1
|
Liang G, Hu JY, Liu RJ, Chao YP, Hu YF, Zheng H, Pan XY, Li YJ, Gong YH, Lin C, Lin JH, Wang JD, Li TX, Pan JP, Guo DY. α-Ketoglutarate plays an inflammatory inhibitory role by regulating scavenger receptor class a expression through N6-methyladenine methylation during sepsis. Eur J Immunol 2024:e2350655. [PMID: 38973083 DOI: 10.1002/eji.202350655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.
Collapse
Affiliation(s)
- Gang Liang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Zhejiang University school of medicine, Hangzhou, P. R. China
| | - Jia-Yan Hu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Rou-Jun Liu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yu-Peng Chao
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yi-Fan Hu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Hong Zheng
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Xin-Yu Pan
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yuan-Jing Li
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yang-Hui Gong
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Chi Lin
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jia-Hao Lin
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jia-Dong Wang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Tong-Xin Li
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jian-Ping Pan
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Institute of Translational Medicine, Hangzhou City University, Hangzhou, P.R. China
| | - Dong-Yang Guo
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Institute of Translational Medicine, Hangzhou City University, Hangzhou, P.R. China
| |
Collapse
|
2
|
Flockerzi FA, Hohneck J, Langer F, Tränkenschuh W, Stahl PR. The Role of SCARA5 as a Potential Biomarker in Squamous Cell Carcinoma of the Lung. Int J Mol Sci 2024; 25:7355. [PMID: 39000462 PMCID: PMC11242384 DOI: 10.3390/ijms25137355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the western world. Squamous cell carcinoma is one of the most common histological subtypes of this malignancy. For squamous cell carcinoma of the lung (LSCC), prognostic and predictive markers still are largely missing. In a previous study, we were able to show that the expression of THSD7A shows an association with unfavorable prognostic parameters in prostate cancer. There is also a link to a high expression of FAK. There is incidence that SCARA5 might be the downstream gene of THSD7A. Furthermore, there is evidence that SCARA5 interacts with FAK. We were interested in the role of SCARA5 as a potential biomarker in LSCC. Furthermore, we wanted to know whether SCARA5 expression is linked to THSD7A positivity and to the expression level of FAK. For this reason, we analyzed 101 LSCC tumors by immunohistochemistry. Tissue microarrays were utilized. No significant association was found between SCARA5 expression and overall survival or clinicopathological parameters. There was also no significant association between THSD7A positivity and SCARA5 expression level. Moreover, no significant association was found between FAK expression level and SCARA5 expression level. SCARA5 seems not to play a major role as a biomarker in squamous cell carcinoma of the lung.
Collapse
Affiliation(s)
| | - Johannes Hohneck
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Frank Langer
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | | | - Phillip Rolf Stahl
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
- Department of Pathology, Medical School Berlin, 14197 Berlin, Germany
| |
Collapse
|
3
|
Flockerzi FA, Hohneck J, Saar M, Bohle RM, Stahl PR. SCARA5 Is Overexpressed in Prostate Cancer and Linked to Poor Prognosis. Diagnostics (Basel) 2023; 13:2211. [PMID: 37443605 DOI: 10.3390/diagnostics13132211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is one of the most common malignancies worldwide, showing a wide range of clinical behaviors. Therefore, several treatment options arise out of the diagnosis "prostate cancer". For this reason, it is desirable to find novel prognostic and predictive markers. In former studies, we showed that THSD7A expression is associated with unfavorable prognostic parameters in prostate cancer and is linked to a high expression of focal adhesion kinase (FAK). Recently, scavenger receptor class A member 5 (SCARA5) was reported to be the downstream gene of THSD7A in esophageal squamous cell carcinoma. SCARA5 is believed to play an important role in the development and progression of several different tumor types. Most studies describe SCARA5 as a tumor suppressor. There is also evidence that SCARA 5 interacts with FAK. To examine the role of SCARA5 as a potential biomarker in prostate cancer, a total of 461 prostate cancers were analyzed via immunohistochemistry using tissue microarrays. Furthermore, we compared the expression level of SCARA5 with our previously collected data on THSD7A and FAK. High SCARA5 expression was associated with advanced tumor stage (p < 0.001), positive nodal status (p < 0.001) and high Gleason-score (p < 0.001). At least, strongly SCARA5-positive cancers were associated with THSD7A-positivity. There was no significant association between SCARA5 expression level and FAK expression level. To our knowledge, we are the first to investigate the role of SCARA5 in prostate cancer and we demonstrated that SCARA5 might be a potential biomarker in prostate cancer.
Collapse
Affiliation(s)
| | - Johannes Hohneck
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Matthias Saar
- Department of Urology and Pediatric Urology, University Hospital, 52074 Aachen, Germany
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Rainer Maria Bohle
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Phillip Rolf Stahl
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| |
Collapse
|
4
|
Jiang X, Jiang Y, An D, Jiang X, Zhou S, Liu Y, Tian R, Li Z, Zhao X, Xiang T, Ji P, Yang Y. Methylated tumor suppressor gene SCARA5 inhibits the proliferation, migration and invasion of nasopharyngeal carcinoma. Epigenomics 2023; 15:635-650. [PMID: 37554122 DOI: 10.2217/epi-2023-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Background: SCARA5 may play an important role in nasopharyngeal carcinoma. Materials & methods: PCR and immunohistochemistry were used to detect the expression and promoter methylation of SCARA5. Cell proliferation assays, spheroid culture, flow cytometry analysis, Transwell assays and xenotransplantation tests were utilized to determine the functional effects of SCARA5. RNA-sequencing, western blotting, immunofluorescence and dual-luciferase reporter assays were used to assess SCARA5-mediated outcomes. Results: SCARA5 was downregulated by promoter methylation. Overexpression of SCARA5 inhibited cell migration, invasion and proliferation. SCARA5 enhanced nasopharyngeal carcinoma cell sensitivity to chemotherapy with cisplatin and 5-fluorouracil. SCARA5 drives tumor apoptosis by downregulating HSPA2. Conclusion: SCARA5 may be a useful clinical marker in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xianyao Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yu Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Deqiang An
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaocong Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shitong Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Otorhinolaryngology Head & Neck Surgery, Chongqing General Hospital, No. 118 Xingguang Avenue, Liangjiang New District, Chongqing, 401147, China
| | - Yijun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Rui Tian
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhuoqing Li
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xunping Zhao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, No. 7 Shangqingsi Road, Yuzhong District, Chongqing, 400015, China
| | - Yucheng Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
5
|
Lu X, Chen L, Liu S, Cao Y, Huang Z. m 6A-mediated upregulation of lncRNA RMRP boosts the progression of bladder cancer via epigenetically suppressing SCARA5. Epigenomics 2023; 15:401-415. [PMID: 37337726 DOI: 10.2217/epi-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Aim: This study aimed to elucidate the relationship between SCARA5 and RMRP in bladder cancer and their underlying mechanism. Methods: Biological functions were evaluated using cell-counting kit 8 assay, 5-ethynyl-2'-deoxyuridine incorporation, wound healing and Transwell assays. RNA immunoprecipitation, RNA pull-down and chromatin immunoprecipitation were employed. A xenograft tumor model in nude mice was also conducted. Results & conclusion: RMRP and SCARA5 exhibited an inverse correlation. Downregulation of RMRP significantly suppressed bladder cancer cell proliferation, migration and invasion, which was reversed by SCARA5 overexpression. RMRP recruited DNA methyltransferases to the promoter region of SCARA5, thereby triggering the methylation of the SCARA5 promoter to epigenetically suppress its expression. Our findings elucidate the machinery by which RMRP, stabilized by METTL3, exerts a promoter role in bladder cancer tumorigenesis by triggering SCARA5 methylation.
Collapse
Affiliation(s)
- Xinsheng Lu
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Libo Chen
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Shucheng Liu
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Youhan Cao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Zhongxin Huang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| |
Collapse
|
6
|
Huang J, Lv C, Zhao B, Ji Z, Gao Z. SCARA5 inhibits oral squamous cell carcinoma via inactivating the STAT3 and PI3K/AKT signaling pathways. Open Med (Wars) 2023; 18:20230627. [PMID: 36785765 PMCID: PMC9921916 DOI: 10.1515/med-2023-0627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 02/09/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common tumor in the world. Despite the rapid development of medical care, OSCC is also accompanied by high incidence and mortality every year. Therefore, it is still necessary to continuously develop new methods or find new targets to treat OSCC. Previous research showed that scavenger receptor class A member 5 (SCARA5) was one of the potential biomarkers of OSCC, and its expression is significantly low in OSCC. This study aimed to explore the role and related molecular mechanisms of SCARA5 in OSCC. In this study, we found that the SCARA5 expression was lower in CAL-27 and SCC-9 cells than that in human normal oral epithelial keratinocytes. SCARA5 overexpression significantly inhibited cell proliferation and induced apoptosis of CAL-27 and SCC-9 cells. In addition, SCARA5 repressed OSCC cell epithelial-mesenchymal transformation (EMT), evidenced by increased E-cadherin expression and reduced N-cadherin expression. Finally, we found that SCARA5 could suppress STAT3, PI3K, and AKT phosphorylation. Therefore, SCARA5 was related to STAT3 and PI3K/AKT signaling pathways in OSCC. In conclusion, SCARA5 inhibited the proliferation and EMT and induced the apoptosis of OSCC cells through the inhibition of STAT3 and PI3K/AKT signaling pathways, thereby exerting a tumor suppressor effect.
Collapse
Affiliation(s)
- Juan Huang
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Chunhua Lv
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Baoyu Zhao
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Zhongqian Ji
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Zhenran Gao
- Department of Stomatology, Taizhou People’s Hospital, No. 366 Taihu Road, Tauzhou225300, China
| |
Collapse
|
7
|
Ni Q, Li X, Huang H, Ge Z. Decreased expression of SCARA5 predicts a poor prognosis in melanoma using bioinformatics analysis. Front Oncol 2023; 13:1015358. [PMID: 37035142 PMCID: PMC10079878 DOI: 10.3389/fonc.2023.1015358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Background It has been established that the scavenger receptor class A member 5 (SCARA5) functions as a tumor suppressor gene in various cancer types. To our knowledge, no comprehensive study has hitherto investigated the expression and function of SCARA5 in melanoma. This study aimed to determine the association between SCARA5 and melanoma. Methods Analysis of SCARA5 mRNA expression was performed using The Cancer Genome Atlas (TCGA) data sets. To evaluate the clinical significance of SCARA5, the clinical data of 93 patients with melanoma were collected. The role of SCARA5 expression in prognosis was also analyzed. In this study, survival was evaluated by Kaplan-Meier analysis and compared using the log-rank test. Univariate and multivariate Cox proportional hazard regression analyses were used to identify independent predictors. The Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and gene set enrichment analysis (GSEA) were used to perform gene set functional annotations. Protein-protein interaction (PPI) networks were constructed to illustrate gene-gene interactions. The Tumor IMmune Estimation Resource (TIMER) database was used to explore the association between SCARA5 and immune infiltration levels. Results The results showed that the SCARA5 mRNA expression in melanoma was significantly lower than in adjacent normal skin tissue (p < 0.001). Moreover, decreased expression of SCARA5 in melanoma correlated with the tumor, node, and metastasis (TNM) stage and recurrence (p < 0.05). The overall survival (OS) was significantly higher in melanoma with high SCARA5 expression compared with low SCARA5 expression (p < 0.001). During univariate analysis, SCARA5 expression, tumor (T) stage, node (N) stage, metastasis (M) stage, and recurrence correlated with OS (p < 0.05). Further multivariate Cox regression analysis showed that SCARA5 expression (p = 0.012) could be an independent prognostic factor for OS in cutaneous malignant melanoma. GSEA analysis showed that SCARA5 was significantly enriched in various pathways, such as response to developmental biology and response to antimicrobial peptides. Correlation analysis showed a positive correlation with CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (p < 0.05), and a negative correlation with tumor purity (p < 0.05). Conclusion SCARA5 has significant potential as a prognostic biomarker and as a promising therapeutic target in melanoma. Furthermore, SCARA5 expression in melanoma is related to the level of immune infiltration.
Collapse
Affiliation(s)
- Qinggan Ni
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Burns and Plastic Surgery, Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng, China
| | - Xia Li
- Department of General Medicine, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zili Ge
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Zili Ge,
| |
Collapse
|
8
|
Mushtaq Z, Pani Prasad K, Jeena K, Rajendran K, Martina P, Gireesh Babu P. Class a scavenger receptor-A5 gene in Cirrhinus mrigala: Cloning, characterisation and expression patterns in response to bacterial infection. Gene X 2023; 848:146897. [DOI: 10.1016/j.gene.2022.146897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022] Open
|
9
|
Han Y, Qian X, Xu T, Shi Y. Carcinoma-associated fibroblasts release microRNA-331-3p containing extracellular vesicles to exacerbate the development of pancreatic cancer via the SCARA5-FAK axis. Cancer Biol Ther 2022; 23:378-392. [PMID: 35510828 PMCID: PMC9090287 DOI: 10.1080/15384047.2022.2041961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
microRNA-331-3p (miR-331-3p) has been displayed as an oncogene in pancreatic cancer (PC). The current research set out to elucidate how miR-331-3p in carcinoma-associated fibroblasts (CAFs)-derived extracellular vesicles (EVs) facilitated the tumorigenesis in PC. First, a dual-luciferase reporter assay was adopted to investigate the relationship between miR-331-3p and SCARA5. In addition, EVs were isolated normal fibroblasts and CAFs, and these isolated EVs were co-cultured with PC cells. Cell proliferative and migrating/invasive potentials were further evaluated with the help of a CCK-8 and Transwell assays, respectively. Gain- and loss-of-function assays were also implemented to assess the role of miR-331-3p, SCARA5, and FAK pathway in PC cells. Lastly, xenograft nude mice were established to investigate the role of miR-331-3p in vivo. miR-331-3p negatively targeted SCARA5 and was highly expressed in CAFs-derived EVs, which accelerated the proliferative, migrating, and invasive potentials of PC cells. Meanwhile, over-expression of miR-331-3p enhanced the proliferative, migrating, and invasive properties of PC cells and promoted tumor growth in vivo by manipulating SCARA5/FAK axis, whereas SCARA5 countered the oncogenic effects of miR-331-3p. Overall, miR-331-3p in CAFs-derived EVs inhibits SCARA5 expression and activates the FAK pathway, thereby augmenting the progression of PC. Our study provides a potential therapeutic target for the treatment of PC.
Collapse
Affiliation(s)
- Yadong Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou , China
| | - Xu Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Teng Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yang Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Liu Y, Xiong R, Xiao T, Xiong L, Wu J, Li J, Feng G, Song G, Liu K. SCARA5 induced ferroptosis to effect ESCC proliferation and metastasis by combining with Ferritin light chain. BMC Cancer 2022; 22:1304. [PMID: 36513999 PMCID: PMC9746006 DOI: 10.1186/s12885-022-10414-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) remains one of the most lethal cancers worldwide accompany with an extremely poor prognosis. Therefore, this study aims to screen for new molecules affecting ESCC and explore their mechanisms of action to provide ideas for targeted therapies for ESCC. METHODS Firstly, we screened out the membrane protein SCARA5 by high-throughput sequencing of the ESCC patient tissues, and RT-qPCR and WB were used to verify the differential expression of SCARA5 in esophageal cell lines, and IHC analyzed the expression localization of SCARA5 in ESCC tissue. Then, flow cytometry, wound healing assay, Transwell assay and CCK-8 assay were used to explore the effects of SCARA5 on cell cycle, migration and invasion as well as cell proliferation activity of esophageal squamous carcinoma cells. Meanwhile, transmission electron microscopy was used to detect changes in cellular mitochondrial morphology, and flow cytometry were used to detect changes in intracellular reactive oxygen metabolism, and immunofluorescence and flow cytometry were used to detect changes in intracellular Fe2+. Mechanistically, co-immunoprecipitation was used to detect whether SCARA5 binds to ferritin light chain, and ferroptosis-related protein expression was detected by WB. Finally, the tumor xenograft model was applied to validation the role of SCARA5 tumor growth inhibition in vivo. RESULTS We found that SCARA5 was aberrantly decreased in ESCC tissues and cell lines. Furthermore, we confirmed that SCARA5 suppressed the cell cycle, metastasis and invasion of ESCC cells. Meanwhile, we also found that overexpression of SCARA5 caused changes in mitochondrial morphology, accumulation of intracellular reactive oxygen species and increased intracellular Fe2+ in ESCC cells, which induced ferroptosis in ESCC cells. Mechanically, we validated that SCARA5 combined with ferritin light chain and increased intracellular Fe2+. As well as, overexpression SCARA5 induced ferroptosis by increasing ferritin light chain in nude mice subcutaneous tumors and inhibited the growth of nude mice subcutaneous tumors. CONCLUSION Collectively, our findings demonstrated that SCARA5 suppressed the proliferation and metastasis of ESCC by triggering ferroptosis through combining with ferritin light chain.
Collapse
Affiliation(s)
- Yanqun Liu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
- Department of Cell Biology and Genetics, North Sichuan Medical College, Nanchong, 637100, China
- Department of Laboratory Medicine, Sichuan Chengdu Chengfei Hospital, Chengdu, 610092, China
| | - Rong Xiong
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
| | - Ting Xiao
- Department of Cell Biology and Genetics, North Sichuan Medical College, Nanchong, 637100, China
| | - Li Xiong
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
| | - Jialin Wu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
- Department of Cell Biology and Genetics, North Sichuan Medical College, Nanchong, 637100, China
| | - Junfeng Li
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
| | - Guiqin Song
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China.
- Department of Cell Biology and Genetics, North Sichuan Medical College, Nanchong, 637100, China.
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China.
| |
Collapse
|
11
|
Highly Expressing SCARA5 Promotes Proliferation and Migration of Esophageal Squamous Cell Carcinoma. J Immunol Res 2022; 2022:2555647. [PMID: 35755171 PMCID: PMC9232322 DOI: 10.1155/2022/2555647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background Thrombospondin type 1 domain-containing 7A (THSD7A) was reported to play a procancer role in esophageal squamous cell carcinoma (ESCC). The aim of the study was to screen the downstream functional genes of THSD7A and explore their functions in ESCC, based on the reported research into THSD7A function and on gene microarrays. Methods We adopted quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Celigo high-content screening (HCS) technology to screen the downstream genes of THSD7A. The expression level of target genes was examined by PCR, western blot, and immunohistochemistry (IHC). The effects of these target genes on ESCC malignant biological behavior were performed in vivo and in vitro. The Kaplan-Meier (K-M) survival analysis and Cox regression were used to analyze the prognostic significance of target genes in ESCC patients. Experiments in the literature on liver cancer (LC) were repeated to verify the functions of these genes in different tumors. We further explored the cancer-promoting mechanism of target genes in ESCC by sequencing of the genes' exons. Results Scavenger receptor class A member 5 (SCARA5) was proved to be the downstream driving gene of THSD7A. SCARA5 promoted cell proliferation and migration but inhibited apoptosis in ESCC. IHC results confirmed that SCARA5 expression in ESCC exceeded that in normal tissues. The K-M survival analysis indicated that SCARA5 expression quantity was not related to prognosis, but tumor volume and T classification were both the independent prognostic factors. Repetition of experiments in LC in the literature confirmed that SCARA5 had exactly opposite functions in EC and LC. Conclusion SCARA5 was related to the development and occurrence of ESCC. Our findings suggested that it was a potentially diagnostic individualized therapeutic target for ESCC in the future and that its application could possibly be combined with that of upstream THSD7A gene.
Collapse
|
12
|
Li K, Li S, Zhang H, Lei D, Lo WLA, Ding M. Computational Analysis of the Immune Infiltration Pattern and Candidate Diagnostic Biomarkers in Lumbar Disc Herniation. Front Mol Neurosci 2022; 15:846554. [PMID: 35531067 PMCID: PMC9069112 DOI: 10.3389/fnmol.2022.846554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Lumbar disc herniation (LDH) is a musculoskeletal disease that contributes to low back pain, sciatica, and movement disorder. Existing studies have suggested that the immune environment factors are the primary contributions to LDH. However, its etiology remains unknown. We sought to identify the potential diagnostic biomarkers and analyze the immune infiltration pattern in LDH. Methods The whole-blood gene expression level profiles of GSE124272 and GSE150408 were downloaded from the Gene Expression Omnibus (GEO) database, including that of 25 patients with LDH and 25 healthy volunteers. After merging the two microarray datasets, Differentially Expressed Genes (DEGs) were screened, and a functional correlation analysis was performed. The Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression algorithm and support vector machine recursive feature elimination (SVM-RFE) were applied to identify diagnostic biomarkers by a cross-validation method. Then, the GSE42611 dataset was used as a validation dataset to detect the expression level of these diagnostic biomarkers in the nucleus pulposus and evaluate their accuracy. The hub genes in the network were identified by the CIBERSORT tool and the Weighted Gene Coexpression Network Analysis (WGCNA). A Spearman correlation analysis between diagnostic markers and infiltrating immune cells was conducted to further illustrate the molecular immune mechanism of LDH. Results The azurophil granule and the systemic lupus erythematosus pathway were significantly different between the healthy group and the LDH group after gene enrichment analysis. The XLOC_l2_012836, lnc-FGD3-1, and scavenger receptor class A member 5 were correlated with the immune cell infiltration in various degrees. In addition, five hub genes that correlated with LDH were identified, including AQP9, SIRPB2, SLC16A3, LILRB3, and HSPA6. Conclusion The XLOC_l2_012836, lnc-FGD3-1, and SCARA5 might be adopted for the early diagnosis of LDH. The five identified hub genes might have similar pathological mechanisms that contribute to the degeneration of the lumbar disc. The identified hub genes and immune infiltrating pattern extend the knowledge on the potential functioning mechanisms, which offer guidance for the development of therapeutic targets of LDH.
Collapse
Affiliation(s)
- Kai Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shijue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haojie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Lei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Xu X, Tian K, Lou X, Du Y. Potential of Ferritin-Based Platforms for Tumor Immunotherapy. Molecules 2022; 27:2716. [PMID: 35566065 PMCID: PMC9104857 DOI: 10.3390/molecules27092716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Ferritin is an iron storage protein that plays a key role in iron homeostasis and cellular antioxidant activity. Ferritin has many advantages as a tumor immunotherapy platform, including a small particle size that allows for penetration into tumor-draining lymph nodes or tumor tissue, a unique structure consisting of 24 self-assembled subunits, cavities that can encapsulate drugs, natural targeting functions, and a modifiable outer surface. In this review, we summarize related research applying ferritin as a tumor immune vaccine or a nanocarrier for immunomodulator drugs based on different targeting mechanisms (including dendritic cells, tumor-associated macrophages, tumor-associated fibroblasts, and tumor cells). In addition, a ferritin-based tumor vaccine expected to protect against a wide range of coronaviruses by targeting multiple variants of SARS-CoV-2 has entered phase I clinical trials, and its efficacy is described in this review. Although ferritin is already on the road to transformation, there are still many difficulties to overcome. Therefore, three barriers (drug loading, modification sites, and animal models) are also discussed in this paper. Notwithstanding, the ferritin-based nanoplatform has great potential for tumor immunotherapy, with greater possibility of clinical transformation.
Collapse
Affiliation(s)
- Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (X.X.); (K.T.)
| | - Kewei Tian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (X.X.); (K.T.)
| | - Xuefang Lou
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Pircher T, Wackerhage H, Akova E, Böcker W, Aszodi A, Saller MM. Fusion of Normoxic- and Hypoxic-Preconditioned Myoblasts Leads to Increased Hypertrophy. Cells 2022; 11:cells11061059. [PMID: 35326510 PMCID: PMC8947054 DOI: 10.3390/cells11061059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/20/2022] Open
Abstract
Injuries, high altitude, and endurance exercise lead to hypoxic conditions in skeletal muscle and sometimes to hypoxia-induced local tissue damage. Thus, regenerative myoblasts/satellite cells are exposed to different levels and durations of partial oxygen pressure depending on the spatial distance from the blood vessels. To date, it is unclear how hypoxia affects myoblasts proliferation, differentiation, and particularly fusion with normoxic myoblasts. To study this, we investigated how 21% and 2% oxygen affects C2C12 myoblast morphology, proliferation, and myogenic differentiation and evaluated the fusion of normoxic- or hypoxic-preconditioned C2C12 cells in 21% or 2% oxygen in vitro. Out data show that the long-term hypoxic culture condition does not affect the proliferation of C2C12 cells but leads to rounder cells and reduced myotube formation when compared with myoblasts exposed to normoxia. However, when normoxic- and hypoxic-preconditioned myoblasts were differentiated together, the resultant myotubes were significantly larger than the control myotubes. Whole transcriptome sequencing analysis revealed several novel candidate genes that are differentially regulated during the differentiation under normoxia and hypoxia in mixed culture conditions and may thus be involved in the increase in myotube size. Taken together, oxygen-dependent adaption and interaction of myoblasts may represent a novel approach for the development of innovative therapeutic targets.
Collapse
Affiliation(s)
- Tamara Pircher
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Henning Wackerhage
- Faculty of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany;
| | - Elif Akova
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Wolfgang Böcker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Attila Aszodi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Maximilian M. Saller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
- Correspondence: ; Tel.: +49-89-4400-55486
| |
Collapse
|
15
|
Taban Q, Mumtaz PT, Masoodi KZ, Haq E, Ahmad SM. Scavenger receptors in host defense: from functional aspects to mode of action. Cell Commun Signal 2022; 20:2. [PMID: 34980167 PMCID: PMC8721182 DOI: 10.1186/s12964-021-00812-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/27/2021] [Indexed: 12/17/2022] Open
Abstract
Scavenger receptors belong to a superfamily of proteins that are structurally heterogeneous and encompass the miscellaneous group of transmembrane proteins and soluble secretory extracellular domain. They are functionally diverse as they are involved in various disorders and biological pathways and their major function in innate immunity and homeostasis. Numerous scavenger receptors have been discovered so far and are apportioned in various classes (A-L). Scavenger receptors are documented as pattern recognition receptors and known to act in coordination with other co-receptors such as Toll-like receptors in generating the immune responses against a repertoire of ligands such as microbial pathogens, non-self, intracellular and modified self-molecules through various diverse mechanisms like adhesion, endocytosis and phagocytosis etc. Unlike, most of the scavenger receptors discussed below have both membrane and soluble forms that participate in scavenging; the role of a potential scavenging receptor Angiotensin-Converting Enzyme-2 has also been discussed whereby only its soluble form might participate in preventing the pathogen entry and replication, unlike its membrane-bound form. This review majorly gives an insight on the functional aspect of scavenger receptors in host defence and describes their mode of action extensively in various immune pathways involved with each receptor type. Video abstract.
Collapse
Affiliation(s)
- Qamar Taban
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Shuhama, 190006, India.,Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Kashmir, India
| | | | - Khalid Z Masoodi
- Division of Plant Biotechnology, Transcriptomics Laboratory, SKUAST-K, Shalimar, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Shuhama, 190006, India.
| |
Collapse
|
16
|
PepFect14 Signaling and Transfection. Methods Mol Biol 2021. [PMID: 34766293 DOI: 10.1007/978-1-0716-1752-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
PepFect14 is a cell-penetrating peptide (CPP) derived from stearylated transportan-10 (strearil-TP10) with which it shares the stearic acid residue on C' terminus and the amino acid sequence except for lysines that in PepFect14 are substituted with ornithines. Being non-proteinogenic amino acids, ornithines make PepFect14 less sensitive to serum proteases and due to its positive charges the CPP can form complexes with negatively charged cargos, such as splice correcting oligonucleotides (SCOs), plasmid DNA (pDNA), and proteins. It has been reported that PepFect14/SCO complexes enter the cells mainly through endocytosis, in particular: macopinocitosys and caveolae-mediated endocytosis through the interaction with two receptors of the scavenger receptors class A family (SCARAs). PepFect14 and its complexes trigger the chaperone-mediated autophagy response involving the heat shock protein family (HSP70) whose inhibition leads to an increase of PepFect14 transfection efficacy. Exploiting the interaction between HSP70 and PepFect14 and their ability to form nanoparticle. HSP70 has been delivered in Bomirsky Hamster Melanoma cells (BHM) using PepFect14 of which a protocol is described at the end of this chapter.
Collapse
|
17
|
Li Y, Peng F, Tan X, Wang J, Xu Y. Tumor suppressive effect of scavenger receptor class A member 5 overexpression in colorectal cancer by regulating PI3K/AKT/mTOR pathway. Genes Genomics 2021; 43:1189-1198. [PMID: 34417976 PMCID: PMC8429172 DOI: 10.1007/s13258-021-01139-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
Background Colorectal cancer (CRC) exhibits high risks of morbidity and mortality. Objective To investigate the effect of scavenger receptor class A member 5 (SCRAR5) on CRC and its mechanism on modulation of cancer development. Methods The SCRAR5 expression in four kinds of CRC cell lines (SW620, SW480, HT29, and HCT116) was measured by quantitative PCR and western blotting, respectively. The effects of SCRAR5 abnormal expression on cell proliferation, apoptosis, and migration were analyzed by CCK-8 assay, EdU assay, colony-forming assay, flow cytometry assay, Transwell assay and wound healing assay, respectively. Meanwhile, the involvements of PI3K/AKT/mTOR pathway with the role of SCRAR5 were investigated by western blotting. Afterwards, the in vivo effects of SCRAR5 abnormal expression on CRC xenograft mice were finally investigated by evaluating tumor volume, apoptosis and Ki67 expression. Results SCRAR5 was lowly expressed in CRC cell lines, especially SW480 cells. Up-regulation of SCRAR5 significantly promoted cell apoptosis, reduced cell proliferation and migration in SW480 cells. Notably, SCRAR5 overexpression obviously inhibited the phosphorylation levels of PI3K, AKT, and mTOR. Reversely, SCRAR5 silence exhibited promoting effects on HT29 cells. Consistently, in vivo experiments also revealed that SCRAR5 overexpression remarkably suppressed tumor volume and Ki67 expression, as well as promoted cell apoptosis. Conclusions Overall, up-regulating of SCRAR5 obviously inhibited CRC tumor growth in vitro and in vivo, which might be related to PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yi Li
- Department of General Surgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, No. 116, South Changjiang Road, Tianyuan District, Zhuzhou, 412007, Hunan, China
| | - Feng Peng
- Department of General Surgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, No. 116, South Changjiang Road, Tianyuan District, Zhuzhou, 412007, Hunan, China
| | - Xiangyun Tan
- Department of General Surgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, No. 116, South Changjiang Road, Tianyuan District, Zhuzhou, 412007, Hunan, China
| | - Jin Wang
- Department of General Surgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, No. 116, South Changjiang Road, Tianyuan District, Zhuzhou, 412007, Hunan, China
| | - Yeqing Xu
- Department of General Surgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, No. 116, South Changjiang Road, Tianyuan District, Zhuzhou, 412007, Hunan, China.
| |
Collapse
|
18
|
Zhang H, Liu C, Wang X, Wang Y, Zheng J. SCARA5 inhibits gastric cancer progression via epithelial-mesenchymal transition suppression. J Cancer 2021; 12:2412-2421. [PMID: 33758617 PMCID: PMC7974898 DOI: 10.7150/jca.52426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/30/2021] [Indexed: 12/24/2022] Open
Abstract
Scavenger receptor class A member 5 (SCARA5) has been reported to be implicated in several types of cancer. However, its biological roles and mechanism of SCARA5 in gastric cancer (GC) have not been elucidated. In the present study, SCARA5 expression was found to be downregulated in GC which was associated with promoter methylation. The protein level of SCARA5 was negatively associated with aggressive clinicopathological characteristics, as well as poor prognosis. Moreover, SCARA5 overexpression markedly suppressed the growth, migration and invasion of GC cell lines in vitro. Furthermore, upregulation of SCARA5 inhibited gastric tumor growth and metastasis in a xenograft model. Mechanistic analysis revealed that SCARA5 suppressed the migration and invasion of GC cells via inhibiting epithelial-mesenchymal transition (EMT) and inactivating MMP-2 and MMP-9. Taken together, these results demonstrated that SCARA5 might play vital roles in the GC genesis and progression and could serve as a potential biomarker for diagnosis and therapeutic target of GC.
Collapse
Affiliation(s)
- Hangyu Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Shandong Province, China
| | - Changgang Liu
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Shandong Province, China
| | - Xinbo Wang
- Department of Surgical Oncology, Weifang People's Hospital, Weifang Medical University, Shandong Province, China
| | - Yongfang Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Shandong Province, China
| | - Jie Zheng
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Shandong Province, China.,Key Lab of Neurological Disease and Regeneration & Repair, Weifang Medical University, Shandong Province, China
| |
Collapse
|
19
|
Wang J, Wang S, Chen L, Tan J. SCARA5 suppresses the proliferation and migration, and promotes the apoptosis of human retinoblastoma cells by inhibiting the PI3K/AKT pathway. Mol Med Rep 2021; 23:202. [PMID: 33495818 PMCID: PMC7821225 DOI: 10.3892/mmr.2021.11841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Retinoblastoma (RB) is the most common ocular malignancy that occurs during childhood. Scavenger receptor class A member 5 (SCARA5) is considered to function as an anti-oncogene in several types of malignant tumor. The present study investigated the functional role and underlying mechanism of SCARA5 in human RB cells. Reverse transcription-quantitative PCR and western blotting were used to detect the relative expression levels of SCARA5 in four human RB cell lines. In addition, transfection was performed to either knockdown or induce overexpression of SCARA5 in human RB Y79 cells. The proliferation, migration and apoptosis of RB cells was then measured by Cell Counting Kit 8 assay, 5-ethynyl-2′-deoxyuridine assay, clone formation assay, Transwell assay, Hoechst staining and TUNEL staining, respectively. Western blotting was performed to detect changes in the expression levels of key proteins involved in the PI3K/AKT and apoptotic pathways. The present study revealed that SCARA5 was expressed at lower levels in four tumorigenic human RB cell lines compared with in a human retinal pigment non-tumorigenic cell line. Functional analysis demonstrated that overexpression of SCARA5 decreased the proliferation and migration, and promoted the apoptosis of human RB cells in vitro, whereas in vivo experiments revealed a decrease in RB progression following SCARA5 overexpression. In addition, overexpression of SCARA5 inhibited phosphorylated (p)-PI3K and p-AKT expression, and knockdown of SCARA5 increased p-PI3K and p-AKT expression; however, no changes in total PI3K and AKT expression were observed. Bcl-2 exhibited similar changes in expression to those displayed by p-PI3K and p-AKT, whereas Bax and cleaved caspase-3 exhibited trends in expression that were the opposite to those shown by p-PI3K and p-AKT. In conclusion, the present results demonstrated that SCARA5 could inhibit the proliferation and promote the apoptosis of RB cell lines by suppressing the PI3K/AKT signaling pathway, thus suggesting a novel strategy for treating RB.
Collapse
Affiliation(s)
- Jinwei Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Sha Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lu Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jia Tan
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
20
|
Wang F, Cao X, Yin L, Wang Q, He Z. Identification of SCARA5 Gene as a Potential Immune-Related Biomarker for Triple-Negative Breast Cancer by Integrated Analysis. DNA Cell Biol 2020; 39:1813-1824. [PMID: 32816580 DOI: 10.1089/dna.2020.5449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) refers to breast cancer without significant expression of estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2. We sought to identify the hub genes and find the potential progression mechanism of TNBC as well as immunotherapeutic targets. First, we screened the overlapped hub genes of Immune and Stromal, and the tumor mutation burden gene sets, as well as the The Cancer Genome Atlas (TCGA)-TNBC data set. Among these hub genes, we performed gene set enrichment analysis (GSEA) and gene set variation analysis analyses to recognize and evaluate the hub genes. Moreover, immune cell infiltration was evaluated by the CIBERSORT algorithm and single-sample GSEA. In addition, the expression and methylation of scavenger receptor class A member 5 (SCARA5) in TNBC were verified by quantitative PCR and methylation-specific PCR. Also, MTT and transwell assays were used to assess the biological function of SCARA5 in TNBC. SCARA5 and CMA1 were listed, and they mainly participated in cancer-related signaling pathways and immune-related signaling pathways. Interestingly, SCARA5 was closely associated with tumor purity and immune cell infiltration. Moreover, we found that SCARA5 was significantly downregulated and hypermethylation was in the promoter of SCARA5 in TNBC tissues. Our study showed the role of SCARA5 in proliferation and migration of TNBC, and suggested that SCARA5 can potentially serve as a candidate immunotherapy target for TNBC.
Collapse
Affiliation(s)
- Feiran Wang
- Department of Breast Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinyu Cao
- Department of Ultrasonography and Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Lei Yin
- Department of Breast Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Quhui Wang
- Department of Breast Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhixian He
- Department of Breast Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
21
|
Wu J, He J, Tian X, Li H, Wen Y, Shao Q, Cheng C, Wang G, Sun X. Upregulation of miRNA-9-5p Promotes Angiogenesis after Traumatic Brain Injury by Inhibiting Ptch-1. Neuroscience 2020; 440:160-174. [PMID: 32502567 DOI: 10.1016/j.neuroscience.2020.05.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
MicroRNA-9-5p (miRNA-9-5p) is an important regulator of angiogenesis in many pathological states. However, the effect of miRNA-9-5p on angiogenesis after traumatic brain injury (TBI) has not been elucidated. In this study, a controlled cortical impact (CCI) model was used to induce TBI in Sprague-Dawley rats, and an oxygen glucose deprivation (OGD) model was used to mimic the pathological state in vitro. Brain microvascular endothelial cells (BMECs) were extracted from immature rats. The results showed that the level of miRNA-9-5p was significantly increased in the traumatic foci after TBI, and the upregulation of miRNA9-5p promoted the recovery of neurological function. Moreover, the upregulation of miRNA-9-5p with miRNA agomir significantly increased the density of the microvascular and neurons around the traumatic foci in rats after TBI. The results of the in vitro experiments confirmed that the upregulation of miRNA-9-5p with a miRNA mimic improved cellular viability and alleviated cellular apoptosis. Dual luciferase reporter assay validated that miRNA-9-5p was a posttranscriptional modulator of Ptch-1. Activation of the Hedgehog pathway by increasing the level of miRNA-9-5p promoted the migration and tube formation of BMECs in vitro. In addition, we found that the upregulation of miRNA-9-5p activated the Hedgehog pathway and increased the phosphorylation of AKT, which promoted the expression of cyclin D1, MMP-9 and VEGF in BMECs. All these results indicate that the upregulation of miRNA-9-5p promotes angiogenesis and improves neurological functional recovery after TBI, mainly by activating the Hedgehog pathway. MiRNA-9-5p may be a potential new therapeutic target for TBI.
Collapse
Affiliation(s)
- Jingchuan Wu
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China; Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junchi He
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaocui Tian
- College of Pharmacy, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, District of Yuzhong, Chongqing 400016, China
| | - Hui Li
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Wen
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China
| | - Qiang Shao
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China
| | - Chongjie Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Guangyu Wang
- Department of Neurosurgery, Qi lu Children's Hospital of Shandong University, Jinan, Shandong 250022, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
22
|
Li H, Zhang W, Ding L, Li XW, Wu Y, Tang JH. Prussian blue-modified ferritin nanoparticles for effective tumor chemo-photothermal combination therapy via enhancing reactive oxygen species production. J Biomater Appl 2019; 33:1202-1213. [PMID: 30714472 DOI: 10.1177/0885328218825175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To realize the photothermal therapy ability of Prussian blue-modified ferritin nanoparticles (PB-Ft NPs) and its synergistic effect with chemotherapy, PB-Ft NPs were synthesized by a simple surface double decomposition reaction. Mean sizes of ferritin and PB-Ft NPs were 10.4 nm and 12.6 nm, respectively. The obtained PB-Ft NPs were verified to have both the photothermal conversion ability of Prussian blue and the morphology of ferritin. The in vitro and in vivo photothermal therapy results confirm PB-Ft NPs can successfully inhibit the growth of murine breast cancer cell line (4T1) without any obvious side effect. Moreover, taking use of the peroxidase-like activity of PB-Ft NPs, the photothermal therapy effect of PB-Ft NPs effectively improved the curative effect of gemcitabine (GEM) via enhancing reactive oxygen species production. The obtained PB-Ft NPs can be served as a useful and safe photothermal therapy agent in breast cancer. Moreover, PB-Ft NPs-assisted photothermal therapy can be applied as an adjunctive therapy with various established cancer treatments such as chemotherapy.
Collapse
Affiliation(s)
- Hao Li
- 1 School of Clinical Medicine, Xuzhou Medical University, Xuzhou, PR China.,2 Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wei Zhang
- 2 Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Li Ding
- 2 Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xing-Wang Li
- 1 School of Clinical Medicine, Xuzhou Medical University, Xuzhou, PR China
| | - Yang Wu
- 3 Research Center of Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, PR China
| | - Jin-Hai Tang
- 1 School of Clinical Medicine, Xuzhou Medical University, Xuzhou, PR China.,2 Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
23
|
Li C, Tian M, Zhang L, Fu Q, Song L, Chen F, Yang N. The characterization and initial immune functional analysis of SCARA5 in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2018; 81:242-249. [PMID: 30006044 DOI: 10.1016/j.fsi.2018.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Scavenger receptors (SRs) are a group of membrane-bound receptors that could bind to a variety of ligands including endogenous proteins and pathogens. SRs have been recognized to play vital roles in innate immune response against pathogen infection in both vertebrates and invertebrates. In this regard, one SmSCARA5 gene was captured in turbot (Scophthalmus maximus). The full-length SmSCARA5 transcript contains an open reading frame (ORF) of 1494 bp. SmSCARA55 showed both the highest identity and similarity to half-smooth tongue sole (Cynoglossus semilaevis), and a high degree of conservation of genomic structure to the teleost species. In addition, the phylogenetic tree analysis showed SmSCARA5 had the closest relationship to half-smooth tongue sole, the syntenic analysis revealed a relatively conserved synteny pattern of SmSCARA5 to other species. Moreover, SmSCARA5 was ubiquitously expressed in all the examined tissues, with the highest expression level in brain and the lowest expression level in blood. And it was significantly down-regulated in intestine following Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae challenge. Finally, the recombinant SmSCARA5 showed the highest affinity to lipopolysaccharide (LPS), followed by peptidoglycan (PGN) and lipoteichoic acid (LTA), as well as the strong inhibition effect on the growth of V. anguillarum. Taken together, our results suggested SmSCARA5 plays vital roles in innate immune response in teleost, further studies should be carried out to better understand its regulatory mechanism for innate inflammation response in teleost.
Collapse
Affiliation(s)
- Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, People's Republic of China
| | - Fei Chen
- Weifang Animal Health Supervision Institute, Weifang, 261031, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
24
|
Ulker D, Ersoy YE, Gucin Z, Muslumanoglu M, Buyru N. Downregulation of SCARA5 may contribute to breast cancer via promoter hypermethylation. Gene 2018; 673:102-106. [PMID: 29908284 DOI: 10.1016/j.gene.2018.06.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 01/04/2023]
Abstract
Breast cancer is the most common malignant tumor in women worldwide. Breast tumors mostly exhibit aberrant gene expression and DNA hypermethylation patterns that predispose the disease. Understanding the genetic and epigenetic factors that contribute to breast cancer development is important to identify novel diagnostic and prognostic markers. SCARA5: Scavenger receptor class A, member 5; is a member of the scavenger receptor family located on chromosome 8p21 which is a frequently deleted region in human cancers. SCARA5 has been identified as a candidate tumor suppressor gene in various kinds of cancer. However, its role in breast cancer remains unclear. Therefore, in the present study SCARA5 expression levels in breast tumors and matched noncancerous tissue samples from 77 patients were analyzed by qRT-PCR and the expression levels were correlated with the methylation level of SCARA5 gene promoter. We found that SCARA5 expression was significantly decreased in tumors (92.2%) compared to non-cancerous tissue samples and this down-regulation was associated with hypermethylation of the promoter (p < 0.001). A significant correlation was also detected between SCARA5 expression and the histological grade of the breast tumors (p = 0.017). Taken together, our results indicate that SCARA5 may play an important role in tumorigenesis of breast cancer via promoter methylation.
Collapse
Affiliation(s)
- Damla Ulker
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Biology, Istanbul, Turkey
| | - Yeliz Emine Ersoy
- Bezmialem Vakif University, Medical Faculty, Department of General Surgery, Istanbul, Turkey
| | - Zuhal Gucin
- Bezmialem Vakıf University, Medical Faculty, Department of Medical Pathology, Istanbul, Turkey
| | - Mahmut Muslumanoglu
- Istanbul University, Capa Medical Faculty, Department of General Surgery, Istanbul, Turkey
| | - Nur Buyru
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Biology, Istanbul, Turkey.
| |
Collapse
|
25
|
Liu Y, Tan YR, Sun WW, Ju WT, Fu Y, Wang LZ, Li J, Zhang CP, Zhang ZY, Zhong LP. Identification of SCARA5 as a Potential Biomarker for Oral Squamous Cell Carcinoma using MALDI-TOF-MS Analysis. Proteomics Clin Appl 2018; 12:e1700180. [PMID: 29461673 DOI: 10.1002/prca.201700180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/25/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Liu
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yi-ran Tan
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Wen-wen Sun
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Wu-tong Ju
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yong Fu
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Li-zhen Wang
- Department of Oral Pathology, Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Jiang Li
- Department of Oral Pathology, Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Chen-ping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zhi-yuan Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Lai-ping Zhong
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
26
|
Li M, Sun Q, Wang X. Transcriptional landscape of human cancers. Oncotarget 2018; 8:34534-34551. [PMID: 28427185 PMCID: PMC5470989 DOI: 10.18632/oncotarget.15837] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
The homogeneity and heterogeneity in somatic mutations, copy number alterations and methylation across different cancer types have been extensively explored. However, the related exploration based on transcriptome data is lacking. In this study we explored gene expression profiles across 33 human cancer types using The Cancer Genome Atlas (TCGA) data. We identified consistently upregulated genes (such as E2F1, EZH2, FOXM1, MYBL2, PLK1, TTK, AURKA/B and BUB1) and consistently downregulated genes (such as SCARA5, MYOM1, NKAPL, PEG3, USP2, SLC5A7 and HMGCLL1) across various cancers. The dysregulation of these genes is likely to be associated with poor clinical outcomes in cancer. The dysregulated pathways commonly in cancers include cell cycle, DNA replication, repair, and recombination, Notch signaling, p53 signaling, Wnt signaling, TGFβ signaling, immune response etc. We also identified genes consistently upregulated or downregulated in highly-advanced cancers compared to lowly-advanced cancers. The highly (low) expressed genes in highly-advanced cancers are likely to have higher (lower) expression levels in cancers than in normal tissue, indicating that common gene expression perturbations drive cancer initiation and cancer progression. In addition, we identified a substantial number of genes exclusively dysregulated in a single cancer type or inconsistently dysregulated in different cancer types, demonstrating the intertumor heterogeneity. More importantly, we found a number of genes commonly dysregulated in various cancers such as PLP1, MYOM1, NKAPL and USP2 which were investigated in few cancer related studies, and thus represent our novel findings. Our study provides comprehensive portraits of transcriptional landscape of human cancers.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
27
|
Lee H, Lee YJ, Choi H, Seok JW, Yoon BK, Kim D, Han JY, Lee Y, Kim HJ, Kim JW. SCARA5 plays a critical role in the commitment of mesenchymal stem cells to adipogenesis. Sci Rep 2017; 7:14833. [PMID: 29093466 PMCID: PMC5665884 DOI: 10.1038/s41598-017-12512-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells have the capacity to give rise to multiple cell types, such as adipocytes, osteoblasts, chondrocytes, and myocytes. However, the molecular events responsible for the lineage specification and differentiation of mesenchymal stem cells remain unclear. Using gene expression profile studies, we determined that Scavenger receptor class A, member 5 (SCARA5) is a novel mediator of adipocyte commitment. SCARA5 was expressed at a higher level in committed A33 preadipocyte cells compared to C3H10T1/2 pluripotent stem cells. Gain- and loss-of-function studies likewise revealed that SCARA5 acts as a mediator of adipocyte commitment and differentiation in both A33 and C3H10T1/2 cells. RNAi-mediated knockdown of SCARA5 in A33 cells markedly inhibited the adipogenic potential, whereas overexpression of SCARA5 enhanced adipocyte differentiation in C3H10T1/2 cells. We also demonstrated that the focal adhesion kinase (FAK) and ERK signaling pathways is associated with the SCARA5-mediated response, thereby modulating adipocyte lineage commitment and adipocyte differentiation. Additionally, glucocorticoids induced the expression of SCARA5 in differentiating adipocytes through glucocorticoids response elements (GRE) in the SCARA5 promoter. Taken together, our study demonstrates that SCARA5 is a positive regulator in adipocyte lineage commitment and early adipogenesis in mesenchymal stem cells.
Collapse
Affiliation(s)
- Hyemin Lee
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Department of Integrated OMICS for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 120-749, Korea
| | - Yoo Jeong Lee
- Division of Metabolic Disease, Center for Biomedical Sciences, National Institutes of Health, Cheongju-si, Chungbuk, 28159, Korea
| | - Hyeonjin Choi
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | - Jo Woon Seok
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea
| | - Daeun Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea
| | - Ji Yoon Han
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea
| | - Yoseob Lee
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea
| | - Hyo Jung Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea. .,Department of Integrated OMICS for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 120-749, Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea.
| |
Collapse
|
28
|
Sun G, Zhang C, Feng M, Liu W, Xie H, Qin Q, Zhao E, Wan L. Methylation analysis of p16, SLIT2, SCARA5, and Runx3 genes in hepatocellular carcinoma. Medicine (Baltimore) 2017; 96:e8279. [PMID: 29019900 PMCID: PMC5662323 DOI: 10.1097/md.0000000000008279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study is to investigate the methylation status of multiple tumor suppressor 1 (p16), secreted glycoprotein 2 (SLIT2), scavenger receptor class A, member 5 putative (SCARA5), and human runt-related transcription factor 3 (Runx3) genes in the peripheral blood of hepatocellular carcinoma (HCC).This is a case-control study. The peripheral blood samples were collected from 25 HCC patients, 25 patients with high risk of HCC (defined as "internal control group"), and 25 healthy individuals (defined as "external control group"), respectively. Then the methylation status of p16, SLIT2, SCARA5, and Runx3 genes in the blood samples were analyzed by pyrosequencing. The relationship between the methylation and the clinical features of HCC patients were evaluated.The methylation levels in the 7 CpG loci of p16 gene in HCC patients were low and without statistically significant difference (P > .05) compared to the control groups. Although the methylation levels of CpG3 and CpG4 in SLIT2 gene loci were higher than those of the control groups, there was no statistically significant difference (P > .05). However, the methylation rate of CpG2 locus in SCARA5 gene in HCC patients was significantly higher (P < .05). And the methylation rates of CpG1, CpG2, CpG3, CpG4, CpG5, and CpG8 in Runx3 gene in HCC patients were significantly different to that of control groups (P < .05). We also have analyzed the correlations between the CpG islands methylation of Runx3 or SCARA5 genes and the age, gender, hepatitis B, liver cirrhosis, alpha fetal protein, or hepatitis B surface antigen (HBsAg) of the HCC patients, which all showed no significant correlations (P > .05).The methylation status of SCARA5 and Runx3 genes are abnormal in HCC patients, which may further be used as molecular markers for early auxiliary diagnosis of liver cancer.
Collapse
Affiliation(s)
- Gaofeng Sun
- School of Public Health, Xinjiang Medical University
- Department of Chronic and Non-communicable Diseases Control, City Center for Disease Control and Prevention
| | - Chen Zhang
- The Fifth Affiliated Hospital of Xinjiang Medical University
| | - Min Feng
- Department of Inspection, Affiliated Tumor Hospital of Xinjiang Medical University
| | - Wensheng Liu
- Urumqi Health and Family Commission, Urumqi, China
| | - Huifang Xie
- School of Public Health, Xinjiang Medical University
| | - Qin Qin
- Department of Chronic and Non-communicable Diseases Control, City Center for Disease Control and Prevention
| | - E. Zhao
- Department of Chronic and Non-communicable Diseases Control, City Center for Disease Control and Prevention
| | - Li Wan
- Department of Chronic and Non-communicable Diseases Control, City Center for Disease Control and Prevention
| |
Collapse
|
29
|
You K, Su F, Liu L, Lv X, Zhang J, Zhang Y, Liu B. SCARA5 plays a critical role in the progression and metastasis of breast cancer by inactivating the ERK1/2, STAT3, and AKT signaling pathways. Mol Cell Biochem 2017; 435:47-58. [PMID: 28497372 DOI: 10.1007/s11010-017-3055-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/03/2017] [Indexed: 01/26/2023]
Abstract
Scavenger receptor class A member 5 (SCARA5) is a candidate anti-oncogene in several malignancies. However, whether SCARA5 is a suppressor gene in breast cancer and its role in breast cancer cell growth and metastasis remain to be determined. Here, we investigated the biological functions of SCARA5 in the progression and metastasis of breast cancer and explored the underlying mechanisms. A total of 65 breast cancer patients and three cell lines (ZR-75-30, MCF-7, and MDA-MB-231) were analyzed in the study. RT-qPCR, western blotting, and immunohistochemistry were used to detect mRNA and protein expression, and lymphatic vessel density (LVD) and microvessel density (MVD). MTT, colony formation, TUNEL assays, invasion assays and Transwell assays, and flow cytometric analyses were used to evaluate the effect of SCARA5 on breast cancer cells. SCARA5 was significantly downregulated in breast cancer tissues and cells and significantly correlated with tumor size, histological grade, lymph node metastasis, pTNM stage, VEGF-A, VEGF-C, LVD, and MVD. SCARA5 overexpression significantly suppressed cell proliferation, colony formation, invasion, and migration, and induced G0/G1 arrest and apoptosis of ZR-75-30 cells. SCARA5 decreased the phosphorylation of ERK1/2, AKT, and STAT3, and downregulated downstream signaling effectors, including MMP-2, 3, and 9, VEGF-A, VEGF-C, Bax, Cyclin B1, Cyclin D1, and Cyclin E1, and upregulated E-cadherin, Bcl-2, and caspase 3. SCARA5 is associated with multiple signaling pathways and plays a critical role in the progression and metastasis of breast cancer. The present results provide the first evidence that SCARA5 inhibits lymphangiogenesis by downregulating VEGF-C, thereby inhibiting breast cancer lymphatic metastasis.
Collapse
Affiliation(s)
- Kai You
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Lihua Liu
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Xiaohong Lv
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Jianguo Zhang
- Department of General Surgery, The Second Clinical Hospital, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yafang Zhang
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China.
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
30
|
Sun H, Song J, Weng C, Xu J, Huang M, Huang Q, Sun R, Xiao W, Sun C. Association of decreased expression of the macrophage scavenger receptor MARCO with tumor progression and poor prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol 2017; 32:1107-1114. [PMID: 27806438 DOI: 10.1111/jgh.13633] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/15/2016] [Accepted: 10/23/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM The macrophage receptor with collagenous structure (MARCO) belongs to the scavenger receptor family; however, few studies have assessed their potentials in modulating inflammatory signaling other than the typical function of pattern recognition and phagocytic clearance. Interestingly, RNA-Seq analyses of hepatocellular carcinoma (HCC) have identified MARCO as one of the top 30 differentially expressed genes between cancerous and adjacent noncancerous tissues. However, no research has been performed to study MARCO in liver cancer. METHODS MARCO protein expression was evaluated by immunostaining liver tissue specimens collected from 88 HCC patients, 10 liver cirrhosis patients, 6 metastatic patients, and 5 healthy controls. All sections were reviewed by blinded observers followed by the interpretation of integral optical density per area as a measure of protein intensity. RESULTS We observed significantly decreased expression of MARCO in intratumoral tissues of HCC compared with expression in peritumoral tissues. The expression of MARCO declined progressively as the disease condition was aggravated, with the highest expression found in healthy controls and the lowest found in patients with HCC metastasis. Furthermore, MARCO expression decreased along with tumor progression. MARCO+ cells co-localized with CD68+ cells, indicating predominant expression on macrophages. The overall survival rate was significantly increased in patients with high intratumoral MARCO expression compared with that of patients with low intratumoral MARCO expression. CONCLUSIONS Our study is the first to demonstrate an association between MARCO expression and the progression and prognosis of HCC.
Collapse
Affiliation(s)
- Haoyu Sun
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiaxi Song
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Chenchun Weng
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Mei Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Qiang Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Rui Sun
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Weihua Xiao
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Cheng Sun
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
31
|
Zhang Y, Wei Y, Jiang B, Chen L, Bai H, Zhu X, Li X, Zhang H, Yang Q, Ma J, Xu Y, Ben J, Christiani DC, Chen Q. Scavenger Receptor A1 Prevents Metastasis of Non-Small Cell Lung Cancer via Suppression of Macrophage Serum Amyloid A1. Cancer Res 2017; 77:1586-1598. [PMID: 28202524 DOI: 10.1158/0008-5472.can-16-1569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022]
Abstract
Mechanisms of cross-talk between tumor cells and tumor-associated macrophages (TAM), which drive metastasis, are not fully understood. Scavenger receptor A1 (SR-A1) expressed primarily in macrophages has been associated with lung tumorigenesis. In this study, we used population genetics, transcriptomics, and functional analyses to uncover how SR-A1 is involved in lung cancer and its prognosis. SR-A1 genetic variants were investigated for possible association with survival of advanced stage NSCLC patients in the Harvard Lung Cancer Study cohort. Two SNPs (rs17484273, rs1484751) in SR-A1 were associated significantly with poor overall survival in this cohort. Data from The Cancer Genome Atlas showed considerable downregulation of SR-A1 in lung tumor tissues. The association of SR-A1 with prognosis was validated in animal models in the context of lung cancer metastasis. Macrophages derived from mice genetically deficient for SR-A1 exhibited accelerated metastasis in a model of lung cancer. On the other hand, tumor cell seeding, migration, and invasion, as well as macrophage accumulation in lung cancer tissue, were enhanced in SR-A1-deficient mice. SR-A1 deletion upregulated serum amyloid A1 (SAA1) in macrophages via MAPK/IκB/NFκB signaling. SAA1 promoted tumor cell invasion and macrophage migration in vitro and in vivo, but these effects were blocked by administration of an anti-SAA1 antibody. Overall, our findings show how SR-A1 suppresses lung cancer metastasis by downregulating SAA1 production in TAMs. Cancer Res; 77(7); 1586-98. ©2017 AACR.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yongyue Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Bin Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Lili Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hui Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Rock2 promotes RCC proliferation by decreasing SCARA5 expression through β-catenin/TCF4 signaling. Biochem Biophys Res Commun 2016; 480:586-593. [PMID: 27793664 DOI: 10.1016/j.bbrc.2016.10.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 02/04/2023]
Abstract
Rho-associated coiled-coil forming protein kinase 2 (Rock2), as a key effector of the small GTPase RhoA, is involved in tumor development. Scavenger receptor class A member 5 (SCARA5) is an important regulator of biological processes in cancer cells. However, the roles and relationship of Rock2 and SCARA5 in renal cell carcinoma (RCC) remain unclear. In this study, we found that Rock2 expression was markedly increased in clinical RCC tissues compared with that in adjacent non-cancerous tissues. High expression of Rock2 was inversely correlated with patient survival in RCC, which indicated that Rock2 may be a prognostic marker in human RCC. In addition, Rock2 knockdown increased SCARA5 expression and suppressed RCC cell proliferation both in vitro and in vivo. Furthermore, we found that the β-catenin/TCF4 pathway contributed to the effect of Rock2 on SCARA5-mediated RCC proliferation. Taken together, these results suggest that this newly identified Rock2-β-catenin/TCF4-SCARA5 axis will provide novel insight into the understanding of the regulatory mechanisms of proliferation in human RCC.
Collapse
|
33
|
Zhao J, Jian L, Zhang L, Ding T, Li X, Cheng D, Niu S, Sun L, Li E, Liu S, Jiang Y, Liu L. Knockdown of SCARA5 inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration through suppression of the PDGF signaling pathway. Mol Med Rep 2016; 13:4455-60. [PMID: 27035566 DOI: 10.3892/mmr.2016.5074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 03/04/2016] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration are critical in the progression of atherosclerosis and can be induced by platelet-derived growth factor (PDGF). Several studies have demonstrated that scavenger receptor class A, member 5 (SCARA5) is important in cancer cell migration and invasion. However, the role of SCARA5 in VSMCs remains to be elucidated in the development of atherosclerosis. Therefore, the role of SCARA5 was investigated in PDGF‑BB‑stimulated VSMC proliferation and migration. In the present study, it was shown that SCARA5 expression was enhanced by PDGF‑BB in human aortic smooth muscle cells (HASMCs). Knockdown of SCARA5 by small interfering (si)RNA significantly inhibited PDGF‑BB‑induced HASMC proliferation and migration. Furthermore, siRNA‑SCARA5 significantly inhibited the phosphorylation of PDGF receptor (PDGFR) β, AKT and extracellular signal‑regulated kinase 1/2 in PDGF‑BB‑stimulated HASMCs. In conclusion, this study demonstrated that knockdown of SCARA5 inhibits PDGF‑BB‑induced HASMC proliferation and migration through suppression of the PDGF signaling pathway. Thus, SCARA5 may be a novel therapeutic target for preventing or treating vascular diseases involving VSMC proliferation and migration.
Collapse
Affiliation(s)
- Jiangtao Zhao
- The Second Ward of Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Liguo Jian
- The Second Ward of Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Lihua Zhang
- The Second Ward of Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Tongbin Ding
- The Second Ward of Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xiaowei Li
- The Second Ward of Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Dong Cheng
- The Second Ward of Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Shaohui Niu
- The Second Ward of Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Liqiang Sun
- The Second Ward of Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - En Li
- The Second Ward of Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Shichao Liu
- The Second Ward of Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Youxu Jiang
- The Second Ward of Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Lu Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
34
|
Novakowski KE, Huynh A, Han S, Dorrington MG, Yin C, Tu Z, Pelka P, Whyte P, Guarné A, Sakamoto K, Bowdish DME. A naturally occurring transcript variant of MARCO reveals the SRCR domain is critical for function. Immunol Cell Biol 2016; 94:646-55. [PMID: 26888252 PMCID: PMC4980223 DOI: 10.1038/icb.2016.20] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/26/2022]
Abstract
Macrophage receptor with collagenous structure (MARCO) is a Class A Scavenger Receptor (cA-SR) that recognizes and phagocytoses of a wide variety of pathogens. Most cA-SRs that contain a C-terminal Scavenger Receptor Cysteine Rich (SRCR) domain use the proximal collagenous domain to bind ligands. In contrast, for the role of the SRCR domain of MARCO in phagocytosis, adhesion and pro-inflammatory signalling is less clear. The discovery of a naturally-occurring transcript variant lacking the SRCR domain, MARCOII, provided the opportunity to study the role of the SRCR domain of MARCO. We tested whether the SRCR domain is required for ligand binding, promoting downstream signalling, and enhancing cellular adhesion. Unlike cells expressing full-length MARCO, ligand binding was abolished in MARCOII-expressing cells. Furthermore, co-expression of MARCO and MARCOII impaired phagocytic function, indicating that MARCOII acts as a dominant negative variant. Unlike MARCO, expression of MARCOII did not enhance Toll-Like Receptor 2 (TLR2)-mediated pro-inflammatory signalling in response to bacterial stimulation. MARCO-expressing cells were more adherent and exhibited a dendritic-like phenotype, while MARCOII-expressing cells were less adherent and did not exhibit changes in morphology. These data suggest the SRCR domain of MARCO is the key domain in modulating ligand binding, enhancing downstream pro-inflammatory signalling, and MARCO-mediated cellular adhesion.
Collapse
Affiliation(s)
- Kyle E Novakowski
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela Huynh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - SeongJun Han
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Dorrington
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Charles Yin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhongyuan Tu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Whyte
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Dawn M E Bowdish
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
35
|
Fucoidan inhibition of lung cancer in vivo and in vitro : role of the Smurf2-dependent ubiquitin proteasome pathway in TGFβ receptor degradation. Oncotarget 2015; 5:7870-85. [PMID: 25149540 PMCID: PMC4202167 DOI: 10.18632/oncotarget.2317] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fucoidan, a polysaccharide extracted from brown seaweeds, reduces tumor cell proliferation. In this study, we demonstrate that fucoidan reduces tumor size in LLC1-xenograft male C57BL/6 mice. Moreover, we found that LLC1-bearing mice continuously fed fucoidan showed greater antitumor activity than mice with discontinuous feeding. Fucoidan inhibited the in vitro growth of lung cancer cells. Transforming growth factor β (TGFβ) receptors (TGFRs) play important roles in the regulation of proliferation and progression, and high TGFRI expression in lung cancer specimens is associated with a worse prognosis. Herein, using lung cancer cells, we found that fucoidan effectively reduces TGFRI and TGFRII protein levels in vivo and in vitro. Moreover, fucoidan reduces TGFR downstream signaling events, including those in Smad2/3 and non-Smad pathways: Akt, Erk1/2, and FAK phosphorylation. Furthermore, fucoidan suppresses lung cancer cell mobility upon TGFβ stimulation. To elucidate how fucoidan decreases TGFR proteins in lung cancer cells, we found that fucoidan enhances the ubiquitination proteasome pathway (UPP)-mediated degradation of TGFRs in A549 and CL1-5 cells. Mechanistically, fucoidan promotes Smurf2 and Smad7 to conjugate TGFRs, resulting in TGF degradation; however, Smurf2-shRNA abolishes fucoidan-enhanced UPP-mediated TGFR degradation. Our study is the first to identify a novel mechanism for the antitumor activity of fucoidan, namely decreasing tumor growth by modulating the TGFR/Smad7/Smurf2-dependent axis, leading to TGFR protein degradation and inhibition of lung cancer cell progression in vitro and in vivo. Our current findings indicate that fucoidan is a potential therapeutic agent or dietary supplementation for lung cancer, acting via the Smurf2-dependent ubiquitin degradation of TGFβ receptors.
Collapse
|
36
|
Abstract
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
37
|
Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, Ponnambalam S. Scavenger receptor structure and function in health and disease. Cells 2015; 4:178-201. [PMID: 26010753 PMCID: PMC4493455 DOI: 10.3390/cells4020178] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
Scavenger receptors (SRs) are a ‘superfamily’ of membrane-bound receptors that were initially thought to bind and internalize modified low-density lipoprotein (LDL), though it is currently known to bind to a variety of ligands including endogenous proteins and pathogens. New family of SRs and their properties have been identified in recent years, and have now been classified into 10 eukaryote families, defined as Classes A-J. These receptors are classified according to their sequences, although in each class they are further classified based in the variations of the sequence. Their ability to bind a range of ligands is reflected on the biological functions such as clearance of modified lipoproteins and pathogens. SR members regulate pathophysiological states including atherosclerosis, pathogen infections, immune surveillance, and cancer. Here, we review our current understanding of SR structure and function implicated in health and disease.
Collapse
Affiliation(s)
- Izma Abdul Zani
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sam L Stephen
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Nadeem A Mughal
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - David Russell
- Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | | | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
38
|
Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency. J Vasc Surg 2015; 64:202-209.e6. [PMID: 25935274 DOI: 10.1016/j.jvs.2014.12.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Approximately 30% of autogenous vein grafts develop luminal narrowing and fail because of intimal hyperplasia or negative remodeling. We previously found that vein graft cells from patients who later develop stenosis proliferate more in vitro in response to growth factors than cells from patients who maintain patent grafts. To discover novel determinants of vein graft outcome, we have analyzed gene expression profiles of these cells using a systems biology approach to cluster the genes into modules by their coexpression patterns and to correlate the results with growth data from our prior study and with new studies of migration and matrix remodeling. METHODS RNA from 4-hour serum- or platelet-derived growth factor (PDGF)-BB-stimulated human saphenous vein cells obtained from the outer vein wall (20 cell lines) was used for microarray analysis of gene expression, followed by weighted gene coexpression network analysis. Cell migration in microchemotaxis chambers in response to PDGF-BB and cell-mediated collagen gel contraction in response to serum were also determined. Gene function was determined using short-interfering RNA to inhibit gene expression before subjecting cells to growth or collagen gel contraction assays. These cells were derived from samples of the vein grafts obtained at surgery, and the long-term fate of these bypass grafts was known. RESULTS Neither migration nor cell-mediated collagen gel contraction showed a correlation with graft outcome. Although 1188 and 1340 genes were differentially expressed in response to treatment with serum and PDGF, respectively, no single gene was differentially expressed in cells isolated from patients whose grafts stenosed compared with those that remained patent. Network analysis revealed four unique groups of genes, which we term modules, associated with PDGF responses, and 20 unique modules associated with serum responses. The "yellow" and "skyblue" modules, from PDGF and serum analyses, respectively, correlated with later graft stenosis (P = .005 and P = .02, respectively). In response to PDGF, yellow was also associated with increased cell growth. For serum, skyblue was also associated with inhibition of collagen gel contraction. The hub genes for yellow and skyblue (ie, the gene most connected to other genes in the module), scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN), respectively, were tested for effects on proliferation and collagen contraction. Knockdown of SCARA5 increased proliferation by 29.9% ± 7.8% (P < .01), whereas knockdown of SBSN had no effect. Knockdown of SBSN increased collagen gel contraction by 24.2% ± 8.6% (P < .05), whereas knockdown of SCARA5 had no effect. CONCLUSIONS Using weighted gene coexpression network analysis of cultured vein graft cell gene expression, we have discovered two small gene modules, which comprise 42 genes, that are associated with vein graft failure. Further experiments are needed to delineate the venous cells that express these genes in vivo and the roles these genes play in vein graft healing, starting with the module hub genes SCARA5 and SBSN, which have been shown to have modest effects on cell proliferation or collagen gel contraction.
Collapse
|
39
|
He J, Liu H, Wu C. Identification of SCARA3, SCARA5 and MARCO of class A scavenger receptor-like family in Pseudosciaena crocea. FISH & SHELLFISH IMMUNOLOGY 2014; 41:238-249. [PMID: 25218683 DOI: 10.1016/j.fsi.2014.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
The class A scavenger receptors are important pattern recognition receptors of the innate immune system in living organisms. According to the whole-genome data of large yellow croaker (Pseudosciaena crocea), three kinds of scavenger receptors, SCARA3, SCARA5 and MARCO were cloned from the spleen, designated severally as TycSA3, TycSA5 and TycMAC. The complete cDNAs open reading frames (ORF) of TycSA3, TycSA5 and TycMAC were 1938 bp, 1677 bp and 1218 bp (GenBank accession no. KJ467772, KJ467773 and KJ467771), encoding 645, 558 and 405 amino acid (aa) residues respectively. The BLASTp analysis strongly suggested that the sequences shared high similarity with known SCARA3, SCARA5 and MARCO. The phylogenetic relationship analysis illustrated that different subtype of SRs formed their own separate branches, TycSA3 and TycSA5 were placed in SCARA3 and SCARA5 branch of Osteichthyes fish respectively with strong bootstrap support. Curiously, the TycMAC was clustered with Alligator sinensis. ClustalW analysis with amino acid sequences revealed that the proportion of identity with other species was 59-71% for TycSA3 and 55-72% for TycSA5, but the scale of TycMAC was considerable lower than those of other two genes (only approximately 38%). The SR family motifs, such as transmembrane helix region, colied coli region and collagens region in the TycSA3, TycSA5 and TycMAC were conserved. There was an optional cysteine-rich (SRCR) domain (from 457 to 557 residues) containing 6 conserved cysteines (C-482, C-495, C-526, C-536, C-546 and C-556) in TycSA5. Likewise, the SRCR domains of TycMAC (from 310 to 405 residues) also contained C-333, C-346, C-374, C-384, C-394 and C-404 cysteines residues. Particularly, there were the major TRAF2-binding consensus motif and two main motifs on internalization of receptor in TycSA3 and TycSA5. The gene structures of different species were analyzed with GeneMaper v2.5, and the number of introns and exons of TycSA3, TycSA5 and TycMAC in DNA sequences were different, for example some corresponding exon regions were divided into several smaller exon portions. Furthermore, quantitative real-time PCR (qRT-PCR) analysis indicated the highest mRNA expression of TycSA3, TycSA5 and TycMAC all appeared in spleen among eight detected tissues, and the expression of them were up-regulated in spleen after Vibrio alginolyticus injection. All these results demonstrated that class A SRs played a significant role in the defense against pathogenic bacteria infection in innate immune of sciaenidae fish.
Collapse
Affiliation(s)
- Jianyu He
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Huihui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
40
|
Mendes-Jorge L, Ramos D, Valença A, López-Luppo M, Pires VMR, Catita J, Nacher V, Navarro M, Carretero A, Rodriguez-Baeza A, Ruberte J. L-ferritin binding to scara5: a new iron traffic pathway potentially implicated in retinopathy. PLoS One 2014; 9:e106974. [PMID: 25259650 PMCID: PMC4178024 DOI: 10.1371/journal.pone.0106974] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023] Open
Abstract
Iron is essential in the retina because the heme-containing enzyme guanylate cyclase modulates phototransduction in rods and cones. Transferrin endocytosis is the classical pathway for obtaining iron from the blood circulation in the retina. However, the iron storage protein ferritin has been also recently proposed as an iron carrier. In this study, the presence of Scara5 and its binding to L-ferritin was investigated in the retina. Our results showed that Scara5, the specific receptor for L-ferritin, was expressed in mouse and human retinas in many cell types, including endothelial cells. Furthermore, we showed that intravenously injected ferritin crossed the blood retinal barrier through L-ferritin binding to Scara5 in endothelial cells. Thus, suggesting the existence of a new pathway for iron delivery and trafficking in the retina. In a murine model of photoreceptor degeneration, Scara5 was downregulated, pointing out this receptor as a potential player implicated in retinopathy and also as a possible therapeutic target.
Collapse
Affiliation(s)
- Luísa Mendes-Jorge
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Department of Morphology and Function, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Ramos
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andreia Valença
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana López-Luppo
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Virgínia Maria Rico Pires
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Catita
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Victor Nacher
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marc Navarro
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ana Carretero
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alfonso Rodriguez-Baeza
- Department of Morphological Sciences, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Ruberte
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
41
|
Waters KM, Cummings BS, Shankaran H, Scholpa NE, Weber TJ. ERK oscillation-dependent gene expression patterns and deregulation by stress response. Chem Res Toxicol 2014; 27:1496-503. [PMID: 25068892 PMCID: PMC4163986 DOI: 10.1021/tx500085u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Studies were undertaken to determine
whether extracellular signal
regulated kinase (ERK) oscillations regulate a unique subset of genes
in human keratinocytes and subsequently whether the p38 stress response
inhibits ERK oscillations. A DNA microarray identified many genes
that were unique to ERK oscillations, and network reconstruction predicted
an important role for the mediator complex subunit 1 (MED1) node in
mediating ERK oscillation-dependent gene expression. Increased ERK-dependent
phosphorylation of MED1 was observed in oscillating cells compared
to nonoscillating counterparts as validation. Treatment of keratinocytes
with a p38 inhibitor (SB203580) increased ERK oscillation amplitudes
and MED1 and phospho-MED1 protein levels. Bromate is a probable human
carcinogen that activates p38. Bromate inhibited ERK oscillations
in human keratinocytes and JB6 cells and induced an increase in phospho-p38
and a decrease in phospho-MED1 protein levels. Treatment of normal
rat kidney cells and primary salivary gland epithelial cells with
bromate decreased phospho-MED1 levels in a reversible fashion upon
treatment with p38 inhibitors (SB202190; SB203580). Our results indicate
that oscillatory behavior in the ERK pathway alters homeostatic gene
regulation patterns and that the cellular response to perturbation
may manifest differently in oscillating vs nonoscillating cells.
Collapse
Affiliation(s)
- Katrina M Waters
- Computational Biology and Bioinformatics, ‡Systems Toxicology and Exposure Science, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | |
Collapse
|
42
|
A gene expression and pre-mRNA splicing signature that marks the adenoma-adenocarcinoma progression in colorectal cancer. PLoS One 2014; 9:e87761. [PMID: 24516561 PMCID: PMC3916340 DOI: 10.1371/journal.pone.0087761] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/30/2013] [Indexed: 12/22/2022] Open
Abstract
It is widely accepted that most colorectal cancers (CRCs) arise from colorectal adenomas (CRAs), but transcriptomic data characterizing the progression from colorectal normal mucosa to adenoma, and then to adenocarcinoma are scarce. These transition steps were investigated using microarrays, both at the level of gene expression and alternative pre-mRNA splicing. Many genes and exons were abnormally expressed in CRAs, even more than in CRCs, as compared to normal mucosae. Known biological pathways involved in CRC were altered in CRA, but several new enriched pathways were also recognized, such as the complement and coagulation cascades. We also identified four intersectional transcriptional signatures that could distinguish CRAs from normal mucosae or CRCs, including a signature of 40 genes differentially deregulated in both CRA and CRC samples. A majority of these genes had been described in different cancers, including FBLN1 or INHBA, but only a few in CRC. Several of these changes were also observed at the protein level. In addition, 20% of these genes (i.e. CFH, CRYAB, DPT, FBLN1, ITIH5, NR3C2, SLIT3 and TIMP1) showed altered pre-mRNA splicing in CRAs. As a global variation occurring since the CRA stage, and maintained in CRC, the expression and splicing changes of this 40-gene set may mark the risk of cancer occurrence from analysis of CRA biopsies.
Collapse
|
43
|
Yan N, Zhang S, Yang Y, Cheng L, Li C, Dai L, Dai L, Zhang X, Fan P, Tian H, Wang R, Chen X, Su X, Li Y, Zhang J, Du T, Wei Y, Deng H. Therapeutic upregulation of Class A scavenger receptor member 5 inhibits tumor growth and metastasis. Cancer Sci 2012; 103:1631-9. [PMID: 22642751 DOI: 10.1111/j.1349-7006.2012.02350.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/07/2012] [Accepted: 05/15/2012] [Indexed: 02/05/2023] Open
Abstract
Class A scavenger receptor member 5 (SCARA5) is a new member of the Class A scavenger receptors that has been proposed recently as a novel candidate tumor suppressor gene in human hepatocellular carcinoma. In the present study, we found that SCARA5 expression was frequently downregulated in various cancer cell lines and tumor samples. In addition, upregulation of SCARA5 expression in human cancer cell line (U251) led to a significant decrease in cell proliferation, clone formation, migration, and invasion in vitro. Furthermore, systemic treatment of tumor-bearing mice with SCARA5-cationic liposome complex not only reduced the growth of subcutaneous human glioma tumors, but also markedly suppressed the spontaneous formation of lung metastases. Similar results were obtained in another experiment using mice bearing experimental A549 lung metastases. Compared with the untreated control group, mice treated with SCARA5 exhibited reductions in both spontaneous U251 and experimental A549 lung metastases rates of 77.3% and 70.2%, respectively. Western blot analysis was used to explore the molecular mechanisms involved and revealed that SCARA5 physically associated with focal adhesion kinase. Interestingly, upregulation of SCARA5 inactivated signal transducer and activator of transcription 3, as well as downstream signaling including cyclinB1, cyclinD1, AKT, survivin, matrix metalloproteinase-9 and vascular endothelial growth factor-A. Overall, the findings of the present study provide the first evidence that SCARA5 might be a promising target for the development of new antimetastatic agents for the gene therapy of cancer.
Collapse
Affiliation(s)
- Nv Yan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|