication from PANC-1 cells using alginate microcapsules with spherical cavities templated by gelatin microparticles. Biotechnol Prog 2015; 31:1071-6. [DOI: 10.1002/btpr.2111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/30/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Shinji Sakai
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Kazuya Inamoto
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Tomoaki Ashida
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Ryo Takamura
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Masahito Taya
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
16
|
Chetprayoon P, Matsusaki M, Akashi M. Three-dimensional human arterial wall models for in vitro permeability assessment of drug and nanocarriers. Biochem Biophys Res Commun 2015; 456:392-7. [DOI: 10.1016/j.bbrc.2014.11.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022]
|
17
|
Ashida T, Sakai S, Taya M. Characteristics of Duplex Microcapsules Prepared from an Alginate-Derivative Polymer via Horseradish Peroxidase- and Catalase-Catalyzed Reactions. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2015. [DOI: 10.1252/jcej.14we391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomoaki Ashida
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Shinji Sakai
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Masahito Taya
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
18
|
Wen Z, Liao Q, Hu Y, You L, Zhou L, Zhao Y. A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay. Braz J Med Biol Res 2013; 46:634-42. [PMID: 23903680 PMCID: PMC3859338 DOI: 10.1590/1414-431x20132647] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/15/2013] [Indexed: 01/29/2023] Open
Abstract
Current therapy for pancreatic cancer is multimodal, involving surgery and
chemotherapy. However, development of pancreatic cancer therapies requires a
thorough evaluation of drug efficacy in vitro before animal
testing and subsequent clinical trials. Compared to two-dimensional culture of
cell monolayer, three-dimensional (3-D) models more closely mimic native
tissues, since the tumor microenvironment established in 3-D models often plays
a significant role in cancer progression and cellular responses to the drugs.
Accumulating evidence has highlighted the benefits of 3-D in
vitro models of various cancers. In the present study, we have
developed a spheroid-based, 3-D culture of pancreatic cancer cell lines
MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase
assay. Drug efficacy testing showed that spheroids had much higher drug
resistance than monolayers. This model, which is characteristically reproducible
and easy and offers rapid handling, is the preferred choice for filling the gap
between monolayer cell cultures and in vivo models in the
process of drug development and testing for pancreatic cancer.
Collapse
Affiliation(s)
- Z Wen
- Tsinghua University, Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
19
|
Sun P, Xu Y, DU X, Ning N, Sun H, Liang W, Li R. An engineered three-dimensional gastric tumor culture model for evaluating the antitumor activity of immune cells in vitro. Oncol Lett 2012; 5:489-494. [PMID: 23420461 PMCID: PMC3573075 DOI: 10.3892/ol.2012.1021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/22/2012] [Indexed: 02/04/2023] Open
Abstract
Monolayer tumor culture models have been used for evaluating the antitumor activity of immune cells in vitro. However, their value in this research is limited. We used human gastric cancer cells (BGC823) and collagen hydrogel as a matrix to establish an engineered three-dimensional (3-D) tumor culture model in vitro. Tumor cells grew in 3-D culture and formed spheroids in the collagen matrix. Evaluation of the antitumor activity of cytokine-induced killer (CIK) cells revealed that, compared with the 2-D cell culture models, CIK cells migrated towards the tumor cells and destroyed the spheroids and tumor cells in the engineered 3-D tumor culture model. The cytotoxicity of CIK cells against the tumor cells in the engineered 3-D tumor culture model was lower than that in 2-D tumor culture models at 12–36 h post-interaction, but there was no significant difference in the cytotoxicity at later time points. Further analysis indicated that dendritic cell-activated CIK cells had a significantly higher level of cytotoxicity against tumor cells, compared with CIK and anti-CEA/CD3-treated CIK cells, in the engineered 3-D tumor culture model. Our data suggest that the engineered 3-D gastric tumor culture model may better mimic the interaction of immune cells with tumor cells in vivo than the 2-D tumor culture models, and may be used for evaluating the antitumor activity of immune cells in vitro.
Collapse
Affiliation(s)
- Peiming Sun
- Institute of General Surgery, Chinese PLA General Hospital, Haidian, Beijing 100853, P.R. China
| | | | | | | | | | | | | |
Collapse
|