1
|
Lambert C, Schweizer L, Matio Kemkuignou B, Anoumedem EGM, Kouam SF, Marin-Felix Y. Four new endophytic species of Diaporthe (Diaporthaceae, Diaporthales) isolated from Cameroon. MycoKeys 2023; 99:319-362. [PMID: 37915461 PMCID: PMC10616871 DOI: 10.3897/mycokeys.99.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Diaporthe (Diaporthaceae, Diaporthales) is a large group of fungi frequently reported as phytopathogens, with ubiquitous distribution across the globe. Diaporthe have traditionally been characterized by the morphology of their ana- and teleomorphic state, revealing a high degree of heterogeneity as soon as DNA sequencing was utilized across the different members of the group. Their relevance for biotechnology and agriculture attracts the attention of taxonomists and natural product chemists alike in context of plant protection and exploitation for their potential to produce bioactive secondary metabolites. While more than 1000 species are described to date, Africa, as a natural habitat, has so far been under-sampled. Several endophytic fungi belonging to Diaporthe were isolated from different plant hosts in Cameroon over the course of this study. Phylogenetic analyses based on DNA sequence data of the internal transcribed spacer region and intervening 5.8S nrRNA gene, and partial fragments of the calmodulin, beta-tubulin, histone and the translation elongation factor 1-α genes, demonstrated that these isolates represent four new species, i.e. D.brideliae, D.cameroonensis, D.pseudoanacardii and D.rauvolfiae. Moreover, the description of D.isoberliniae is here emended, now incorporating the morphology of beta and gamma conidia produced by two of our endophytic isolates, which had never been documented in previous records. Moreover, the paraphyletic nature of the genus is discussed and suggestions are made for future revision of the genus.
Collapse
Affiliation(s)
- Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, GermanyMolecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Elodie Gisèle M. Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Simeon F. Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
2
|
Kemkuignou BM, Lambert C, Schmidt K, Schweizer L, Anoumedem EGM, Kouam SF, Stadler M, Stradal T, Marin-Felix Y. Unreported cytochalasins from an acid-mediated transformation of cytochalasin J isolated from Diaporthe cf. ueckeri. Fitoterapia 2023; 166:105434. [PMID: 36681097 DOI: 10.1016/j.fitote.2023.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Chemical investigation of an endophytic fungus herein identified as Diaporthe cf. ueckeri yielded four known compounds, named cytochalasins H and J and dicerandrols A and B. Reports of acid sensitivity within the cytochalasan family inspired an attempt of acid-mediated conversion of cytochalasins H and J, resulting in the acquisition of five polycyclic cytochalasins featuring 5/6/5/8-fused tetracyclic and 5/6/6/7/5-fused pentacyclic skeletons. Two of the obtained polycyclic cytochalasins constituted unprecedented analogues, for which the trivial names cytochalasins J4 and J5 were proposed, whereas the others were identified as the known phomopchalasin A, phomopchalasin D and 21-acetoxycytochalasin J3. The structures of the compounds were determined by extensive spectral analysis, namely HR-ESIMS, ESIMS and 1D/2D NMR. The stereochemistry of cytochalasins J4 and J5 was proposed using their ROESY data, biosynthetic and mechanistic considerations and by comparison of their ECD spectra with those of related congeners. All compounds except for cytochalasins H and J were tested for antimicrobial and cytotoxic activity. Cytochalasins J4 and J5 showed neither antimicrobial nor cytotoxic activity in the tested concentrations, with only weak antiproliferative activity observable against KB3.1 cells. The actin disruptive properties of all cytochalasins obtained in this study and of the previously reported cytochalasins RKS-1778 and phomopchalasin N were examined, and monitored by fluorescence microscopy using human osteo-sarcoma (U2-OS) cells. Compared to their precursor molecules (cytochalasins H and J), phomopchalasins A and D, 21-acetoxycytochalasin J3, cytochalasins J4 and J5 revealed a strongly reduced activity on the F-actin network, highlighting that the macrocyclic ring is crucial for bioactivity.
Collapse
Affiliation(s)
- Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Katharina Schmidt
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Elodie Gisèle M Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, P.O. Box 47, Cameroon
| | - Simeon F Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, P.O. Box 47, Cameroon
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany.
| |
Collapse
|
3
|
Xiang Z, Okada D, Asuke S, Nakayashiki H, Ikeda K. Novel insights into host specificity of Pyricularia oryzae and Pyricularia grisea in the infection of gramineous plant roots. MOLECULAR PLANT PATHOLOGY 2022; 23:1658-1670. [PMID: 35957505 PMCID: PMC9562571 DOI: 10.1111/mpp.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Pyricularia oryzae and Pyricularia grisea are pathogens that cause blast disease in various monocots. It has been reported that P. oryzae infects the leaves and roots of rice via different mechanisms. However, it is unclear to what extent the tissue types affect the host specificities of P. oryzae and P. grisea. Here, we evaluated the tissue-specific infection strategies of P. oryzae and P. grisea in various gramineous plants. Generally, mycelial plug inoculation caused root browning but the degree of browning did not simply follow the disease index on leaves. Interestingly, the Triticum and Digitaria pathotypes caused strong root growth inhibition in rice, wheat, and barley. Moreover, the Digitaria pathotype inhibited root branching only in rice. Culture filtrate reproduced these inhibitory effects on root, suggesting that some secreted molecules are responsible for the inhibitions. Observation of root sections revealed that most of the infection hyphae penetrated intercellular spaces and further extended into root cells, regardless of pathotype and host plant. The infection hyphae of Digitaria and Triticum pathotypes tended to localize in the outer layer of rice roots, but not in those of wheat and barley roots. The infection hyphae of the Oryza pathotype were distributed in both the intercellular and intracellular spaces of rice root cells. Pathogenesis-related genes and reactive oxygen species accumulation were induced after root inoculation with all combinations. These results suggest that resistance reactions were induced in the roots of gramineous plants against the infection with Pyricularia isolates but failed to prevent fungal invasion.
Collapse
Affiliation(s)
- Zikai Xiang
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | - Daiki Okada
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | - Soichiro Asuke
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | | | - Kenichi Ikeda
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| |
Collapse
|
4
|
Wang C, Lambert C, Hauser M, Deuschmann A, Zeilinger C, Rottner K, Stradal TEB, Stadler M, Skellam EJ, Cox RJ. Diversely Functionalised Cytochalasins through Mutasynthesis and Semi-Synthesis. Chemistry 2020; 26:13578-13583. [PMID: 32484589 PMCID: PMC7692911 DOI: 10.1002/chem.202002241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 11/11/2022]
Abstract
Mutasynthesis of pyrichalasin H from Magnaporthe grisea NI980 yielded a series of unprecedented 4'-substituted cytochalasin analogues in titres as high as the wild-type system (≈60 mg L-1 ). Halogenated, O-alkyl, O-allyl and O-propargyl examples were formed, as well as a 4'-azido analogue. 4'-O-Propargyl and 4'-azido analogues reacted smoothly in Huisgen cycloaddition reactions, whereas p-Br and p-I compounds reacted in Pd-catalysed cross-coupling reactions. A series of examples of biotin-linked, dye-linked and dimeric cytochalasins was rapidly created. In vitro and in vivo bioassays of these compounds showed that the 4'-halogenated and azido derivatives retained their cytotoxicity and antifungal activities; but a unique 4'-amino analogue was inactive. Attachment of larger substituents attenuated the bioactivities. In vivo actin-binding studies with adherent mammalian cells showed that actin remains the likely intracellular target. Dye-linked compounds revealed visualisation of intracellular actin structures even in the absence of phalloidin, thus constituting a potential new class of actin-visualisation tools with filament-barbed end-binding specificity.
Collapse
Affiliation(s)
- Chongqing Wang
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | - Christopher Lambert
- Department Microbial DrugsHelmholtz Centre for Infection Research, Bldg. B, Room 175aInhoffenstrasse 738124BraunschweigGermany
- Division of Molecular Cell BiologyZoological InstituteTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| | - Maurice Hauser
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | - Adrian Deuschmann
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | - Carsten Zeilinger
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | - Klemens Rottner
- Department of Cell BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
- Division of Molecular Cell BiologyZoological InstituteTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| | - Theresia E. B. Stradal
- Department of Cell BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Marc Stadler
- Department Microbial DrugsHelmholtz Centre for Infection Research, Bldg. B, Room 175aInhoffenstrasse 738124BraunschweigGermany
| | - Elizabeth J. Skellam
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| |
Collapse
|
5
|
Wang C, Hantke V, Cox RJ, Skellam E. Targeted Gene Inactivations Expose Silent Cytochalasans in Magnaporthe grisea NI980. Org Lett 2019; 21:4163-4167. [PMID: 31099577 DOI: 10.1021/acs.orglett.9b01344] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biosynthetic gene cluster encoding the phytotoxin pyrichalasin H 5 was discovered in Magnaporthe grisea NI980, and the late-stage biosynthetic pathway of 5 was fully elucidated using targeted gene inactivations resulting in the isolation of 13 novel cytochalasans. This study reveals that the nonproteinogenic amino acid O-methyltyrosine is the true precursor of 5, and other cryptic cytochalasans and mutasynthesis experiments produce novel halogenated pyrichalasin H analogues.
Collapse
Affiliation(s)
- Chongqing Wang
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| | - Verena Hantke
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| | - Russell J Cox
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| | - Elizabeth Skellam
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| |
Collapse
|
6
|
Masi M, Meyer S, Górecki M, Mandoli A, Di Bari L, Pescitelli G, Cimmino A, Cristofaro M, Clement S, Evidente A. Pyriculins A and B, two monosubstituted hex-4-ene-2,3-diols and other phytotoxic metabolites produced by Pyricularia grisea
isolated from buffelgrass (Cenchrus ciliaris
). Chirality 2017; 29:726-736. [DOI: 10.1002/chir.22744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche; Università di Napoli Federico II, Complesso Universitario Monte S. Angelo; Naples Italy
- BBCA Onlus; Rome Italy
| | - Susan Meyer
- Shrub Sciences Laboratory; U.S. Forest Service Rocky Mountain Research Station; Provo Utah USA
| | - Marcin Górecki
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; Pisa Italy
| | - Alessandro Mandoli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; Pisa Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; Pisa Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; Pisa Italy
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche; Università di Napoli Federico II, Complesso Universitario Monte S. Angelo; Naples Italy
| | | | - Suzette Clement
- Shrub Sciences Laboratory; U.S. Forest Service Rocky Mountain Research Station; Provo Utah USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche; Università di Napoli Federico II, Complesso Universitario Monte S. Angelo; Naples Italy
| |
Collapse
|
7
|
Jacob S, Grötsch T, Foster AJ, Schüffler A, Rieger PH, Sandjo LP, Liermann JC, Opatz T, Thines E. Unravelling the biosynthesis of pyriculol in the rice blast fungus Magnaporthe oryzae. MICROBIOLOGY-SGM 2017; 163:541-553. [PMID: 27902426 DOI: 10.1099/mic.0.000396] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pyriculol was isolated from the rice blast fungus Magnaporthe oryzae and found to induce lesion formation on rice leaves. These findings suggest that it could be involved in virulence. The gene MoPKS19 was identified to encode a polyketide synthase essential for the production of the polyketide pyriculol in the rice blast fungus M. oryzae. The transcript abundance of MoPKS19 correlates with the biosynthesis rate of pyriculol in a time-dependent manner. Furthermore, gene inactivation of MoPKS19 resulted in a mutant unable to produce pyriculol, pyriculariol and their dihydro derivatives. Inactivation of a putative oxidase-encoding gene MoC19OXR1, which was found to be located in the genome close to MoPKS19, resulted in a mutant exclusively producing dihydropyriculol and dihydropyriculariol. By contrast, overexpression of MoC19OXR1 resulted in a mutant strain only producing pyriculol. The MoPKS19 cluster, furthermore, comprises two transcription factors MoC19TRF1 and MoC19TRF2, which were both found individually to act as negative regulators repressing gene expression of MoPKS19. Additionally, extracts of ΔMopks19 and ΔMoC19oxr1 made from axenic cultures failed to induce lesions on rice leaves compared to extracts of the wild-type strain. Consequently, pyriculol and its isomer pyriculariol appear to be the only lesion-inducing secondary metabolites produced by M. oryzae wild-type (MoWT) under these culture conditions. Interestingly, the mutants unable to produce pyriculol and pyriculariol were as pathogenic as MoWT, demonstrating that pyriculol is not required for infection.
Collapse
Affiliation(s)
- Stefan Jacob
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| | - Thomas Grötsch
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| | - Andrew J Foster
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| | - Patrick H Rieger
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| | - Louis P Sandjo
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Johannes C Liermann
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Eckhard Thines
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg University of Mainz, Johann-Joachim-Becherweg 15, D-55128 Mainz, Germany.,Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger Str. 56, D-67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Klaubauf S, Tharreau D, Fournier E, Groenewald J, Crous P, de Vries R, Lebrun MH. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud Mycol 2014; 79:85-120. [PMID: 25492987 PMCID: PMC4255532 DOI: 10.1016/j.simyco.2014.09.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Species of Pyricularia (magnaporthe-like sexual morphs) are responsible for major diseases on grasses. Pyricularia oryzae (sexual morph Magnaporthe oryzae) is responsible for the major disease of rice called rice blast disease, and foliar diseases of wheat and millet, while Pyricularia grisea (sexual morph Magnaporthe grisea) is responsible for foliar diseases of Digitaria. Magnaporthe salvinii, M. poae and M. rhizophila produce asexual spores that differ from those of Pyricularia sensu stricto that has pyriform, 2-septate conidia produced on conidiophores with sympodial proliferation. Magnaporthe salvinii was recently allocated to Nakataea, while M. poae and M. rhizophila were placed in Magnaporthiopsis. To clarify the taxonomic relationships among species that are magnaporthe- or pyricularia-like in morphology, we analysed phylogenetic relationships among isolates representing a wide range of host plants by using partial DNA sequences of multiple genes such as LSU, ITS, RPB1, actin and calmodulin. Species of Pyricularia s. str. belong to a monophyletic clade that includes all P. oryzae/P. grisea isolates tested, defining the Pyriculariaceae, which is sister to the Ophioceraceae, representing two novel families. These clades are clearly distinct from species belonging to the Gaeumannomyces pro parte/Magnaporthiopsis/Nakataea generic complex that are monophyletic and define the Magnaporthaceae. A few magnaporthe- and pyricularia-like species are unrelated to Magnaporthaceae and Pyriculariaceae. Pyricularia oryzae/P. grisea isolates cluster into two related clades. Host plants such as Eleusine, Oryza, Setaria or Triticum were exclusively infected by isolates from P. oryzae, while some host plant such as Cenchrus, Echinochloa, Lolium, Pennisetum or Zingiber were infected by different Pyricularia species. This demonstrates that host range cannot be used as taxonomic criterion without extensive pathotyping. Our results also show that the typical pyriform, 2-septate conidium morphology of P. grisea/P. oryzae is restricted to Pyricularia and Neopyricularia, while most other genera have obclavate to more ellipsoid 2-septate conidia. Some related genera (Deightoniella, Macgarvieomyces) have evolved 1-septate conidia. Therefore, conidium morphology cannot be used as taxonomic criterion at generic level without phylogenetic data. We also identified 10 novel genera, and seven novel species. A re-evaluation of generic and species concepts within Pyriculariaceae is presented, and novelties are proposed based on morphological and phylogenetic data.
Collapse
Affiliation(s)
- S. Klaubauf
- CBS-KNAW Fungal Biodiversity Centre, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - D. Tharreau
- UMR BGPI, CIRAD, Campus International de Baillarguet, F-34398 Montpellier, France
| | - E. Fournier
- UMR BGPI, INRA, Campus International de Baillarguet, F-34398 Montpellier, France
| | - J.Z. Groenewald
- CBS-KNAW Fungal Biodiversity Centre, 3584 CT Utrecht, The Netherlands
| | - P.W. Crous
- CBS-KNAW Fungal Biodiversity Centre, 3584 CT Utrecht, The Netherlands
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - R.P. de Vries
- CBS-KNAW Fungal Biodiversity Centre, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - M.-H. Lebrun
- UR1290 INRA BIOGER-CPP, Campus AgroParisTech, F-78850 Thiverval-Grignon, France
| |
Collapse
|
9
|
Comparative analysis of pathogenicity and phylogenetic relationship in Magnaporthe grisea species complex. PLoS One 2013; 8:e57196. [PMID: 23468934 PMCID: PMC3582606 DOI: 10.1371/journal.pone.0057196] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/18/2013] [Indexed: 11/22/2022] Open
Abstract
Outbreaks of rice blast have been a threat to the global production of rice. Members of the Magnaporthe grisea species complex cause blast disease on a wide range of gramineous hosts, including cultivated rice and other grass species. Recently, based on phylogenetic analyses and mating tests, isolates from crabgrass were separated from the species complex and named M. grisea. Then other isolates from grasses including rice were named as M. oryzae. Here, we collected 103 isolates from 11 different species of grasses in Korea and analyzed their phylogenetic relationships and pathogenicity. Phylogenetic analyses of multilocus sequences and DNA fingerprinting revealed that the haplotypes of most isolates were associated with their hosts. However, six isolates had different haplotypes from the expectation, suggesting potential host shift in nature. Results of pathogenicity tests demonstrated that 42 isolates from crabgrass and 19 isolates from rice and other grasses showed cross-infectivity on rice and crabgrass, respectively. Interestingly, we also found that the isolates from rice had a distinct deletion in the calmodulin that can be used as a probe.
Collapse
|
10
|
Yi M, Valent B. Communication between filamentous pathogens and plants at the biotrophic interface. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:587-611. [PMID: 23750888 DOI: 10.1146/annurev-phyto-081211-172916] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fungi and oomycetes that colonize living plant tissue form extensive interfaces with plant cells in which the cytoplasm of the microorganism is closely aligned with the host cytoplasm for an extended distance. In all cases, specialized biotrophic hyphae function to hijack host cellular processes across an interfacial zone consisting of a hyphal plasma membrane, a specialized interfacial matrix, and a plant-derived membrane. The interface is the site of active secretion by both players. This cross talk at the interface determines the winner in adversarial relationships and establishes the partnership in mutualistic relationships. Fungi and oomycetes secrete many specialized effector proteins for controlling the host, and they can stimulate remarkable cellular reorganization even in distant plant cells. Breakthroughs in live-cell imaging of fungal and oomycete encounter sites, including live-cell imaging of pathogens secreting fluorescently labeled effector proteins, have led to recent progress in understanding communication across the interface.
Collapse
Affiliation(s)
- Mihwa Yi
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506-5502, USA.
| | | |
Collapse
|
11
|
|
12
|
Tufan HA, McGrann GRD, Magusin A, Morel JB, Miché L, Boyd LA. Wheat blast: histopathology and transcriptome reprogramming in response to adapted and nonadapted Magnaporthe isolates. THE NEW PHYTOLOGIST 2009; 184:473-484. [PMID: 19645735 DOI: 10.1111/j.1469-8137.2009.02970.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
* Blast disease (causal agent Magnaporthe oryzae) has presented as a new and serious field disease of wheat in South America. Here, we investigated the responses of wheat to both adapted and nonadapted isolates of the blast fungus Magnaporthe, examining cellular defence and transcriptional changes. * Resistance towards the nonadapted isolate was associated with the formation of appositions, here termed halos, beneath attempted Magnaporthe grisea penetration sites that wheat-adapted, M. oryzae isolates were able to breach. * Transcriptome analysis indicated extensive transcriptional reprogramming following inoculation with both wheat-adapted and nonadapted isolates of Magnaporthe. Functional annotation of many of the differentially expressed transcripts classified into the categories: cell rescue and defence, plant metabolism, cellular transport and regulation of transcription (although a significant number of transcripts remain unclassified). * Defence-related transcripts induced in common by adapted and nonadapted isolates were differentially regulated in response to M. oryzae and M. grisea isolates over time. Differential expression of genes involved in cellular transport indicated the importance of this process in plant defence. Functional characterisation of these transcripts and their role in defence may eventually lead to the identification of broad-spectrum resistance mechanisms in wheat towards Magnaporthe.
Collapse
Affiliation(s)
- Hale A Tufan
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk, NR4 7UH, UK
| | - Graham R D McGrann
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk, NR4 7UH, UK
| | - Andreas Magusin
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk, NR4 7UH, UK
| | - Jean-Benoit Morel
- UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet, T41/K34398 Montpellier, France
| | - Lucie Miché
- UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet, T41/K34398 Montpellier, France
| | - Lesley A Boyd
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk, NR4 7UH, UK
| |
Collapse
|
13
|
Collemare J, Billard A, Böhnert HU, Lebrun MH. Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. ACTA ACUST UNITED AC 2008; 112:207-15. [DOI: 10.1016/j.mycres.2007.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 08/09/2007] [Indexed: 01/22/2023]
|
14
|
Faivre-Rampant O, Thomas J, Allègre M, Morel JB, Tharreau D, Nottéghem JL, Lebrun MH, Schaffrath U, Piffanelli P. Characterization of the model system rice--Magnaporthe for the study of nonhost resistance in cereals. THE NEW PHYTOLOGIST 2008; 180:899-910. [PMID: 19138233 DOI: 10.1111/j.1469-8137.2008.02621.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The best characterized form of resistance is gene-for-gene resistance. Less well characterized is nonhost resistance in which an entire plant species is resistant to an entire pathogen species. Here, different rice genotypes were inoculated with host and nonhost strains of Magnaporthe isolated from rice, wheat and crabgrass. The different types of interactions were characterized at a cytological level using a 3,3'-diaminobenzidine (DAB) stain to investigate the occurrence of reactive oxygen intermediates or by observing the occurrence of cellular autofluorescence. Gene expression of a set of selected PR-genes was analysed using quantitative real-time polymerase chain reaction. Inoculation with the isolate from crabgrass resulted in a lack of penetration. The wheat isolate induced a hypersensitive response with varying degrees of pathogen growth inside the invaded cell according to the rice genotype. Expression analysis of our PR-gene set revealed clear differences between the different types of interactions in both kinetic and magnitude of gene induction. Our integrated study opens the way to the dissection of molecular components leading to nonhost reactions to Magnaporthe grisea in rice and points to novel sources of durable resistance to fungal plant pathogens in other cereal crops.
Collapse
|
15
|
O'Connell RJ, Panstruga R. Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. THE NEW PHYTOLOGIST 2006; 171:699-718. [PMID: 16918543 DOI: 10.1111/j.1469-8137.2006.01829.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
'Compatibility' describes the complementary relationship between a plant species and an adapted pathogen species that underlies susceptibility and which ultimately results in disease. Owing to elaborate surveillance systems and defence mechanisms on the plant side and a common lack of adaptation of many microbial pathogens, resistance is the rule and compatibility the exception for most plant-microbe combinations. While there has been major scientific interest in 'resistance' in the past decade, which has revealed many of its underlying molecular components, the analysis of 'compatibility', although intimately intertwined with 'resistance', has not been pursued with a similar intensity. Various recent studies, however, provide a first glimpse of the pivotal players and potential molecular mechanisms essential for compatibility in both the plant and parasite partners. In this review we highlight these findings with a particular emphasis on obligate biotrophic and hemibiotrophic fungal and oomycete pathogens and discuss novel strategies that might help to uncover further the molecular principles underlying compatibility to these highly specialized pathogens.
Collapse
Affiliation(s)
- Richard J O'Connell
- Max-Planck-Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | |
Collapse
|