1
|
Liu J, Tang L, Chu W, Wei L. Cellular Retinoic Acid Binding Protein 2 (CRABP2), Up-regulated by HPV E6/E7, Leads to Aberrant Activation of the Integrin β1/FAK/ERK Signaling Pathway and Aggravates the Malignant Phenotypes of Cervical Cancer. Biochem Genet 2024; 62:2686-2701. [PMID: 38001389 DOI: 10.1007/s10528-023-10568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
The ectopic expression of cellular retinoic acid binding protein 2 (CRABP2) is associated with various tumorigenesis. However, the effects of CRABP2 on the progression of cervical cancer are still unclear. The current study aimed to investigate the role of CRABP2 in the malignant phenotypes of cervical cancer cells. CRABP2 was artificially regulated in CaSki, SiHa, and C-33A cells. CCK-8 assay and flow cytometry were used to assess the cell proliferation and apoptosis abilities, respectively. Wound healing assay and transwell assay were employed to measure the cell migration and invasion abilities, respectively. The results showed that CRABP2 was highly expressed in cervical carcinoma tissues and cell lines, and its high expression was associated with poor overall survival. Knockdown of CRABP2 promoted the cell apoptosis and inhibited cell proliferation, migration, and invasion in cervical carcinoma cells, whereas CRABP2 overexpression exhibited the opposite results. Mechanically, CRABP2 silencing suppressed the Integrin β1/FAK/ERK signaling via HuR. Treatment with siITGB1 or a FAK inhibitor PF-562271 or an ERK inhibitor FR180204 reversed the promoting effects of CRABP2 on cell proliferation, migration, and invasion. Moreover, the overexpression of CRABP2 reverted the HPV16 E6/E7 knockdown-induced inhibition of cell proliferation, migration, and invasion in cervical cancer cells. These results suggested that HPV16 E6/E7 promoted the malignant phenotypes of cervical cancer by upregulating the expression of CRABP2. In conclusion, CRABP2, upregulated by HPV E6/E7, promoted the progression of cervical cancer through activating the Integrin β1/FAK/ERK signaling pathway via HuR.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Medical Technology, Taizhou Polytechnic College, Taizhou, Jiangsu, 225300, China
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China
| | - Lu Tang
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China
| | - Wenzhu Chu
- Department of Dermatology, Hongqi Hospital, Mudanjiang Medical University, Heilongjiang, 157001, China
| | - Lanlan Wei
- National Clinical Research Center for Infectious Diseases; Institute for Hepatology, The Third People's Hospital of Shenzhen; The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China.
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China.
| |
Collapse
|
2
|
Hua T, Liu DX, Zhang XC, Li ST, Wu JL, Zhao Q, Chen SB. Establishment of an ovarian cancer exhausted CD8+T cells-related genes model by integrated analysis of scRNA-seq and bulk RNA-seq. Eur J Med Res 2024; 29:358. [PMID: 38970067 PMCID: PMC11225302 DOI: 10.1186/s40001-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
Ovarian cancer (OC) was the fifth leading cause of cancer death and the deadliest gynecological cancer in women. This was largely attributed to its late diagnosis, high therapeutic resistance, and a dearth of effective treatments. Clinical and preclinical studies have revealed that tumor-infiltrating CD8+T cells often lost their effector function, the dysfunctional state of CD8+T cells was known as exhaustion. Our objective was to identify genes associated with exhausted CD8+T cells (CD8TEXGs) and their prognostic significance in OC. We downloaded the RNA-seq and clinical data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. CD8TEXGs were initially identified from single-cell RNA-seq (scRNA-seq) datasets, then univariate Cox regression, the least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression were utilized to calculate risk score and to develop the CD8TEXGs risk signature. Kaplan-Meier analysis, univariate Cox regression, multivariate Cox regression, time-dependent receiver operating characteristics (ROC), nomogram, and calibration were conducted to verify and evaluate the risk signature. Gene set enrichment analyses (GSEA) in the risk groups were used to figure out the closely correlated pathways with the risk group. The role of risk score has been further explored in the homologous recombination repair deficiency (HRD), BRAC1/2 gene mutations and tumor mutation burden (TMB). A risk signature with 4 CD8TEXGs in OC was finally built in the TCGA database and further validated in large GEO cohorts. The signature also demonstrated broad applicability across various types of cancer in the pan-cancer analysis. The high-risk score was significantly associated with a worse prognosis and the risk score was proven to be an independent prognostic biomarker. The 1-, 3-, and 5-years ROC values, nomogram, calibration, and comparison with the previously published models confirmed the excellent prediction power of this model. The low-risk group patients tended to exhibit a higher HRD score, BRCA1/2 gene mutation ratio and TMB. The low-risk group patients were more sensitive to Poly-ADP-ribose polymerase inhibitors (PARPi). Our findings of the prognostic value of CD8TEXGs in prognosis and drug response provided valuable insights into the molecular mechanisms and clinical management of OC.
Collapse
Affiliation(s)
- Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
| | - Deng-Xiang Liu
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, People's Republic of China
| | - Xiao-Chong Zhang
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, People's Republic of China
| | - Shao-Teng Li
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, People's Republic of China
| | - Jian-Lei Wu
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, 250021, People's Republic of China
| | - Qun Zhao
- The Third Department of Surgery , Hebei Medical University, Fourth Hospital, Road Jiankang No. 12, Hebei, 050001, People's Republic of China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China.
| | - Shu-Bo Chen
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, People's Republic of China.
| |
Collapse
|
3
|
Zhou X, Tian C, Cao Y, Zhao M, Wang K. The role of serine metabolism in lung cancer: From oncogenesis to tumor treatment. Front Genet 2023; 13:1084609. [PMID: 36699468 PMCID: PMC9868472 DOI: 10.3389/fgene.2022.1084609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Metabolic reprogramming is an important hallmark of malignant tumors. Serine is a non-essential amino acid involved in cell proliferation. Serine metabolism, especially the de novo serine synthesis pathway, forms a metabolic network with glycolysis, folate cycle, and one-carbon metabolism, which is essential for rapidly proliferating cells. Owing to the rapid development in metabolomics, abnormal serine metabolism may serve as a biomarker for the early diagnosis and pathological typing of tumors. Targeting serine metabolism also plays an essential role in precision and personalized cancer therapy. This article is a systematic review of de novo serine biosynthesis and the link between serine and folate metabolism in tumorigenesis, particularly in lung cancer. In addition, we discuss the potential of serine metabolism to improve tumor treatment.
Collapse
|
4
|
Zhang C, Pan R, Ma S, Xu S, Wang B. Dezocine inhibits cell proliferation, migration, and invasion by targeting CRABP2 in ovarian cancer. Open Med (Wars) 2022; 17:2052-2061. [PMID: 36568517 PMCID: PMC9755696 DOI: 10.1515/med-2022-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Previous studies have shown that some anesthesia drugs can inhibit tumor growth and metastasis. As a clinical anesthetic drug, dezocine has been reported to play an important role in immune function. However, the effects of dezocine on ovarian cancer cell growth and metastasis are not fully understood. In this study, we found that dezocine dose-dependently inhibited the viability of ES-2 and SKOV3 cells. Dezocine suppressed the migration and invasion abilities of ovarian cancer cells, and promoted apoptosis. Moreover, the Akt/mTOR signaling pathway was also inhibited by dezocine. Furthermore, mechanism study showed that dezocine could significantly inhibit the expression of CRABP2, and CRABP2 overexpression reversed the inhibitory effects of dezocine on ovarian cancer cell proliferation and migration. In conclusion, dezocine has significant anti-tumor effects on the growth and metastatic potential of ovarian cancer cells, and CRABP2 functions as a downstream effector of dezocine.
Collapse
Affiliation(s)
- Chuanfeng Zhang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ruirui Pan
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shuangshuang Ma
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shoucai Xu
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Baosheng Wang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Jinan 250117, Shandong, China
| |
Collapse
|
5
|
Ji JX, Cochrane DR, Negri GL, Colborne S, Spencer Miko SE, Hoang LN, Farnell D, Tessier-Cloutier B, Huvila J, Thompson E, Leung S, Chiu D, Chow C, Ta M, Köbel M, Feil L, Anglesio M, Goode EL, Bolton K, Morin GB, Huntsman DG. The proteome of clear cell ovarian carcinoma. J Pathol 2022; 258:325-338. [PMID: 36031730 PMCID: PMC9649886 DOI: 10.1002/path.6006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023]
Abstract
Clear cell ovarian carcinoma (CCOC) is the second most common subtype of epithelial ovarian carcinoma. Late-stage CCOC is not responsive to gold-standard chemotherapy and results in suboptimal outcomes for patients. In-depth molecular insight is urgently needed to stratify the disease and drive therapeutic development. We conducted global proteomics for 192 cases of CCOC and compared these with other epithelial ovarian carcinoma subtypes. Our results showed distinct proteomic differences in CCOC compared with other epithelial ovarian cancer subtypes including alterations in lipid and purine metabolism pathways. Furthermore, we report potential clinically significant proteomic subgroups within CCOC, suggesting the biologic plausibility of stratified treatment for this cancer. Taken together, our results provide a comprehensive understanding of the CCOC proteomic landscape to facilitate future understanding and research of this disease. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jennifer X Ji
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dawn R Cochrane
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shane Colborne
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sandra E Spencer Miko
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lynn N Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David Farnell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jutta Huvila
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedicine, University of Turku, Turku, Finland
| | - Emily Thompson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Center, Vancouver, BC, Canada
| | - Derek Chiu
- Genetic Pathology Evaluation Center, Vancouver, BC, Canada
| | - Christine Chow
- Genetic Pathology Evaluation Center, Vancouver, BC, Canada
| | - Monica Ta
- Genetic Pathology Evaluation Center, Vancouver, BC, Canada
| | - Martin Köbel
- Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Lucas Feil
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Michael Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Ellen L Goode
- Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Kelly Bolton
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Egan D, Moran B, Wilkinson M, Pinyol M, Guerra E, Gatius S, Matias-Guiu X, Kolch W, le Roux CW, Brennan DJ. CRABP2 - A novel biomarker for high-risk endometrial cancer. Gynecol Oncol 2022; 167:314-322. [PMID: 36163055 DOI: 10.1016/j.ygyno.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Investigate the clinical and functional implications of elevated CRABP2 expression in endometrial cancer (EC) patients. METHODS Patients were stratified into high and low CRABP2 expression groups using a decision tree classifier. Univariate and multivariate statistical analyses determined the prognostic and clinicopathological consequences of increased CRABP2 expression. A CRABP2 gene signature was generated using differential expression analysis, and analyzed using network-based approaches. The findings were validated in The Clinical Proteomic Tumor Analysis Consortium (CPTAC), a newly generated cohort of 120 endometrial tissues, and The Cancer Dependency Map (DepMap). RESULTS 60 (11%) patients in TCGA had high CRABP2 expression, whilst 468 (89%) had low expression. High expression was associated with serous EC, reduced overall survival, advanced stage and grade. Downstream retinoic acid receptors (RARG and RARA) were correlated with CRABP2 expression and were associated with worse prognosis in serous EC. The CRABP2 gene signature was enriched for Polycomb target gene sets, and was regulated by ELP3 and BMP7. BMP7 expression was increased in the CRABP2-high group, was associated with worse prognosis, and CRISPR-Cas9 screens revealed correlations in its cell-fitness score with CRABP2 following gene knockout. The opposite was true for ELP3, suggesting opposing effects from both master regulators. CONCLUSIONS CRABP2 expression is associated with poor prognosis and advanced EC. The expression of RARA and RARG correlates with CRABP2 and are associated with worse prognosis in advanced histological subtypes. Polycomb target gene sets and two master regulators, ELP3 and BMP7, were identified as functionally relevant mechanisms driving aberrant CRABP2 expression.
Collapse
Affiliation(s)
- Donagh Egan
- Systems Biology Ireland, UCD School of Medicine, Belfield, Dublin 4, Ireland.
| | - Bruce Moran
- Department of Pathology, St. Vincent's University Hospital, Dublin, Ireland
| | - Michael Wilkinson
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Miquel Pinyol
- Department of Pathology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, CIBERONC, Spain
| | - Esther Guerra
- Department of Pathology, Hospital Universitari de Bellvitge, University of Barcelona, IDIBELL, Spain
| | - Sonia Gatius
- Department of Pathology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, CIBERONC, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, CIBERONC, Spain; Department of Pathology, Hospital Universitari de Bellvitge, University of Barcelona, IDIBELL, Spain
| | - Walter Kolch
- Systems Biology Ireland, UCD School of Medicine, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Donal J Brennan
- Systems Biology Ireland, UCD School of Medicine, Belfield, Dublin 4, Ireland
| |
Collapse
|
7
|
Xie T, Tan M, Gao Y, Yang H. CRABP2 accelerates epithelial mesenchymal transition in serous ovarian cancer cells by promoting TRIM16 methylation via upregulating EZH2 expression. ENVIRONMENTAL TOXICOLOGY 2022; 37:1957-1967. [PMID: 35442568 DOI: 10.1002/tox.23542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 05/28/2023]
Abstract
Recently, it was covered that cellular retinoic acid-binding protein 2 (CRABP2) is upregulated in ovarian cancer and participates in tumor progression, however, the specific mechanism remains to be explored. The pcDNA-CRABP2 or si-CRABP2 was transfected into SKOV3 and OVCAR3 ovarian cancer cells, respectively, and we observed that overexpression of CRABP2 inhibited cell apoptosis, promoted cell invasion and expression of epithelial mesenchymal transition (EMT) marker proteins, and transfection of si-CRABP2 had the opposite effect. Furthermore, we predicted that EZH2 interacted with CRABP2, and overexpression of CRABP2 promoted EZH2 expression, knockdown of CRABP2 inhibited EZH2 expression, and co-immunoprecipitation assay confirmed their binding relationship. The SKOV3 and OVCAR3 cells were then incubated with pcDNA-CRABP2 alone together with si-EZH2, and we found that si-EZH2 reversed the effect of pcDNA-CRABP2 on promotion of EZH2 expression, cell invasion and EMT maker protein levels. Next, we found that EZH2 could bind to DNMT1, and overexpression of EZH2 inhibited TRIM16 expression and knockdown of EZH2 promoted TRIM16 expression. Moreover, the promoter of TRIM16 contains the CpG island, and ChIP assay observed enriched DNMT1 on the promoter of TRIM16, and overexpression of EZH2 increased the promoter methylation level of TRIM16 and knockdown of EZH2 suppressed the methylation. The SKOV3 cells were incubated with si-EZH2 alone or combined with si-TRIM16, and we found that si-TRIM16 reversed the effect of si-EZH2. In vivo studies showed that knockdown of CRABP2 inhibited tumor volume and weight, suppressed the expression of EZH2 and EMT related proteins vimentin and snail, and increased the expression of TRIM16 and E-cadherin.
Collapse
Affiliation(s)
- Tingting Xie
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Minghua Tan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Yang Gao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Subbannayya Y, Di Fiore R, Urru SAM, Calleja-Agius J. The Role of Omics Approaches to Characterize Molecular Mechanisms of Rare Ovarian Cancers: Recent Advances and Future Perspectives. Biomedicines 2021; 9:1481. [PMID: 34680597 PMCID: PMC8533212 DOI: 10.3390/biomedicines9101481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
Rare ovarian cancers are ovarian cancers with an annual incidence of less than 6 cases per 100,000 women. They generally have a poor prognosis due to being delayed diagnosis and treatment. Exploration of molecular mechanisms in these cancers has been challenging due to their rarity and research efforts being fragmented across the world. Omics approaches can provide detailed molecular snapshots of the underlying mechanisms of these cancers. Omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, can identify potential candidate biomarkers for diagnosis, prognosis, and screening of rare gynecological cancers and can aid in identifying therapeutic targets. The integration of multiple omics techniques using approaches such as proteogenomics can provide a detailed understanding of the molecular mechanisms of carcinogenesis and cancer progression. Further, omics approaches can provide clues towards developing immunotherapies, cancer recurrence, and drug resistance in tumors; and form a platform for personalized medicine. The current review focuses on the application of omics approaches and integrative biology to gain a better understanding of rare ovarian cancers.
Collapse
Affiliation(s)
- Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Silvana Anna Maria Urru
- Hospital Pharmacy Unit, Trento General Hospital, Autonomous Province of Trento, 38122 Trento, Italy;
- Department of Chemistry and Pharmacy, School of Hospital Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|
9
|
Li Y, Jaiswal SK, Kaur R, Alsaadi D, Liang X, Drews F, DeLoia JA, Krivak T, Petrykowska HM, Gotea V, Welch L, Elnitski L. Differential gene expression identifies a transcriptional regulatory network involving ER-alpha and PITX1 in invasive epithelial ovarian cancer. BMC Cancer 2021; 21:768. [PMID: 34215221 PMCID: PMC8254236 DOI: 10.1186/s12885-021-08276-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Background The heterogeneous subtypes and stages of epithelial ovarian cancer (EOC) differ in their biological features, invasiveness, and response to chemotherapy, but the transcriptional regulators causing their differences remain nebulous. Methods In this study, we compared high-grade serous ovarian cancers (HGSOCs) to low malignant potential or serous borderline tumors (SBTs). Our aim was to discover new regulatory factors causing distinct biological properties of HGSOCs and SBTs. Results In a discovery dataset, we identified 11 differentially expressed genes (DEGs) between SBTs and HGSOCs. Their expression correctly classified 95% of 267 validation samples. Two of the DEGs, TMEM30B and TSPAN1, were significantly associated with worse overall survival in patients with HGSOC. We also identified 17 DEGs that distinguished stage II vs. III HGSOC. In these two DEG promoter sets, we identified significant enrichment of predicted transcription factor binding sites, including those of RARA, FOXF1, BHLHE41, and PITX1. Using published ChIP-seq data acquired from multiple non-ovarian cell types, we showed additional regulatory factors, including AP2-gamma/TFAP2C, FOXA1, and BHLHE40, bound at the majority of DEG promoters. Several of the factors are known to cooperate with and predict the presence of nuclear hormone receptor estrogen receptor alpha (ER-alpha). We experimentally confirmed ER-alpha and PITX1 presence at the DEGs by performing ChIP-seq analysis using the ovarian cancer cell line PEO4. Finally, RNA-seq analysis identified recurrent gene fusion events in our EOC tumor set. Some of these fusions were significantly associated with survival in HGSOC patients; however, the fusion genes are not regulated by the transcription factors identified for the DEGs. Conclusions These data implicate an estrogen-responsive regulatory network in the differential gene expression between ovarian cancer subtypes and stages, which includes PITX1. Importantly, the transcription factors associated with our DEG promoters are known to form the MegaTrans complex in breast cancer. This is the first study to implicate the MegaTrans complex in contributing to the distinct biological trajectories of malignant and indolent ovarian cancer subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08276-8.
Collapse
Affiliation(s)
- Yichao Li
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Sushil K Jaiswal
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rupleen Kaur
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dana Alsaadi
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoyu Liang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Frank Drews
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Julie A DeLoia
- Present address: Dignity Health Global Education, Roanoke, Virginia, USA
| | - Thomas Krivak
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,Present address: The Western Pennsylvania Hospital, Pittsburgh, PA, USA
| | - Hanna M Petrykowska
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Valer Gotea
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lonnie Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Laura Elnitski
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Yetsko K, Farrell JA, Blackburn NB, Whitmore L, Stammnitz MR, Whilde J, Eastman CB, Ramia DR, Thomas R, Krstic A, Linser P, Creer S, Carvalho G, Devlin MA, Nahvi N, Leandro AC, deMaar TW, Burkhalter B, Murchison EP, Schnitzler C, Duffy DJ. Molecular characterization of a marine turtle tumor epizootic, profiling external, internal and postsurgical regrowth tumors. Commun Biol 2021; 4:152. [PMID: 33526843 PMCID: PMC7851172 DOI: 10.1038/s42003-021-01656-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/31/2020] [Indexed: 01/30/2023] Open
Abstract
Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression.Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers.Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic.
Collapse
Affiliation(s)
- Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Jessica A Farrell
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Nicholas B Blackburn
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Liam Whitmore
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Maximilian R Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Jenny Whilde
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Catherine B Eastman
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Devon Rollinson Ramia
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Rachel Thomas
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Aleksandar Krstic
- Systems Biology Ireland & Precision Oncology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Paul Linser
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Nina Nahvi
- Sea Turtle Inc., South Padre Island, TX, USA
| | - Ana Cristina Leandro
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | | | - Brooke Burkhalter
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Christine Schnitzler
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - David J Duffy
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
- Systems Biology Ireland & Precision Oncology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland.
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| |
Collapse
|
11
|
Althurwi SI, Yu JQ, Beale P, Huq F. Sequenced Combinations of Cisplatin and Selected Phytochemicals towards Overcoming Drug Resistance in Ovarian Tumour Models. Int J Mol Sci 2020; 21:ijms21207500. [PMID: 33053689 PMCID: PMC7589098 DOI: 10.3390/ijms21207500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, cisplatin, artemisinin, and oleanolic acid were evaluated alone, and in combination, on human ovarian A2780, A2780ZD0473R, and A2780cisR cancer cell lines, with the aim of overcoming cisplatin resistance and side effects. Cytotoxicity was assessed by MTT reduction assay. Combination index (CI) values were used as a measure of combined drug effect. MALDI TOF/TOF MS/MS and 2-DE gel electrophoresis were used to identify protein biomarkers in ovarian cancer and to evaluate combination effects. Synergism from combinations was dependent on concentration and sequence of administration. Generally, bolus was most synergistic. Moreover, 49 proteins differently expressed by 2 ≥ fold were: CYPA, EIF5A1, Op18, p18, LDHB, P4HB, HSP7C, GRP94, ERp57, mortalin, IMMT, CLIC1, NM23, PSA3,1433Z, and HSP90B were down-regulated, whereas hnRNPA1, hnRNPA2/B1, EF2, GOT1, EF1A1, VIME, BIP, ATP5H, APG2, VINC, KPYM, RAN, PSA7, TPI, PGK1, ACTG and VDAC1 were up-regulated, while TCPA, TCPH, TCPB, PRDX6, EF1G, ATPA, ENOA, PRDX1, MCM7, GBLP, PSAT, Hop, EFTU, PGAM1, SERA and CAH2 were not-expressed in A2780cisR cells. The proteins were found to play critical roles in cell cycle regulation, metabolism, and biosynthetic processes and drug resistance and detoxification. Results indicate that appropriately sequenced combinations of cisplatin with artemisinin (ART) and oleanolic acid (OA) may provide a means to reduce side effects and circumvent platinum resistance.
Collapse
Affiliation(s)
- Safiah Ibrahim Althurwi
- School of Medical Sciences, University of Sydney, Sydney NSW 2006, Australia; (S.I.A.); (J.Q.Y.)
| | - Jun Q. Yu
- School of Medical Sciences, University of Sydney, Sydney NSW 2006, Australia; (S.I.A.); (J.Q.Y.)
| | - Philip Beale
- Department of Medical Oncology, Concord Repatriation General Hospital, Concord NSW 2137, Australia;
| | - Fazlul Huq
- Eman Research Ltd., Canberra ACT 2609, Australia
- Correspondence: ; Tel.: +61-411235462
| |
Collapse
|
12
|
Wilkinson M, Sinclair P, Dellatorre-Teixeira L, Swan P, Brennan E, Moran B, Wedekind D, Downey P, Sheahan K, Conroy E, Gallagher WM, Docherty N, le Roux C, Brennan DJ. The Molecular Effects of a High Fat Diet on Endometrial Tumour Biology. Life (Basel) 2020; 10:life10090188. [PMID: 32927694 PMCID: PMC7554710 DOI: 10.3390/life10090188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023] Open
Abstract
We sought to validate the BDII/Han rat model as a model for diet-induced obesity in endometrial cancer (EC) and determine if transcriptomic changes induced by a high fat diet (HFD) in an EC rat model can be used to identify novel biomarkers in human EC. Nineteen BDII/Han rats were included. Group A (n = 7) were given ad lib access to a normal calorie, normal chow diet (NCD) while Group B (n = 12) were given ad lib access to a calorie rich HFD for 15 months. RNAseq was performed on endometrial tumours from both groups. The top-ranking differentially expressed genes (DEGs) were examined in the human EC using The Cancer Genome Atlas (TCGA) to assess if the BDII/Han rat model is an appropriate model for human obesity-induced carcinogenesis. Weight gain in HFD rats was double the weight gain of NCD rats (50 g vs. 25 g). The incidence of cancer was similar in both groups (4/7-57% vs. 4/12-33%; p = 0.37). All tumours were equivalent to a Stage 1A, Grade 2 human endometrioid carcinoma. A total of 368 DEGs were identified between the tumours in the HFD group compared to the NCD group. We identified two upstream regulators of the DEGs, mir-33 and Brd4, and a pathway analysis identified downstream enrichment of the colorectal cancer metastasis and ovarian cancer metastasis pathways. Top-ranking DEGs included Tex14, A2M, Hmgcs2, Adamts5, Pdk4, Crabp2, Capn12, Npw, Idi1 and Gpt. A2M expression was decreased in HFD tumours. Consistent with these findings, we found a significant negative correlation between A2M mRNA expression levels and BMI in the TCGA cohort (Spearman's Rho = -0.263, p < 0.001). A2M expression was associated with improved overall survival (HR = 0.45, 95% CI 0.23-0.9, p = 0.024). Crabp2 expression was increased in HFD tumours. In human EC, CRABP2 expression was associated with reduced overall survival (HR = 3.554, 95% CI 1.875-6.753, p < 0.001). Diet-induced obesity can alter EC transcriptomic profiles. The BDII/Han rat model is a suitable model of diet-induced obesity in endometrial cancer and can be used to identify clinically relevant biomarkers in human EC.
Collapse
Affiliation(s)
- Michael Wilkinson
- Department of Gynaecological Oncology, UCD School of Medicine, Mater Misericordiae Universtity Hospital, Eccles Street, Dublin 7, D07 AX57 Dublin, Ireland;
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Piriyah Sinclair
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Ludmilla Dellatorre-Teixeira
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Patrick Swan
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Bruce Moran
- Department of Pathology, St Vincent’s University Hospital, Elm Park, Dublin 4, D04 YN63 Dublin, Ireland; (B.M.); (K.S.)
| | - Dirk Wedekind
- Biomedical Facility, Hanover Medical School, 30625 Hanover, Germany;
| | - Paul Downey
- Department of Pathology, National Maternity Hospital, Holles Street, Dublin 2, D02 YH21 Dublin, Ireland;
| | - Kieran Sheahan
- Department of Pathology, St Vincent’s University Hospital, Elm Park, Dublin 4, D04 YN63 Dublin, Ireland; (B.M.); (K.S.)
| | - Emer Conroy
- Cancer Biology and Therapeutic Laboratory, UCD School of Biomolecular and Biomedical Science Ireland, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (E.C.); (W.M.G.)
| | - William M. Gallagher
- Cancer Biology and Therapeutic Laboratory, UCD School of Biomolecular and Biomedical Science Ireland, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (E.C.); (W.M.G.)
| | - Neil Docherty
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Carel le Roux
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
- Department of Pathology, St Vincent’s University Hospital, Elm Park, Dublin 4, D04 YN63 Dublin, Ireland; (B.M.); (K.S.)
- Correspondence: (C.l.R.); (D.J.B.)
| | - Donal J. Brennan
- Department of Gynaecological Oncology, UCD School of Medicine, Mater Misericordiae Universtity Hospital, Eccles Street, Dublin 7, D07 AX57 Dublin, Ireland;
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
- Cancer Biology and Therapeutic Laboratory, UCD School of Biomolecular and Biomedical Science Ireland, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (E.C.); (W.M.G.)
- Systems Biology Ireland, UCD School of Medicine, Belfield, Dublin 4, D14 NN96 Dublin, Ireland
- Correspondence: (C.l.R.); (D.J.B.)
| |
Collapse
|
13
|
Chen Q, Tan L, Jin Z, Liu Y, Zhang Z. Downregulation of CRABP2 Inhibit the Tumorigenesis of Hepatocellular Carcinoma In Vivo and In Vitro. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3098327. [PMID: 32685464 PMCID: PMC7334762 DOI: 10.1155/2020/3098327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Cellular retinoic acid-binding protein 2 (CRABP2) binds retinoic acid (RA) in the cytoplasm and transports it into the nucleus, allowing for the regulation of specific downstream signal pathway. Abnormal expression of CRABP2 has been detected in the development of several tumors. However, the role of CRABP2 in hepatocellular carcinoma (HCC) has never been revealed. The current study aimed to investigate the role of CRABP2 in HCC and illuminate the potential molecular mechanisms. The expression of CRABP2 in HCC tissues and cell lines was detected by western blotting and immunohistochemistry assays. Our results demonstrated that the expression levels of CRABP2 in HCC tissues were elevated with the tumor stage development, and it was also elevated in HCC cell lines. To evaluate the function of CRABP2, shRNA-knockdown strategy was used in HCC cells. Cell proliferation, metastasis, and apoptosis were analyzed by CCK-8, EdU staining, transwell, and flow cytometry assays, respectively. Based on our results, knockdown of CRABP2 by shRNA resulted in the inhibition of tumor proliferation, migration, and invasion in vitro, followed by increased tumor apoptosis-related protein expression and decreased ERK/VEGF pathway-related proteins expression. CRABP2 silencing in HCC cells also resulted in the failure to develop tumors in vivo. These results provide important insights into the role of CRABP2 in the development and development of HCC. Based on our findings, CRABP2 may be used as a novel diagnostic biomarker, and regulation of CRABP2 in HCC may provide a potential molecular target for the therapy of HCC.
Collapse
Affiliation(s)
- Qingmin Chen
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ludong Tan
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhe Jin
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130000, China
| |
Collapse
|
14
|
Rusinek D, Pfeifer A, Cieslicka M, Kowalska M, Pawlaczek A, Krajewska J, Szpak-Ulczok S, Tyszkiewicz T, Halczok M, Czarniecka A, Zembala-Nozynska E, Chekan M, Lamch R, Handkiewicz-Junak D, Ledwon A, Paliczka-Cieslik E, Kropinska A, Jarzab B, Oczko-Wojciechowska M. TERT Promoter Mutations and Their Impact on Gene Expression Profile in Papillary Thyroid Carcinoma. Cancers (Basel) 2020; 12:E1597. [PMID: 32560331 PMCID: PMC7352936 DOI: 10.3390/cancers12061597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Telomerase reverse transcriptase promoter (TERTp) mutations are related to a worse prognosis in various malignancies, including papillary thyroid carcinoma (PTC). Since mechanisms responsible for the poorer outcome of TERTp(+) patients are still unknown, searching for molecular consequences of TERTp mutations in PTC was the aim of our study. METHODS The studied cohort consisted of 54 PTCs, among them 24 cases with distant metastases. BRAF V600E, RAS, and TERTp mutational status was evaluated in all cases. Differences in gene expression profile between TERTp(+) and TERTp(-) PTCs were examined using microarrays. The evaluation of signaling pathways and gene ontology was based on the Gene Set Enrichment Analysis. RESULTS Fifty-nine percent (32/54) of analyzed PTCs were positive for at least one mutation: 27 were BRAF(+), among them eight were TERTp(+), and 1 NRAS(+), whereas five other samples harbored RAS mutations. Expression of four genes significantly differed in BRAF(+)TERTp(+) and BRAF(+)TERTp(-) PTCs. Deregulation of pathways involved in key cell processes was observed. CONCLUSIONS TERTp mutations are related to higher PTC aggressiveness. CRABP2 gene was validated as associated with TERTp mutations. However, its potential use in diagnostics or risk stratification in PTC patients needs further studies.
Collapse
Affiliation(s)
- Dagmara Rusinek
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (A.P.); (M.C.); (M.K.); (A.P.); (T.T.); (M.H.); (M.O.-W.)
| | - Aleksandra Pfeifer
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (A.P.); (M.C.); (M.K.); (A.P.); (T.T.); (M.H.); (M.O.-W.)
| | - Marta Cieslicka
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (A.P.); (M.C.); (M.K.); (A.P.); (T.T.); (M.H.); (M.O.-W.)
| | - Malgorzata Kowalska
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (A.P.); (M.C.); (M.K.); (A.P.); (T.T.); (M.H.); (M.O.-W.)
| | - Agnieszka Pawlaczek
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (A.P.); (M.C.); (M.K.); (A.P.); (T.T.); (M.H.); (M.O.-W.)
| | - Jolanta Krajewska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (J.K.); (S.S.-U.); (D.H.-J.); (A.L.); (E.P.-C.); (A.K.); (B.J.)
| | - Sylwia Szpak-Ulczok
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (J.K.); (S.S.-U.); (D.H.-J.); (A.L.); (E.P.-C.); (A.K.); (B.J.)
| | - Tomasz Tyszkiewicz
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (A.P.); (M.C.); (M.K.); (A.P.); (T.T.); (M.H.); (M.O.-W.)
| | - Monika Halczok
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (A.P.); (M.C.); (M.K.); (A.P.); (T.T.); (M.H.); (M.O.-W.)
| | - Agnieszka Czarniecka
- Department of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland;
| | - Ewa Zembala-Nozynska
- Tumor Pathology Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (E.Z.-N.); (M.C.); (R.L.)
| | - Mykola Chekan
- Tumor Pathology Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (E.Z.-N.); (M.C.); (R.L.)
| | - Roman Lamch
- Tumor Pathology Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (E.Z.-N.); (M.C.); (R.L.)
| | - Daria Handkiewicz-Junak
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (J.K.); (S.S.-U.); (D.H.-J.); (A.L.); (E.P.-C.); (A.K.); (B.J.)
| | - Aleksandra Ledwon
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (J.K.); (S.S.-U.); (D.H.-J.); (A.L.); (E.P.-C.); (A.K.); (B.J.)
| | - Ewa Paliczka-Cieslik
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (J.K.); (S.S.-U.); (D.H.-J.); (A.L.); (E.P.-C.); (A.K.); (B.J.)
| | - Aleksandra Kropinska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (J.K.); (S.S.-U.); (D.H.-J.); (A.L.); (E.P.-C.); (A.K.); (B.J.)
| | - Barbara Jarzab
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (J.K.); (S.S.-U.); (D.H.-J.); (A.L.); (E.P.-C.); (A.K.); (B.J.)
| | - Malgorzata Oczko-Wojciechowska
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (A.P.); (M.C.); (M.K.); (A.P.); (T.T.); (M.H.); (M.O.-W.)
| |
Collapse
|
15
|
Huang W, Li BR, Feng H. PLAG1 silencing promotes cell chemosensitivity in ovarian cancer via the IGF2 signaling pathway. Int J Mol Med 2020; 45:703-714. [PMID: 31922228 PMCID: PMC7015041 DOI: 10.3892/ijmm.2020.4459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecological diseases. Novel prognostic biomarkers and therapeutic targets for OC are urgently required. The aim of this study was to investigate the mechanisms that govern how pleomorphic adenoma gene 1 (PLAG1) influences the biological processes and chemosensitivity of OC cells via the insulin‑like growth factor‑2 (IGF2) signaling pathway. Differentially expressed genes in OC were selected based on bioinformatics data. OC and adjacent tissue specimen were collected, followed by the determination of the expression of PLAG1 and IGF2 signaling pathway‑associated genes. The regulatory mechanisms of PLAG1 in OC cells were analyzed following treatment with pcDNA or small interfering RNA (siRNA), and included the assessment of cell proliferation, migration, invasion and cisplatin resistance. PLAG1 was identified as an upregulated gene in OC. OC tissues exhibited increased expression of PLAG1 and IGF2 compared with the controls. Moreover, PLAG1 was observed to positively regulate the IGF2 signaling pathway. The siRNA‑mediated silencing of PLAG1 resulted in decreased expression of IGF2, IGF1 receptor and insulin receptor substrate 1, as well as inhibited proliferation, migration, invasion and cisplatin resistance of OC cells. Furthermore, the effect of PLAG1 was dependent on IGF2. PLAG1 may therefore be considered as a possible target for the treatment of OC.
Collapse
Affiliation(s)
- Wei Huang
- Department of Gynecology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Bi-Rong Li
- Department of Gynecology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
16
|
Jiao X, Liu R, Huang J, Lu L, Li Z, Xu L, Li E. Cellular Retinoic-Acid Binding Protein 2 in Solid Tumor. Curr Protein Pept Sci 2020; 21:507-516. [PMID: 32013828 DOI: 10.2174/1389203721666200203150721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/05/2023]
Abstract
The retinoic acid (RA) signaling pathway is crucial for many biological processes. The RA transporter, Cellular Retinoic-Acid Binding Protein 2 (CRABP2), is abnormally expressed in various tumor types. CRABP2 presents significant effects on tumorous behaviors and functions, including cell proliferation, apoptosis, invasion, migration, metastasis, and angiogenesis. The tumorigenesis mechanism of CRABP2, as both suppressor and promotor, is complicated, therefore, there remains the need for further investigation. Elucidating the regulating mechanisms in a specific stage of the tumor could facilitate CRABP2 to be a biomarker in cancer diagnosis and prognosis. Besides, clarifying the pathways of CRABP2 in cancer development will contribute to the gene-targeted therapy. In this review, we summarized the expression, distribution, and mechanism of CRABP2 in solid tumors. Illuminating the CRABP2 signaling pathway may benefit understanding the retinoid signaling pathway, providing a useful biomarker for future clinical trials.
Collapse
MESH Headings
- Apoptosis
- Biological Transport
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Fatty Acid-Binding Proteins/genetics
- Fatty Acid-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphatic Metastasis
- Neoplasm Staging
- Neoplasms/blood supply
- Neoplasms/diagnosis
- Neoplasms/genetics
- Neoplasms/metabolism
- Neovascularization, Pathologic/diagnosis
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Signal Transduction
- Tretinoin/metabolism
Collapse
Affiliation(s)
- Xiaoyang Jiao
- Cell biology and genetics department, Shantou University Medical College Shantou, Guangdong, China
| | - Rang Liu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College Shantou, Guangdong, China
| | - Jiali Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College Shantou, Guangdong, China
| | - Lichun Lu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College Shantou, Guangdong, China
| | - Zibo Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College Shantou, Guangdong, China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College Shantou, Guangdong, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
17
|
Wheeler LJ, Watson ZL, Qamar L, Yamamoto TM, Sawyer BT, Sullivan KD, Khanal S, Joshi M, Ferchaud-Roucher V, Smith H, Vanderlinden LA, Brubaker SW, Caino CM, Kim H, Espinosa JM, Richer JK, Bitler BG. Multi-Omic Approaches Identify Metabolic and Autophagy Regulators Important in Ovarian Cancer Dissemination. iScience 2019; 19:474-491. [PMID: 31437751 PMCID: PMC6710300 DOI: 10.1016/j.isci.2019.07.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/24/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
High-grade serous ovarian cancers (HGSOCs) arise from exfoliation of transformed cells from the fallopian tube, indicating that survival in suspension, and potentially escape from anoikis, is required for dissemination. We report here the results of a multi-omic study to identify drivers of anoikis escape, including transcriptomic analysis, global non-targeted metabolomics, and a genome-wide CRISPR/Cas9 knockout (GeCKO) screen of HGSOC cells cultured in adherent and suspension settings. Our combined approach identified known pathways, including NOTCH signaling, as well as novel regulators of anoikis escape. Newly identified genes include effectors of fatty acid metabolism, ACADVL and ECHDC2, and an autophagy regulator, ULK1. Knockdown of these genes significantly inhibited suspension growth of HGSOC cells, and the metabolic profile confirmed the role of fatty acid metabolism in survival in suspension. Integration of our datasets identified an anoikis-escape gene signature that predicts overall survival in many carcinomas.
Collapse
Affiliation(s)
- Lindsay J Wheeler
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zachary L Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA
| | - Lubna Qamar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA
| | - Tomomi M Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA
| | - Brandon T Sawyer
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Santosh Khanal
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Veronique Ferchaud-Roucher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Harry Smith
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lauren A Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sky W Brubaker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cecilia M Caino
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hyunmin Kim
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA.
| |
Collapse
|
18
|
Feng X, Zhang M, Wang B, Zhou C, Mu Y, Li J, Liu X, Wang Y, Song Z, Liu P. CRABP2 regulates invasion and metastasis of breast cancer through hippo pathway dependent on ER status. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:361. [PMID: 31419991 PMCID: PMC6697986 DOI: 10.1186/s13046-019-1345-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
Background Triple Negative Breast cancer (TNBC) is incurable cancer with higher rates of relapse and shorter overall survival compared with other subtypes of breast cancer. Cellular retinoic acid binding protein 2 (CRABP2) belongs to fatty acid binding protein (FABP) family which binds with all-trans retinoic acid (RA). Previous studies from the database have reported the patients with high expression of CRABP2 showed different prognosis in ER+ and ER− breast cancer. However, its biological role and exact mechanism in breast cancer remain unknown. This aim of this study was to explore how CRABP2 regulated invasion and metastasis based on the estrogen receptor-α (herein called ER) status in breast cancer. Methods Immunohistochemical staining method was used to analyze the expression of CRABP2 in human breast cancer tissues. Lentivirus vector-based shRNA technique was used to test the functional relevance of CRABP2 knockdown in breast tumors. Tail vein injection model was used to examine the lung metastasis. Co-immunoprecipitation, Western blotting, immunofluorescence, and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were conducted to investigate the underlying mechanism that influenced the ER to the regulation of CRABP2 to Lats1. Results We observed that knockdown of CRABP2 promotes EMT, invasion and metastasis of ER+ breast cancer cells in vitro and in vivo, whereas overexpression of CRABP2 yields the reverse results. In ER+ mammary cancer cells, the interaction of CRABP2 and Lats1 suppress the ubiquitination of Lats1 to activate Hippo pathway to inhibit the invasion and metastasis of ER+ mammary cancer. However, in ER− mammary cancer cells, the interaction of CRABP2 and Lats1 promote the ubiquitination of Lats1 to inactivate Hippo pathway to promote the invasion and metastasis of ER− mammary cancer. Conclusions Our findings indicate that CRABP2 can suppress invasion and metastasis of ER+ breast cancer and promote invasion and metastasis of ER− breast cancer by regulating the stability of Lats1 in vitro and in vivo, and it provides new ideas for breast cancer therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1345-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuefei Feng
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Miao Zhang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Can Zhou
- Department of Breast Surgery, the first Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Yudong Mu
- Department of Clinical LaboratoryTumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Juan Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Xiaoxu Liu
- Department of Breast Surgery, the first Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Yaochun Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Zhangjun Song
- Department of Breast Disease Center, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, 309 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.
| | - Peijun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
19
|
Zadeh Fakhar HB, Zali H, Rezaie-Tavirani M, Darkhaneh RF, Babaabasi B. Proteome profiling of low grade serous ovarian cancer. J Ovarian Res 2019; 12:64. [PMID: 31315664 PMCID: PMC6637464 DOI: 10.1186/s13048-019-0535-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background Serous carcinoma, the subtype of ovarian cancer has the highest occurrence and mortality in women. Proteomic profiling using mass spectrometry (MS) has been used to detect biomarkers in tissue s obtained from patients with ovarian cancer. Thus, this study aimed at analyzing the interactome (protein-protein interaction (PPI)) and (MS) data to inspect PPI networks in patients with Low grade serous ovarian cancer. Methods For proteome profiling in Low grade serous ovarian cancer, 2DE and mass spectrometry were used. Differentially expressed proteins which had been determined in Low grade serous ovarian cancer and experimental group separately were integrated with PPI data to construct the (QQPPI) networks. Results Six Hub-bottlenecks proteins with significant centrality values, based on centrality parameters of the network (Degree and between), were found including Transgelin (TAGLN), Keratin (KRT14), Single peptide match to actin, cytoplasmic 1(ACTB), apolipoprotein A-I (APOA1), Peroxiredoxin-2 (PRDX2), and Haptoglobin (HP). Discussion This study showed these six proteins were introduced as hub-bottleneck protein. It can be concluded that regulation of gene expression can have a critical role in the pathology of Low-grade serous ovarian cancer.
Collapse
Affiliation(s)
| | - Hakimeh Zali
- Proteomics Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Babak Babaabasi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Tehran, Iran
| |
Collapse
|
20
|
Alur VC, Raju V, Vastrad B, Vastrad C. Mining Featured Biomarkers Linked with Epithelial Ovarian CancerBased on Bioinformatics. Diagnostics (Basel) 2019; 9:diagnostics9020039. [PMID: 30970615 PMCID: PMC6628368 DOI: 10.3390/diagnostics9020039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the18th most common cancer worldwide and the 8th most common in women. The aim of this study was to diagnose the potential importance of, as well as novel genes linked with, EOC and to provide valid biological information for further research. The gene expression profiles of E-MTAB-3706 which contained four high-grade ovarian epithelial cancer samples, four normal fallopian tube samples and four normal ovarian epithelium samples were downloaded from the ArrayExpress database. Pathway enrichment and Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs) were performed, and protein-protein interaction (PPI) network, microRNA-target gene regulatory network and TFs (transcription factors) -target gene regulatory network for up- and down-regulated were analyzed using Cytoscape. In total, 552 DEGs were found, including 276 up-regulated and 276 down-regulated DEGs. Pathway enrichment analysis demonstrated that most DEGs were significantly enriched in chemical carcinogenesis, urea cycle, cell adhesion molecules and creatine biosynthesis. GO enrichment analysis showed that most DEGs were significantly enriched in translation, nucleosome, extracellular matrix organization and extracellular matrix. From protein-protein interaction network (PPI) analysis, modules, microRNA-target gene regulatory network and TFs-target gene regulatory network for up- and down-regulated, and the top hub genes such as E2F4, SRPK2, A2M, CDH1, MAP1LC3A, UCHL1, HLA-C (major histocompatibility complex, class I, C), VAT1, ECM1 and SNRPN (small nuclear ribonucleoprotein polypeptide N) were associated in pathogenesis of EOC. The high expression levels of the hub genes such as CEBPD (CCAAT enhancer binding protein delta) and MID2 in stages 3 and 4 were validated in the TCGA (The Cancer Genome Atlas) database. CEBPD andMID2 were associated with the worst overall survival rates in EOC. In conclusion, the current study diagnosed DEGs between normal and EOC samples, which could improve our understanding of the molecular mechanisms in the progression of EOC. These new key biomarkers might be used as therapeutic targets for EOC.
Collapse
Affiliation(s)
- Varun Chandra Alur
- Department of Endocrinology, J.J. M Medical College, Davanagere, Karnataka 577004, India.
| | - Varshita Raju
- Department of Obstetrics and Gynecology, J.J. M Medical College, Davanagere, Karnataka 577004, India.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad, Karnataka 580002, India.
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics,Chanabasava Nilaya, Bharthinagar,Dharwad, Karanataka 580001, India.
| |
Collapse
|
21
|
Rodríguez-Bolaños M, Perez-Montfort R. Medical and Veterinary Importance of the Moonlighting Functions of Triosephosphate Isomerase. Curr Protein Pept Sci 2019; 20:304-315. [DOI: 10.2174/1389203719666181026170751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Triosephosphate isomerase is the fifth enzyme in glycolysis and its canonical function is the
reversible isomerization of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Within the
last decade multiple other functions, that may not necessarily always involve catalysis, have been described.
These include variations in the degree of its expression in many types of cancer and participation
in the regulation of the cell cycle. Triosephosphate isomerase may function as an auto-antigen and
in the evasion of the immune response, as a factor of virulence of some organisms, and also as an important
allergen, mainly in a variety of seafoods. It is an important factor to consider in the cryopreservation
of semen and seems to play a major role in some aspects of the development of Alzheimer's disease. It
also seems to be responsible for neurodegenerative alterations in a few cases of human triosephosphate
isomerase deficiency. Thus, triosephosphate isomerase is an excellent example of a moonlighting protein.
Collapse
Affiliation(s)
- Mónica Rodríguez-Bolaños
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| | - Ruy Perez-Montfort
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| |
Collapse
|
22
|
Wu JI, Lin YP, Tseng CW, Chen HJ, Wang LH. Crabp2 Promotes Metastasis of Lung Cancer Cells via HuR and Integrin β1/FAK/ERK Signaling. Sci Rep 2019; 9:845. [PMID: 30696915 PMCID: PMC6351595 DOI: 10.1038/s41598-018-37443-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/30/2018] [Indexed: 01/31/2023] Open
Abstract
Increased Crabp2 levels have been found in various types of cancer, and are associated with poor patients’ survival. Although Crabp2 is found to be overexpressed in lung cancer, its role in metastasis of lung cancer is unclear. In this study, Crabp2 was overexpressed in high-metastatic C10F4 than low-metastatic lung cancer cells. Analysis of clinical samples revealed that high CRABP2 levels were correlated with lymph node metastases, poor overall survival, and increased recurrence. Knockdown of Crabp2 decreased migration, invasion, anoikis resistance, and in vivo metastasis. Crabp2 was co-immunoprecipitated with HuR, and overexpression of Crabp2 increased HuR levels, which promoted integrin β1/FAK/ERK signaling. Inhibition of HuR or integrin β1/FAK/ERK signaling reversed the promoting effect of Crabp2 in migration, invasion, and anoikis resistance. Knockdown of Crabp2 further inhibited the growth of cancer cells as compared with that by gemcitabine or irinotecan alone. The expression of Crabp2 in human lung tumors was correlated with stress marker CHOP. In conclusion, our findings have identified the promoting role of Crabp2 in anoikis resistance and metastasis. CRABP2 may serve as a prognostic marker and targeting CRABP2 may be exploited as a modality to reduce metastasis.
Collapse
Affiliation(s)
- Jun-I Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yi-Pei Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chien-Wei Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Jane Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Lu-Hai Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan. .,Department of Life Sciences, National Central University, Taoyuan, Taiwan. .,Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan. .,Chinese Medical Research Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
23
|
Zheng MJ, Li X, Hu YX, Dong H, Gou R, Nie X, Liu Q, Ying-Ying H, Liu JJ, Lin B. Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments. J Cell Physiol 2019; 234:11023-11036. [PMID: 30633343 DOI: 10.1002/jcp.27926] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ovarian cancer is one of the three major malignant tumors of the female reproductive system, and the mortality associated with ovarian cancer ranks first among gynecologic malignant tumors. The pathogenesis of ovarian cancer is not yet clearly defined but elucidating this process would be of great significance for clinical diagnosis, prevention, and treatment. For this study, we used bioinformatics to identify the key pathogenic genes and reveal the potential molecular mechanisms of ovarian cancer; we used immunohistochemistry to validate them. METHODS We analyzed and integrated four gene expression profiles (GSE14407, GSE18520, GSE26712, and GSE54388), which were downloaded from the Gene Expression Omnibus (GEO) database, with the aim of obtaining a common differentially expressed gene (DEG). Then, we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). We then established a protein-protein interaction (PPI) network of the DEGs through the Search Tool for the Retrieval of Interacting Genes (STRING) database and selected hub genes. Finally, survival analysis of the hub genes was performed using a Kmplotter online tool. RESULTS A total of 226 DEGs were detected after the analysis of the four gene expression profiles; of these, 87 were upregulated genes and 139 were downregulated. GO analysis results showed that DEGs were significantly enriched in biological processes including the G2/M transition of the mitotic cell cycle, the apoptotic process, cell proliferation, blood coagulation, and positive regulation of the canonical Wnt signaling pathway. KEGG analysis results showed that DEGs were particularly enriched in the cell cycle, the p53 signaling pathway, the Wnt signaling pathway, the Ras signaling pathway, the Rap1 signaling pathway, and tyrosine metabolism. We selected 50 hub genes from the PPI network, which had 147 nodes and 655 edges, and 30 of them were associated with the prognosis of ovarian cancer. We performed immunohistochemistry on phosphoserine aminotransferase 1 (PSAT1). PSAT1 was highly expressed in cancer tissues, and its expression level was related to clinical stage and tissue differentiation in ovarian cancer. A Cox proportional risk model suggested that high expression of PSAT1 and late clinical stage were independent risk factors for survival and prognosis of ovarian cancer patients. CONCLUSION The detection of DEGs using bioinformatics analysis might be crucial to understanding the pathogenesis of ovarian cancer, especially the molecular mechanisms of its development. The association between PSAT1 expression and the occurrence, development, and prognosis of ovarian cancer was further verified by immunohistochemistry. The PSAT1 expression can be used as a prognostic marker to provide a potential target for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ming-Jun Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Yue-Xin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Xin Nie
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Qing Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Hao Ying-Ying
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Juan-Juan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| |
Collapse
|
24
|
Kim DJ, Kim WJ, Lim M, Hong Y, Lee SJ, Hong SH, Heo J, Lee HY, Han SS. Plasma CRABP2 as a Novel Biomarker in Patients with Non-Small Cell Lung Cancer. J Korean Med Sci 2018; 33:e178. [PMID: 29930489 PMCID: PMC6010740 DOI: 10.3346/jkms.2018.33.e178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lung cancer is the most common cause of cancer-related mortality worldwide. We previously reported the identification of a new genetic marker, cellular retinoic acid binding protein 2 (CRABP2), in lung cancer tissues. The aim of this study was to assess plasma levels of CRABP2 from patients with non-small cell lung cancer (NSCLC). METHODS Blood samples that were collected from 122 patients with NSCLC between September 2009 and September 2013 were selected for the analysis, along with samples from age- (± 5 years), sex-, and cigarette smoking history (± 10 pack-years [PY])-matched controls from the Korea Biobank Network. The control specimens were from patients who were without malignancies or pulmonary diseases. We measured plasma levels of CRABP2 using commercially available enzyme-linked immunosorbent assay kits. RESULTS The mean age of the NSCLC patients was 71.8 ± 8.9 years, and the median cigarette smoking history was 32 PY (range, 0-150 PY). Plasma CRABP2 levels were significantly higher in patients with NSCLC than in the matched controls (37.63 ± 28.71 ng/mL vs. 24.09 ± 21.09 ng/mL, P < 0.001). Higher plasma CRABP2 levels were also correlated with lower survival rates in NSCLC patients (P = 0.014). CONCLUSION Plasma CRABP2 levels might be a novel diagnostic and prognostic marker in NSCLC.
Collapse
Affiliation(s)
- Do Jun Kim
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Myoungnam Lim
- Data Analytics Center, Kangwon National University, Chuncheon, Korea
| | - Yoonki Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jeongwon Heo
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Hui-Young Lee
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seon-Sook Han
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
25
|
Liu K, He L, Liu Z, Xu J, Liu Y, Kuang Q, Wen Z, Li M. Mutation status coupled with RNA-sequencing data can efficiently identify important non-significantly mutated genes serving as diagnostic biomarkers of endometrial cancer. BMC Bioinformatics 2017; 18:472. [PMID: 29297280 PMCID: PMC5751793 DOI: 10.1186/s12859-017-1891-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Endometrial cancers (ECs) are one of the most common types of malignant tumor in females. Substantial efforts had been made to identify significantly mutated genes (SMGs) in ECs and use them as biomarkers for the classification of histological subtypes and the prediction of clinical outcomes. However, the impact of non-significantly mutated genes (non-SMGs), which may also play important roles in the prognosis of EC patients, has not been extensively studied. Therefore, it is essential for the discovery of biomarkers in ECs to further investigate the non-SMGs that were highly associated with clinical outcomes. Results For the 9681 non-SMGs reported by the mutation annotation pipeline, there were 1053, 1273 and 395 non-SMGs differentially expressed between the patient groups divided by the clinical endpoints of histological grade, histological type as well as the International Federation of Gynecology and Obstetrics (FIGO) stage of ECs, respectively. In the gene set enrichment analysis, the cancer-related pathways, namely neuroactive ligand-receptor interaction signaling pathway, cAMP signaling pathway and calcium signaling pathway, were significantly enriched with the differentially expressed non-SMGs for all the three endpoints. We further identified 23, 19 and 24 non-SMGs, which were highly associated with histological grade, histological type and FIGO stage, respectively, from the differentially expressed non-SMGs by using the variable combination population analysis (VCPA) approach and found that 69.6% (16/23), 78.9% (15/19) and 66.7% (16/24) of the identified non-SMGs had been previously reported to be correlated with cancers. In addition, the averaged areas under the receiver operating characteristic curve (AUCs) achieved by the predictive models with identified non-SMGs as predictors in predicting histological type, histological grade, and FIGO stage were 0.993, 0.961 and 0.832, respectively, which were superior to those achieved by the models with SMGs as features (averaged AUCs = 0.928, 0.864 and 0.535, resp.). Conclusions Besides the SMGs, the non-SMGs reported in the mutation annotation analysis may also involve the crucial genes that were highly associated with clinical outcomes. Combining the mutation status with the gene expression profiles can efficiently identify the cancer-related non-SMGs as predictors for cancer prognostic prediction and provide more supplemental candidates for the discovery of biomarkers. Electronic supplementary material The online version of this article (10.1186/s12859-017-1891-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keqin Liu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Li He
- Biogas Appliance Quality Supervision and Inspection Center, Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan, China
| | - Zhichao Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Junmei Xu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Liu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Qifan Kuang
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
26
|
Fischer-Huchzermeyer S, Dombrowski A, Hagel C, Mautner VF, Schittenhelm J, Harder A. The Cellular Retinoic Acid Binding Protein 2 Promotes Survival of Malignant Peripheral Nerve Sheath Tumor Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1623-1632. [DOI: 10.1016/j.ajpath.2017.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 01/03/2023]
|
27
|
Burton LJ, Rivera M, Hawsawi O, Zou J, Hudson T, Wang G, Zhang Q, Cubano L, Boukli N, Odero-Marah V. Muscadine Grape Skin Extract Induces an Unfolded Protein Response-Mediated Autophagy in Prostate Cancer Cells: A TMT-Based Quantitative Proteomic Analysis. PLoS One 2016; 11:e0164115. [PMID: 27755556 PMCID: PMC5068743 DOI: 10.1371/journal.pone.0164115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/19/2016] [Indexed: 01/06/2023] Open
Abstract
Muscadine grape skin extract (MSKE) is derived from muscadine grape (Vitis rotundifolia), a common red grape used to produce red wine. Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) that serves as a survival mechanism to relieve ER stress and restore ER homeostasis. However, when persistent, ER stress can alter the cytoprotective functions of the UPR to promote autophagy and cell death. Although MSKE has been documented to induce apoptosis, it has not been linked to ER stress/UPR/autophagy. We hypothesized that MSKE may induce a severe ER stress response-mediated autophagy leading to apoptosis. As a model, we treated C4-2 prostate cancer cells with MSKE and performed a quantitative Tandem Mass Tag Isobaric Labeling proteomic analysis. ER stress response, autophagy and apoptosis were analyzed by western blot, acridine orange and TUNEL/Annexin V staining, respectively. Quantitative proteomics analysis indicated that ER stress response proteins, such as GRP78 were greatly elevated following treatment with MSKE. The up-regulation of pro-apoptotic markers PARP, caspase-12, cleaved caspase-3, -7, BAX and down-regulation of anti-apoptotic marker BCL2 was confirmed by Western blot analysis and apoptosis was visualized by increased TUNEL/Annexin V staining upon MSKE treatment. Moreover, increased acridine orange, and LC3B staining was detected in MSKE-treated cells, suggesting an ER stress/autophagy response. Finally, MSKE-mediated autophagy and apoptosis was antagonized by co-treatment with chloroquine, an autophagy inhibitor. Our results indicate that MSKE can elicit an UPR that can eventually lead to apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Liza J. Burton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, United States of America
| | - Mariela Rivera
- Department of Microbiology and Immunology, School of Medicine, Universidad Central del Caribe, Bayamon, PR, 00956, United States of America
| | - Ohuod Hawsawi
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, United States of America
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, United States of America
| | - Tamaro Hudson
- Department of Medicine, Howard University, Washington, DC, 20060, United States of America
| | - Guangdi Wang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, United States of America
| | - Qiang Zhang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, United States of America
| | - Luis Cubano
- Department of Microbiology and Immunology, School of Medicine, Universidad Central del Caribe, Bayamon, PR, 00956, United States of America
| | - Nawal Boukli
- Department of Microbiology and Immunology, School of Medicine, Universidad Central del Caribe, Bayamon, PR, 00956, United States of America
| | - Valerie Odero-Marah
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, United States of America
- * E-mail:
| |
Collapse
|
28
|
Coscia F, Watters KM, Curtis M, Eckert MA, Chiang CY, Tyanova S, Montag A, Lastra RR, Lengyel E, Mann M. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status. Nat Commun 2016; 7:12645. [PMID: 27561551 PMCID: PMC5007461 DOI: 10.1038/ncomms12645] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022] Open
Abstract
A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. High-grade serous ovarian cancer is the most common and aggressive ovarian cancer, with uncertain cell of origin. Here, the authors undertake a mass spectrometric analysis of 26 cancer cell lines and identify a protein signature that classifies ovarian cancer tissues into epithelial and mesenchymal groups.
Collapse
Affiliation(s)
- F Coscia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - K M Watters
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | - M Curtis
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | - M A Eckert
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | - C Y Chiang
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | - S Tyanova
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - A Montag
- Department of Pathology, University of Chicago Medicine, Chicago, Illinois 60637, USA
| | - R R Lastra
- Department of Pathology, University of Chicago Medicine, Chicago, Illinois 60637, USA
| | - E Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | - M Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
29
|
Annexin A4-nuclear factor-κB feedback circuit regulates cell malignant behavior and tumor growth in gallbladder cancer. Sci Rep 2016; 6:31056. [PMID: 27491820 PMCID: PMC4974512 DOI: 10.1038/srep31056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system. However, the mechanisms underlying its tumor initiation, progression, and metastasis are not yet fully understood. The annexin A4 (ANXA4) gene is highly expressed in GBC tissues and may play an important role in the initiation and progression of this disease. In this study, we examined the up-regulation of ANXA4 in human GBC tissues and cell lines. Elevated ANXA4 correlated well with invasion depth in GBC patients and predicted a poor prognosis. In vitro, GBC-SD and NOZ cells with ANXA4 knockdown demonstrated increased apoptosis and inhibited cell growth, migration, and invasion. Interactions between ANXA4 and nuclear factor-κB (NF-κB) p65 proteins were detected. In vivo, ANXA4 knockdown inhibited tumor growth of GBC cells in nude mice and down-regulated the expression of downstream factors in the NF-κB signaling pathway. Taken together, these data indicate that up-regulation of ANXA4 leads to activation of the NF-κB pathway and its target genes in a feedback regulatory mechanism via the p65 subunit, resulting in tumor growth in GBC.
Collapse
|
30
|
Annexin A4 fucosylation enhances its interaction with the NF-kB p50 and promotes tumor progression of ovarian clear cell carcinoma. Oncotarget 2016; 8:108093-108107. [PMID: 29296226 PMCID: PMC5746128 DOI: 10.18632/oncotarget.10226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
Objective To study the structural relationship between annexin A4 and the Lewis y antigen and compare their expression and significance in ovarian clear cell carcinoma, and to explore how annexin A4 fucose glycosylation effects the interaction between annexin A4 and NF-kB p50, and how it promotes tumour progression of ovarian clear cell carcinoma. Methods Structural relationships between annexin A4 and Lewis y antigen were detected using immunoprecipitation. Annexin A4 and Lewis y antigen expression in various subtypes of ovarian cancer tissues was detected by immunohistochemistry, and the relation between their expression was examined. Any interactions between annexin A4 and NF-kB p50 in ovarian clear cell carcinoma were detected by co-immunoprecipitation. Then looked for changes in expression of Lewis y antigen, annexin A4, NF-kB p50 and a number of downstream related molecules before and after transfection annexin A4 or FUT1, and also analyzed changes in biological processes. Results Lewis y antigen is a part of annexin A4 structure. The expression rate of both annexin A4 and Lewis y antigen was significantly higher in ovarian clear cell carcinoma than in other subtypes of epithelial ovarian cancer, and are associated with the clinical stages, chemotherapy resistance and poor prognostic. The interaction between annexin A4 and NF-kB p50 promoted cell proliferation, adhesion, invasion, metastasis ability and autophagy, and inhibits apoptosis, Lewis y enhanced this interaction. Conclusion Annexin A4 contains Lewis y structure, Lewis y antigen modification of annexin A4 enhances its interaction with NF-kB p50, which promotes ovarian clear cell carcinoma malignancy progression.
Collapse
|
31
|
Overexpression of annexin A4 indicates poor prognosis and promotes tumor metastasis of hepatocellular carcinoma. Tumour Biol 2016; 37:9343-55. [PMID: 26779633 DOI: 10.1007/s13277-016-4823-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 01/07/2023] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC) after surgical resection remains unsatisfactory for the majority of HCC patients who developed early recurrence or metastasis. There is still a lack of reliable biomarkers that can be used to predict the possibility of recurrence/metastasis in HCC patients after operation. In the current study, annexin A4, a calcium-dependent phospholipid-binding protein, has been found to be significantly elevated in HCC patients with early recurrence/metastasis, and had a strong correlation with portal vein tumor thrombosis (p = 0.03) and advanced BCLC stage (p = 0.002). Cox proportional hazards regression analysis revealed that annexin A4 was an independent prognostic predictor for both early recurrence/metastasis (HR = 1.519, p = 0.032) and overall survival (HR = 1.827, p = 0.009) after surgical resection. Meanwhile, Kaplan-Meier analysis showed that Patients with high-expression levels of annexin A4 had higher recurrence rate and shorter overall survival than those with low expression (log-rank test, p < 0.001). Furthermore, in vitro studies have demonstrated that overexpression of annexin A4 facilitated HCC cell migration and invasion via regulating epithelial-mesenchymal transition (EMT). In conclusion, annexin A4 has played important roles in the progression of HCC, and might act as a potential prognostic biomarker for HCC.
Collapse
|
32
|
Elzek MA, Rodland KD. Proteomics of ovarian cancer: functional insights and clinical applications. Cancer Metastasis Rev 2016; 34:83-96. [PMID: 25736266 DOI: 10.1007/s10555-014-9547-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification of aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics' contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. We propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs.
Collapse
Affiliation(s)
- Mohamed A Elzek
- Egybiotech for Research and Biotechnology, Alexandria, Egypt,
| | | |
Collapse
|
33
|
Baillon L, Oses J, Pierron F, Bureau du Colombier S, Caron A, Normandeau E, Lambert P, Couture P, Labadie P, Budzinski H, Dufour S, Bernatchez L, Baudrimont M. Gonadal transcriptome analysis of wild contaminated female European eels during artificial gonad maturation. CHEMOSPHERE 2015; 139:303-309. [PMID: 26159298 DOI: 10.1016/j.chemosphere.2015.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Since the early 1980s, the population of European eels (Anguilla anguilla) has dramatically declined. Nowadays, the European eel is listed on the red list of threatened species (IUCN Red List) and is considered as critically endangered of extinction. Pollution is one of the putative causes for the collapse of this species. Among their possible effects, contaminants gradually accumulated in eels during their somatic growth phase (yellow eel stage) would be remobilized during their reproductive migration leading to potential toxic events in gonads. The aim of this study was to investigate the effects of organic and inorganic contaminants on the gonad development of wild female silver eels. Female silver eels from two sites with differing contamination levels were artificially matured. Transcriptomic analyses by means of a 1000 candidate gene cDNA microarray were performed on gonads after 11weeks of maturation to get insight into the mechanisms of toxicity of contaminants. The transcription levels of several genes, that were associated to the gonadosomatic index (GSI), were involved in mitotic cell division but also in gametogenesis. Genes associated to contaminants were mainly involved in the mechanisms of protection against oxidative stress, in DNA repair, in the purinergic signaling pathway and in steroidogenesis, suggesting an impairment of gonad development in eels from the polluted site. This was in agreement with the fact that eels from the reference site showed a higher gonad growth in comparison to contaminated fish.
Collapse
Affiliation(s)
- Lucie Baillon
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Jennifer Oses
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Fabien Pierron
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France.
| | | | - Antoine Caron
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9, Canada
| | - Eric Normandeau
- Muséum National d'Histoire Naturelle, UMR BOREA UPMC, CNRS 7208, IRD 207, UCBN, 7 rue Cuvier CP 32, F-75231 Paris, France
| | - Patrick Lambert
- Irtsea, UR EABX, 50 avenue de Verdun-Gazinet, 33612 Cestas, France
| | - Patrice Couture
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9, Canada
| | - Pierre Labadie
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Hélène Budzinski
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, UMR BOREA UPMC, CNRS 7208, IRD 207, UCBN, 7 rue Cuvier CP 32, F-75231 Paris, France
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6, Canada
| | - Magalie Baudrimont
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| |
Collapse
|
34
|
Wei B, Guo C, Liu S, Sun MZ. Annexin A4 and cancer. Clin Chim Acta 2015; 447:72-8. [PMID: 26048190 DOI: 10.1016/j.cca.2015.05.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/30/2023]
Abstract
Annexin A4 (Anxa4) is one of the Ca(2+)-regulated and phospholipid-binding annexin superfamily proteins. Anxa4 has a potential role in diagnosis, prognosis, and treatment of certain cancers. Studies indicate that Anxa4 up-regulation promotes the progression of tumor and chemoresistance of colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC), endometrial carcinoma (EC), gastric cancer (GC), chemoresistant lung cancer (LC), malignant mesothelioma (MM), renal cell carcinoma (RCC), ovarian clear cell carcinoma (OCCC), cholangiocarcinoma, hepatocellular carcinoma (HCC), breast cancer (BC), and laryngeal cancer. Interestingly, Anxa4 also might specifically function as a tumor suppressor for prostate cancer (PCa) and have a paradoxical role for pancreatic cancer (PCC). Differential expression of Anxa4 may distinguish major salivary gland tumor (MSGT) from thyroid cancer. In addition, its differential expression was linked to Sirt1-induced cisplatin resistance of oral squamous cell carcinoma (OSCC) and miR-7-induced migration and invasion inhibition of glioma. This current review summarizes and discusses the clinical significance of Anxa4 in cancer as well as its potential mechanisms of action. It may provide new integrative understanding for future studies on the exact role of Anxa4 in cancer.
Collapse
Affiliation(s)
- Bin Wei
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
35
|
Analysis and interpretation of transcriptomic data obtained from extended Warburg effect genes in patients with clear cell renal cell carcinoma. Oncoscience 2015; 2:151-86. [PMID: 25859558 PMCID: PMC4381708 DOI: 10.18632/oncoscience.128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
Background Many cancers adopt a metabolism that is characterized by the well-known Warburg effect (aerobic glycolysis). Recently, numerous attempts have been made to treat cancer by targeting one or more gene products involved in this pathway without notable success. This work outlines a transcriptomic approach to identify genes that are highly perturbed in clear cell renal cell carcinoma (CCRCC). Methods We developed a model of the extended Warburg effect and outlined the model using Cytoscape. Following this, gene expression fold changes (FCs) for tumor and adjacent normal tissue from patients with CCRCC (GSE6344) were mapped on to the network. Gene expression values with FCs of greater than two were considered as potential targets for treatment of CCRCC. Results The Cytoscape network includes glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP), the TCA cycle, the serine/glycine pathway, and partial glutaminolysis and fatty acid synthesis pathways. Gene expression FCs for nine of the 10 CCRCC patients in the GSE6344 data set were consistent with a shift to aerobic glycolysis. Genes involved in glycolysis and the synthesis and transport of lactate were over-expressed, as was the gene that codes for the kinase that inhibits the conversion of pyruvate to acetyl-CoA. Interestingly, genes that code for unique proteins involved in gluconeogenesis were strongly under-expressed as was also the case for the serine/glycine pathway. These latter two results suggest that the role attributed to the M2 isoform of pyruvate kinase (PKM2), frequently the principal isoform of PK present in cancer: i.e. causing a buildup of glucose metabolites that are shunted into branch pathways for synthesis of key biomolecules, may not be operative in CCRCC. The fact that there was no increase in the expression FC of any gene in the PPP is consistent with this hypothesis. Literature protein data generally support the transcriptomic findings. Conclusions A number of key genes have been identified that could serve as valid targets for anti-cancer pharmaceutical agents. Genes that are highly over-expressed include ENO2, HK2, PFKP, SLC2A3, PDK1, and SLC16A1. Genes that are highly under-expressed include ALDOB, PKLR, PFKFB2, G6PC, PCK1, FBP1, PC, and SUCLG1.
Collapse
|
36
|
Takaya A, Peng WX, Ishino K, Kudo M, Yamamoto T, Wada R, Takeshita T, Naito Z. Cystatin B as a potential diagnostic biomarker in ovarian clear cell carcinoma. Int J Oncol 2015; 46:1573-81. [PMID: 25633807 DOI: 10.3892/ijo.2015.2858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/29/2014] [Indexed: 11/05/2022] Open
Abstract
Epithelial ovarian cancer (EOC) consists of four major subtypes: clear cell carcinoma (CCC), endometrioid adenocarcinoma (EA), mucinous adenocarcinoma (MA) and serous adenocarcinoma (SA). Relative to the other subtypes, the prognosis of CCC is poor due to a high recurrence rate and chemotherapy resistance, but CCC-specific biomarkers have yet to be identified. With the aim of identifying diagnostic and treatment biomarkers for CCC, we analyzed 96 cases of EOC (32 CCC, 13 EA, 19 MA, 32 SA) using liquid chromatography/mass spectrometry (LC/MS) followed by immunohistochemistry (IHC) and quantitative reverse transcription PCR (RT-qPCR). Semi-quantification of protein differences between subtypes showed upregulation of 150 proteins and downregulation of 30 proteins in CCC relative to the other subtypes. Based on hierarchical clustering that revealed a marked distinction in the expression levels of cystatin B (CYTB) and Annexin A4 (ANXA4) in CCC relative to the other subtypes, we focused the study on CYTB and ANXA4 expression in EOCs by IHC, RT-qPCR and western blot analyses using tissue specimens and cultured cells. As a result, compared to the other subtypes, CCC showed significantly high expression levels of CYTB and ANXA4 in the analyses. To examine the possibility of CYTB and ANXA4 as serum diagnostic biomarkers of CCC, we checked the protein levels in conditioned media and cell lysates using culture cells. Compared with the other subtypes, CCC cell lines showed a significantly higher level of expression of CYTB in both conditioned media and cell lysates, while ANXA4 showed a higher level of expression in cell lysates only. Our results demonstrate that CYTB and ANXA4 overexpression may be related to carcinogenesis and histopathological differentiation of CCC. CYTB may be a secreted protein, and may serve as a potential serum diagnostic biomarker of CCC, while ANXA4 may be useful as an intracellular marker.
Collapse
Affiliation(s)
- Akane Takaya
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Wei-Xia Peng
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Kousuke Ishino
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Mitsuhiro Kudo
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | | | - Ryuichi Wada
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Toshiyuki Takeshita
- Division of Reproductive Medicine, Perinatology and Gynecologic Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113‑8603, Japan
| | - Zenya Naito
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| |
Collapse
|
37
|
Yamashita Y, Nagasaka T, Naiki-Ito A, Sato S, Suzuki S, Toyokuni S, Ito M, Takahashi S. Napsin A is a specific marker for ovarian clear cell adenocarcinoma. Mod Pathol 2015; 28:111-7. [PMID: 24721826 DOI: 10.1038/modpathol.2014.61] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/07/2014] [Indexed: 11/09/2022]
Abstract
Ovarian clear cell adenocarcinoma has a relatively poor prognosis among the ovarian cancer subtypes because of its high chemoresistance. Differential diagnosis of clear cell adenocarcinoma from other ovarian surface epithelial tumors is important for its treatment. Napsin A is a known diagnostic marker for lung adenocarcinoma, and expression of napsin A is reported in a certain portion of thyroid and renal carcinomas. However, napsin A expression in ovarian surface epithelial tumors has not previously been examined. In this study, immunohistochemical analysis revealed that in 71 of 86 ovarian clear cell adenocarcinoma patients (83%) and all of the 13 patients with ovarian clear cell adenofibroma, positive napsin A staining was evident. No expression was observed in 30 serous adenocarcinomas, 11 serous adenomas or borderline tumors, 19 endometrioid adenocarcinomas, 22 mucinous adenomas or borderline tumors, 10 mucinous adenocarcinomas, or 3 yolk sac tumors of the ovary. Furthermore, expression of napsin A was not observed in the normal surface epithelium of the ovary, epithelia of the fallopian tubes, squamous epithelium, endocervical epithelium, or the endometrium of the uterus. Therefore, we propose that napsin A is another sensitive and specific marker for distinguishing ovarian clear cell tumors (especially adenocarcinomas) from other ovarian tumors.
Collapse
Affiliation(s)
- Yoriko Yamashita
- 1] Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan [2] Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuro Nagasaka
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Sato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross First Hospital, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
38
|
Proteomic and Mitochondrial Genomic Analyses of Pediatric Brain Tumors. Mol Neurobiol 2014; 52:1341-1363. [DOI: 10.1007/s12035-014-8930-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/07/2014] [Indexed: 11/26/2022]
|
39
|
Zhang D, Golubkov VS, Han W, Correa RG, Zhou Y, Lee S, Strongin AY, Dong PDS. Identification of Annexin A4 as a hepatopancreas factor involved in liver cell survival. Dev Biol 2014; 395:96-110. [PMID: 25176043 DOI: 10.1016/j.ydbio.2014.08.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/27/2023]
Abstract
To gain insight into liver and pancreas development, we investigated the target of 2F11, a monoclonal antibody of unknown antigen, widely used in zebrafish studies for labeling hepatopancreatic ducts. Utilizing mass spectrometry and in vivo assays, we determined the molecular target of 2F11 to be Annexin A4 (Anxa4), a calcium binding protein. We further found that in both zebrafish and mouse endoderm, Anxa4 is broadly expressed in the developing liver and pancreas, and later becomes more restricted to the hepatopancreatic ducts and pancreatic islets, including the insulin producing ß-cells. Although Anxa4 is a known target of several monogenic diabetes genes and its elevated expression is associated with chemoresistance in malignancy, its in vivo role is largely unexplored. Knockdown of Anxa4 in zebrafish leads to elevated expression of caspase 8 and Δ113p53, and liver bud specific activation of Caspase 3 and apoptosis. Mosaic knockdown reveal that Anxa4 is required cell-autonomously in the liver bud for cell survival. This finding is further corroborated with mosaic anxa4 knockout studies using the CRISPR/Cas9 system. Collectively, we identify Anxa4 as a new, evolutionarily conserved hepatopancreatic factor that is required in zebrafish for liver progenitor viability, through inhibition of the extrinsic apoptotic pathway. A role for Anxa4 in cell survival may have implications for the mechanism of diabetic ß-cell apoptosis and cancer cell chemoresistance.
Collapse
Affiliation(s)
- Danhua Zhang
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Vladislav S Golubkov
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Wenlong Han
- NCI-Designated Cancer Center, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ricardo G Correa
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Ying Zhou
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Sunyoung Lee
- NCI-Designated Cancer Center, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - P Duc Si Dong
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
40
|
Han SS, Kim WJ, Hong Y, Hong SH, Lee SJ, Ryu DR, Lee W, Cho YH, Lee S, Ryu YJ, Won JY, Rhee H, Park JH, Jang SJ, Lee JS, Choi CM, Lee JC, Lee SD, Oh YM. RNA sequencing identifies novel markers of non-small cell lung cancer. Lung Cancer 2014; 84:229-35. [PMID: 24751108 DOI: 10.1016/j.lungcan.2014.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/29/2014] [Accepted: 03/17/2014] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The development of reliable gene expression profiling technology increasingly impacts our understanding of lung cancer biology. Here, we used RNA sequencing (RNA-Seq) to compare the transcriptomes of non-small cell lung cancer (NSCLC) and normal lung tissues and to investigate expression in lung cancer tissues. METHODS We enrolled 88 male patients (mean age, 61.2 years) with NSCLC. RNA-Seq was performed on 88 pairs of NSCLC tumor tissue and non-tumor tissue from 54 patients with adenocarcinoma and 34 patients with squamous cell carcinoma. Immunohistochemistry was performed to validate differential candidate gene expression in a different NSCLC group. RESULTS RNA-Seq produced 25.41 × 10(6) (± 8.90 × 10(6)) reads in NSCLC tissues and 24.70×10(6) (± 4.70 × 10(6)) reads in normal lung tissues [mean (± standard deviation)]. Among the genes expressed in both tissues, 335 were upregulated and 728 were downregulated ≥ 2-fold (p < 0.001). Four upregulated genes - CBX3, GJB2, CRABP2, and DSP - not previously reported in lung cancer were studied further. Their altered expression was verified by immunohistochemistry in a different set of NSCLC tissues (n = 154). CBX3 was positive in 90.3% (139 cases) of the samples; GJB2, in 22.7% (35 cases); CRABP2, in 72.1% (111 cases); and DSP, in 17.5% (27 cases). The positive rate of CRABP2 was higher in adenocarcinoma than squamous cell carcinoma (p < 0.01). CONCLUSIONS CBX3 and CRABP2 expression was markedly increased in lung cancer tissues and especially CRABP2 may be promising candidate genes in lung adenocarcinoma.
Collapse
Affiliation(s)
- Seon-Sook Han
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Kangwon-do 200-701, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Kangwon-do 200-701, Republic of Korea
| | - Yoonki Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Kangwon-do 200-701, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Kangwon-do 200-701, Republic of Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Kangwon-do 200-701, Republic of Korea
| | - Dong Ryeol Ryu
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Kangwon-do 200-701, Republic of Korea
| | - Wonho Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Kangwon-do 200-701, Republic of Korea
| | - Yo Han Cho
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Kangwon-do 200-701, Republic of Korea
| | - Seungkoo Lee
- Department of Anatomic Pathology, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Kangwon-do 200-701, Republic of Korea
| | - Young-Joon Ryu
- Department of Pathology, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Kangwon-do 200-701, Republic of Korea
| | - Jun Yeon Won
- Department of Otolaryngology, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Kangwon-do 200-701, Republic of Korea
| | - Hwanseok Rhee
- Macrogen Bioinformatics Center, Macrogen, Seoul 153-781, Republic of Korea
| | - Jung Hoon Park
- Macrogen Bioinformatics Center, Macrogen, Seoul 153-781, Republic of Korea
| | - Se Jin Jang
- Department of Pathology and Asan Center for Cancer Genome Discovery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea
| | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea
| | - Chang-Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea
| | - Sang Do Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea.
| |
Collapse
|
41
|
Chiang SC, Han CL, Yu KH, Chen YJ, Wu KP. Prioritization of cancer marker candidates based on the immunohistochemistry staining images deposited in the human protein atlas. PLoS One 2013; 8:e81079. [PMID: 24303032 PMCID: PMC3841220 DOI: 10.1371/journal.pone.0081079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022] Open
Abstract
Cancer marker discovery is an emerging topic in high-throughput quantitative proteomics. However, the omics technology usually generates a long list of marker candidates that requires a labor-intensive filtering process in order to screen for potentially useful markers. Specifically, various parameters, such as the level of overexpression of the marker in the cancer type of interest, which is related to sensitivity, and the specificity of the marker among cancer groups, are the most critical considerations. Protein expression profiling on the basis of immunohistochemistry (IHC) staining images is a technique commonly used during such filtering procedures. To systematically investigate the protein expression in different cancer versus normal tissues and cell types, the Human Protein Atlas is a most comprehensive resource because it includes millions of high-resolution IHC images with expert-curated annotations. To facilitate the filtering of potential biomarker candidates from large-scale omics datasets, in this study we have proposed a scoring approach for quantifying IHC annotation of paired cancerous/normal tissues and cancerous/normal cell types. We have comprehensively calculated the scores of all the 17219 tested antibodies deposited in the Human Protein Atlas based on their accumulated IHC images and obtained 457110 scores covering 20 different types of cancers. Statistical tests demonstrate the ability of the proposed scoring approach to prioritize cancer-specific proteins. Top 100 potential marker candidates were prioritized for the 20 cancer types with statistical significance. In addition, a model study was carried out of 1482 membrane proteins identified from a quantitative comparison of paired cancerous and adjacent normal tissues from patients with colorectal cancer (CRC). The proposed scoring approach demonstrated successful prioritization and identified four CRC markers, including two of the most widely used, namely CEACAM5 and CEACAM6. These results demonstrate the potential of this scoring approach in terms of cancer marker discovery and development. All the calculated scores are available at http://bal.ym.edu.tw/hpa/.
Collapse
Affiliation(s)
- Su-Chien Chiang
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, Taiwan
| | - Chia-Li Han
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kun-Hsing Yu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
42
|
Annexin A4 is involved in proliferation, chemo-resistance and migration and invasion in ovarian clear cell adenocarcinoma cells. PLoS One 2013; 8:e80359. [PMID: 24244679 PMCID: PMC3823662 DOI: 10.1371/journal.pone.0080359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/04/2013] [Indexed: 12/30/2022] Open
Abstract
Ovarian clear cell adenocarcinoma (CCC) is the second most common subtype of ovarian cancer after high-grade serous adenocarcinomas. CCC tends to develop resistance to the standard platinum-based chemotherapy, and has a poor prognosis when diagnosed in advanced stages. The ANXA4 gene, along with its product, a Ca++-binding annexin A4 (ANXA4) protein, has been identified as the CCC signature gene. We reported two subtypes of ANXA4 with different isoelectric points (IEPs) that are upregulated in CCC cell lines. Although several in vitro investigations have shown ANXA4 to be involved in cancer cell proliferation, chemoresistance, and migration, these studies were generally based on its overexpression in cells other than CCC. To elucidate the function of the ANXA4 in CCC cells, we established CCC cell lines whose ANXA4 expressions are stably knocked down. Two parental cells were used: OVTOKO contains almost exclusively an acidic subtype of ANXA4, and OVISE contains predominantly a basic subtype but also a detectable acidic subtype. ANXA4 knockdown (KO) resulted in significant growth retardation and greater sensitivity to carboplatin in OVTOKO cells. ANXA4-KO caused significant loss of migration and invasion capability in OVISE cells, but this effect was not seen in OVTOKO cells. We failed to find the cause of the different IEPs of ANXA4, but confirmed that the two subtypes are found in clinical CCC samples in ratios that vary by patient. Further investigation to clarify the mechanism that produces the subtypes is needed to clarify the function of ANXA4 in CCC, and might allow stratification and improved treatment strategies for patients with CCC.
Collapse
|
43
|
Kristjansdottir B, Levan K, Partheen K, Carlsohn E, Sundfeldt K. Potential tumor biomarkers identified in ovarian cyst fluid by quantitative proteomic analysis, iTRAQ. Clin Proteomics 2013; 10:4. [PMID: 23557354 PMCID: PMC3637236 DOI: 10.1186/1559-0275-10-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 03/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epithelial-derived ovarian adenocarcinoma (EOC) is the most deadly gynecologic tumor, and the principle cause of the poor survival rate is diagnosis at a late stage. Screening and diagnostic biomarkers with acceptable specificity and sensitivity are lacking. Ovarian cyst fluid should harbor early ovarian cancer biomarkers because of its closeness to the tumor. We investigated ovarian cyst fluid as a source for discovering biomarkers for use in the diagnosis of EOC. RESULTS Using quantitative mass spectrometry, iTRAQ MS, we identified 837 proteins in cyst fluid from benign, EOC stage I, and EOC stage III. Only patients of serous histology were included in the study. Comparing the benign (n = 5) with the malignant (n = 10) group, 87 of the proteins were significantly (p < 0.05) differentially expressed. Two proteins, serum amyloid A-4 (SAA4) and astacin-like metalloendopeptidase (ASTL), were selected for verification of the iTRAQ method and external validation with immunoblot in a larger cohort with mixed histology, in plasma (n = 68), and cyst fluid (n = 68). The protein selections were based on either high significance and high fold change or abundant appearance and several peptide recognitions in the sample sets (p = 0.04, FC = 1.95) and (p < 0.001, FC = 8.48) for SAA4 and ASTL respectively. Both were found to be significantly expressed (p < 0.05), but the methods did not correlate concerning ASTL. CONCLUSIONS Fluid from ovarian cysts connected directly to the primary tumor harbor many possible new tumor-specific biomarkers. We have identified 87 differentially expressed proteins and validated two candidates to verify the iTRAQ method. However several of the proteins are of interest for validation in a larger setting.
Collapse
Affiliation(s)
- Björg Kristjansdottir
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg S-413 45, Sweden.
| | | | | | | | | |
Collapse
|
44
|
Lin LL, Huang HC, Juan HF. Revealing the molecular mechanism of gastric cancer marker annexin A4 in cancer cell proliferation using exon arrays. PLoS One 2012; 7:e44615. [PMID: 22970268 PMCID: PMC3436854 DOI: 10.1371/journal.pone.0044615] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/06/2012] [Indexed: 01/13/2023] Open
Abstract
Gastric cancer is a malignant disease that arises from the gastric epithelium. A potential biomarker for gastric cancer is the protein annexin A4 (ANXA4), an intracellular Ca2+ sensor. ANXA4 is primarily found in epithelial cells, and is known to be involved in various biological processes, including apoptosis, cell cycling and anticoagulation. In respect to cancer, ANXA4-overexpression has been observed in cancers of various origins, including gastric tumors associated with Helicobacter pylori infection. H. pylori induces ANXA4 expression and intracellular [Ca2+]i elevation, and is an important risk factor for carcinogenesis that results in gastric cancer. Despite this correlation, the role of ANXA4 in the progression of gastric tumors remains unclear. In this study, we have investigated whether ANXA4 can mediate the rate of cell growth and whether ANXA4 downstream signals are involved in tumorigenesis. After observing the rate of cell growth in real-time, we determined that ANXA4 promotes cell proliferation. The transcription gene profile of ANXA4-overexpressing cells was measured and analyzed by human exon arrays. From this transcriptional gene data, we show that overexpression of ANXA4 regulates genes that are known to be related to cancer, for example the activation of hyaluronan mediated motility receptor (RHAMM), AKT, and cyclin-dependent kinase 1 (CDK1) as well as the suppression of p21. The regulation of these genes further induces cancer cell proliferation. We also found Ca2+ could regulate the transmission of downstream signals by ANXA4. We suggest that ANXA4 triggers a signaling cascade, leading to increased epithelial cell proliferation, ultimately promoting carcinogenesis. These results might therefore provide a new insight for gastric cancer therapy, specifically through the modification of ANXA4 activity.
Collapse
Affiliation(s)
- Li-Ling Lin
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (HCH); (HFJ)
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- * E-mail: (HCH); (HFJ)
| |
Collapse
|
45
|
Helicobacter pylori disrupts host cell membranes, initiating a repair response and cell proliferation. Int J Mol Sci 2012. [PMID: 22949854 DOI: 10.3390/ijms13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori), the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA) and cytotoxin-associated gene A (CagA) have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+), single mutant (ΔvacA or ΔcagA) or double mutant (ΔvacA/ΔcagA) strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca(2+) influx. Ca(2+)-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis.
Collapse
|
46
|
Helicobacter pylori disrupts host cell membranes, initiating a repair response and cell proliferation. Int J Mol Sci 2012; 13:10176-10192. [PMID: 22949854 PMCID: PMC3431852 DOI: 10.3390/ijms130810176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori (H. pylori), the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA) and cytotoxin-associated gene A (CagA) have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+), single mutant (ΔvacA or ΔcagA) or double mutant (ΔvacA/ΔcagA) strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca2+ influx. Ca2+-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis.
Collapse
|