1
|
Shi Y, Cheng T, Cheang QW, Zhao X, Xu Z, Liang Z, Xu L, Wang J. A cyclic di-GMP-binding adaptor protein interacts with a N5-glutamine methyltransferase to regulate the pathogenesis in Xanthomonas citri subsp. citri. MOLECULAR PLANT PATHOLOGY 2024; 25:e13496. [PMID: 39011828 PMCID: PMC11250160 DOI: 10.1111/mpp.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZR10A can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ.
Collapse
Affiliation(s)
- Yu Shi
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern RegionShaoguan UniversityShaoguanChina
| | - Tianfang Cheng
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Qing Wei Cheang
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Xiaoyan Zhao
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Zeling Xu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Zhao‐Xun Liang
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Linghui Xu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Junxia Wang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
Liu L, Liu X, Liu L, Zhu T, Ye R, Chen H, Zhou L, Wu G, Tan L, Han J, Li R, Ma X, Deng Z. Clarification of the infection pattern of Xanthomonas citri subsp. citri on citrus fruit by artificial inoculation. PLANT METHODS 2024; 20:65. [PMID: 38725004 PMCID: PMC11080196 DOI: 10.1186/s13007-024-01190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Citrus canker is a significant bacterial disease caused by Xanthomonas citri subsp. citri (Xcc) that severely impedes the healthy development of the citrus industry. Especially when citrus fruit is infected by Xcc, it will reduce or even lost its commercial value. However, due to the prolonged fruiting cycle and intricate structure, much less research progress had been made in canker disease on fruit than on leaf. In fact, limited understanding has been achieved on canker development and the response to Xcc infection in fruit. RESULTS Herein, the progression of canker disease on sweet orange fruit was tracked in the field. Results indicated that typical lesions initially appear on the sepal, style residue, nectary disk, epicarp, and peduncle of young fruits after petal fall. The susceptibility of fruits to Xcc infection diminished as the fruit developed, with no new lesions forming at the ripening stage. The establishment of an efficient method for inoculating Xcc on fruit as well as the artificial inoculation throughout the fruit's developmental cycle clarified this infection pattern. Additionally, microscopic observations during the infection process revealed that Xcc invasion caused structural changes on the surface and cross-section of the fruit. CONCLUSIONS An efficient system for inoculation on citrus fruit with Xcc was established, by which it can serve for the evaluation of citrus germplasm for canker disease resistance and systematic research on the interactions between Xcc and citrus fruits.
Collapse
Affiliation(s)
- Lian Liu
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China
| | - Xin Liu
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China
| | - Lingyi Liu
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China
| | - Tao Zhu
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China
| | - Rongchun Ye
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China
| | - Hao Chen
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China
| | - Linglei Zhou
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China
| | - Guang Wu
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China
| | - Limei Tan
- Chenzhou Institute of Agricultural Science, Chenzhou, 423000, China
- NanLing Institute of Citrus Industry, Chenzhou, 423000, China
| | - Jian Han
- Hunan Academy of Agricultural Sciences, Hunan Horticultural Research Institute, Changsha, 410125, China
| | - Ronghua Li
- Comprehensive Experimental Station of Navel Sweet Orange in South Hunan, Chenzhou, 424200, China
| | - Xianfeng Ma
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China.
| | - Ziniu Deng
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
- NanLing Institute of Citrus Industry, Chenzhou, 423000, China.
| |
Collapse
|
3
|
Gaurav I, Thakur A, Kumar G, Long Q, Zhang K, Sidu RK, Thakur S, Sarkar RK, Kumar A, Iyaswamy A, Yang Z. Delivery of Apoplastic Extracellular Vesicles Encapsulating Green-Synthesized Silver Nanoparticles to Treat Citrus Canker. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1306. [PMID: 37110891 PMCID: PMC10146377 DOI: 10.3390/nano13081306] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The citrus canker pathogen Xanthomonas axonopodis has caused severe damage to citrus crops worldwide, resulting in significant economic losses for the citrus industry. To address this, a green synthesis method was used to develop silver nanoparticles with the leaf extract of Phyllanthus niruri (GS-AgNP-LEPN). This method replaces the need for toxic reagents, as the LEPN acts as a reducing and capping agent. To further enhance their effectiveness, the GS-AgNP-LEPN were encapsulated in extracellular vesicles (EVs), nanovesicles with a diameter of approximately 30-1000 nm naturally released from different sources, including plant and mammalian cells, and found in the apoplastic fluid (APF) of leaves. When compared to a regular antibiotic (ampicillin), the delivery of APF-EV-GS-AgNP-LEPN and GS-AgNP-LEPN to X. axonopodis pv. was shown to have more significant antimicrobial activity. Our analysis showed the presence of phyllanthin and nirurinetin in the LEPN and found evidence that both could be responsible for antimicrobial activity against X. axonopodis pv. Ferredoxin-NADP+ reductase (FAD-FNR) and the effector protein XopAI play a crucial role in the survival and virulence of X. axonopodis pv. Our molecular docking studies showed that nirurinetin could bind to FAD-FNR and XopAI with high binding energies (-10.32 kcal/mol and -6.13 kcal/mol, respectively) as compared to phyllanthin (-6.42 kcal/mol and -2.93 kcal/mol, respectively), which was also supported by the western blot experiment. We conclude that (a) the hybrid of APF-EV and GS-NP could be an effective treatment for citrus canker, and (b) it works via the nirurinetin-dependent inhibition of FAD-FNR and XopAI in X. axonopodis pv.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Gaurav Kumar
- Clinical Research Division, Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Qin Long
- Citrus Research Institute, Southwest University, Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Kui Zhang
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rakesh Kumar Sidu
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India
| | - Rajesh Kumar Sarkar
- Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
4
|
Qi PY, Zhang TH, Feng YM, Wang MW, Shao WB, Zeng D, Jin LH, Wang PY, Zhou X, Yang S. Exploring an Innovative Strategy for Suppressing Bacterial Plant Disease: Excavated Novel Isopropanolamine-Tailored Pterostilbene Derivatives as Potential Antibiofilm Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4899-4911. [PMID: 35437986 DOI: 10.1021/acs.jafc.2c00590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial biofilms are the root cause of persistent and chronic phytopathogenic bacterial infections. Therefore, developing novel agrochemicals that target the biofilm of phytopathogenic bacteria has been regarded as an innovative tactic to suppress their invasive infection or decrease bacterial drug resistance. In this study, a series of natural pterostilbene (PTE) derivatives were designed, and their antibacterial potency and antibiofilm ability were assessed. Notably, compound C1 displayed excellent antibacterial potency in vitro, affording an EC50 value of 0.88 μg mL-1 against Xoo (Xanthomonas oryzae pv. oryzae). C1 could significantly reduce biofilm formation and extracellular polysaccharides (EPS). Furthermore, C1 also possessed remarkable inhibitory activity against bacterial extracellular enzymes, pathogenicity, and other virulence factors. Subsequently, pathogenicity experiments were further conducted to verify the above primary outcomes. More importantly, C1 with pesticide additives displayed excellent control efficiency. Given these promising profiles, these pterostilbene derivatives can serve as novel antibiofilm agents to suppress plant pathogenic bacteria.
Collapse
Affiliation(s)
- Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ming-Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Hong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Shi Y, Yang X, Ye X, Feng J, Cheng T, Zhou X, Liu DX, Xu L, Wang J. The Methyltransferase HemK Regulates the Virulence and Nutrient Utilization of the Phytopathogenic Bacterium Xanthomonas citri Subsp. citri. Int J Mol Sci 2022; 23:ijms23073931. [PMID: 35409293 PMCID: PMC8999716 DOI: 10.3390/ijms23073931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (Xcc), seriously affects fruit quality and yield, leading to significant economic losses around the world. Understanding the mechanism of Xcc virulence is important for the effective control of Xcc infection. In this report, we investigate the role of a protein named HemK in the regulation of the virulence traits of Xcc. The hemK gene was deleted in the Xcc jx-6 background, and the ΔhemK mutant phenotypically displayed significantly decreased motility, biofilm formation, extracellular enzymes, and polysaccharides production, as well as increased sensitivity to oxidative stress and high temperatures. In accordance with the role of HemK in the regulation of a variety of virulence-associated phenotypes, the deletion of hemK resulted in reduced virulence on citrus plants as well as a compromised hypersensitive response on a non-host plant, Nicotiana benthamiana. These results indicated that HemK is required for the virulence of Xcc. To characterize the regulatory effect of hemK deletion on gene expression, RNA sequencing analysis was conducted using the wild-type Xcc jx-6 strain and its isogenic ΔhemK mutant strain, grown in XVM2 medium. Comparative transcriptome analysis of these two strains revealed that hemK deletion specifically changed the expression of several virulence-related genes associated with the bacterial secretion system, chemotaxis, and quorum sensing, and the expression of various genes related to nutrient utilization including amino acid metabolism, carbohydrate metabolism, and energy metabolism. In conclusion, our results indicate that HemK plays an essential role in virulence, the regulation of virulence factor synthesis, and the nutrient utilization of Xcc.
Collapse
Affiliation(s)
- Yu Shi
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Xiaobei Yang
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Xiaoxin Ye
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Jiaying Feng
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Tianfang Cheng
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Linghui Xu
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (L.X.); (J.W.)
| | - Junxia Wang
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (L.X.); (J.W.)
| |
Collapse
|
6
|
de Laia ML, Moreira LM, Gonçalves JF, Ferro MIT, Rodrigues ACP, dos Santos JN, Felestrino ÉB, Ferro JA. Gene expression analysis identifies hypothetical genes that may be critical during the infection process of Xanthomonas citri subsp. citri. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
7
|
Wei C, Ding T, Chang C, Yu C, Li X, Liu Q. Global Regulator PhoP is Necessary for Motility, Biofilm Formation, Exoenzyme Production and Virulence of Xanthomonas citri Subsp. citri on Citrus Plants. Genes (Basel) 2019; 10:genes10050340. [PMID: 31064142 PMCID: PMC6562643 DOI: 10.3390/genes10050340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 01/27/2023] Open
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri is one of the most important bacterial diseases of citrus, impacting both plant growth and fruit quality. Identifying and elucidating the roles of genes associated with pathogenesis has aided our understanding of the molecular basis of citrus-bacteria interactions. However, the complex virulence mechanisms of X. citri subsp. citri are still not well understood. In this study, we characterized the role of PhoP in X. citri subsp. citri using a phoP deletion mutant, ΔphoP. Compared with wild-type strain XHG3, ΔphoP showed reduced motility, biofilm formation, as well as decreased production of cellulase, amylase, and polygalacturonase. In addition, the virulence of ΔphoP on citrus leaves was significantly decreased. To further understand the virulence mechanisms of X. citri subsp. citri, high-throughput RNA sequencing technology (RNA-Seq) was used to compare the transcriptomes of the wild-type and mutant strains. Analysis revealed 1017 differentially-expressed genes (DEGs), of which 614 were up-regulated and 403 were down-regulated in ΔphoP. Gene ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses suggested that the DEGs were enriched in flagellar assembly, two-component systems, histidine metabolism, bacterial chemotaxis, ABC transporters, and bacterial secretion systems. Our results showed that PhoP activates the expression of a large set of virulence genes, including 22 type III secretion system genes and 15 type III secretion system effector genes, as well as several genes involved in chemotaxis, and flagellar and histidine biosynthesis. Two-step reverse-transcription polymerase chain reaction analysis targeting 17 genes was used to validate the RNA-seq data, and confirmed that the expression of all 17 genes, except for that of virB1, decreased significantly. Our results suggest that PhoP interacts with a global signaling network to co-ordinate the expression of multiple virulence factors involved in modification and adaption to the host environment during infection.
Collapse
Affiliation(s)
- Chudan Wei
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Tian Ding
- Guangzhou Airport Entry-Exit Inspection and Quarantine Bureau, Guangzhou 510800, China.
| | - Changqing Chang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou 510642, China.
| | - Chengpeng Yu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xingwei Li
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qiongguang Liu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou 510642, China.
| |
Collapse
|
8
|
HrpE, the major component of the Xanthomonas type three protein secretion pilus, elicits plant immunity responses. Sci Rep 2018; 8:9842. [PMID: 29959345 PMCID: PMC6026121 DOI: 10.1038/s41598-018-27869-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Like several pathogenic bacteria, Xanthomonas infect host plants through the secretion of effector proteins by the Hrp pilus of the Type Three Protein Secretion System (T3SS). HrpE protein was identified as the major structural component of this pilus. Here, using the Xanthomonas citri subsp. citri (Xcc) HrpE as a model, a novel role for this protein as an elicitor of plant defense responses was found. HrpE triggers defense responses in host and non-host plants revealed by the development of plant lesions, callose deposition, hydrogen peroxide production and increase in the expression levels of genes related to plant defense responses. Moreover, pre-infiltration of citrus or tomato leaves with HrpE impairs later Xanthomonas infections. Particularly, HrpE C-terminal region, conserved among Xanthomonas species, was sufficient to elicit these responses. HrpE was able to interact with plant Glycine-Rich Proteins from citrus (CsGRP) and Arabidopsis (AtGRP-3). Moreover, an Arabidopsis atgrp-3 knockout mutant lost the capacity to respond to HrpE. This work demonstrate that plants can recognize the conserved C-terminal region of the T3SS pilus HrpE protein as a danger signal to defend themselves against Xanthomonas, triggering defense responses that may be mediated by GRPs.
Collapse
|
9
|
Ficarra FA, Grandellis C, Garavaglia BS, Gottig N, Ottado J. Bacterial and plant natriuretic peptides improve plant defence responses against pathogens. MOLECULAR PLANT PATHOLOGY 2018; 19:801-811. [PMID: 28401640 PMCID: PMC6638127 DOI: 10.1111/mpp.12560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 05/23/2023]
Abstract
Plant natriuretic peptides (PNPs) have been implicated in the regulation of ions and water homeostasis, and their participation in the plant immune response has also been proposed. Xanthomonas citri ssp. citri contains a gene encoding a PNP-like protein (XacPNP) which has no homologues in other bacteria. XacPNP mimics its Arabidopsis thaliana homologue AtPNP-A by modifying host responses to create favourable conditions for pathogen survival. However, the ability of XacPNP to induce plant defence responses has not been investigated. In order to study further the role of XacPNP in vivo, A. thaliana lines over-expressing XacPNP, lines over-expressing AtPNP-A and AtPNP-A-deficient plants were generated. Plants over-expressing XacPNP or AtPNP-A showed larger stomatal aperture and were more resistant to saline or oxidative stress than were PNP-deficient lines. In order to study further the role of PNP in biotic stress responses, A. thaliana leaves were infiltrated with pure recombinant XacPNP, and showed enhanced expression of genes related to the defence response and a higher resistance to pathogen infections. Moreover, AtPNP-A expression increased in A. thaliana on Pseudomonas syringae pv. tomato (Pst) infection. This evidence led us to analyse the responses of the transgenic plants to pathogens. Plants over-expressing XacPNP or AtPNP-A were more resistant to Pst infection than control plants, whereas PNP-deficient plants were more susceptible and showed a stronger hypersensitive response when challenged with non-host bacteria. Therefore, XacPNP, acquired by horizontal gene transfer, is able to mimic PNP functions, even with an increase in plant defence responses.
Collapse
Affiliation(s)
- Florencia A. Ficarra
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Carolina Grandellis
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Betiana S. Garavaglia
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| |
Collapse
|
10
|
Mutka AM, Fentress SJ, Sher JW, Berry JC, Pretz C, Nusinow DA, Bart R. Quantitative, Image-Based Phenotyping Methods Provide Insight into Spatial and Temporal Dimensions of Plant Disease. PLANT PHYSIOLOGY 2016; 172:650-660. [PMID: 27443602 PMCID: PMC5047107 DOI: 10.1104/pp.16.00984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 05/25/2023]
Abstract
Plant disease symptoms exhibit complex spatial and temporal patterns that are challenging to quantify. Image-based phenotyping approaches enable multidimensional characterization of host-microbe interactions and are well suited to capture spatial and temporal data that are key to understanding disease progression. We applied image-based methods to investigate cassava bacterial blight, which is caused by the pathogen Xanthomonas axonopodis pv. manihotis (Xam). We generated Xam strains in which individual predicted type III effector (T3E) genes were mutated and applied multiple imaging approaches to investigate the role of these proteins in bacterial virulence. Specifically, we quantified bacterial populations, water-soaking disease symptoms, and pathogen spread from the site of inoculation over time for strains with mutations in avrBs2, xopX, and xopK as compared to wild-type Xam ∆avrBs2 and ∆xopX both showed reduced growth in planta and delayed spread through the vasculature system of cassava. ∆avrBs2 exhibited reduced water-soaking symptoms at the site of inoculation. In contrast, ∆xopK exhibited enhanced induction of disease symptoms at the site of inoculation but reduced spread through the vasculature. Our results highlight the importance of adopting a multipronged approach to plant disease phenotyping to more fully understand the roles of T3Es in virulence. Finally, we demonstrate that the approaches used in this study can be extended to many host-microbe systems and increase the dimensions of phenotype that can be explored.
Collapse
Affiliation(s)
- Andrew M Mutka
- Donald Danforth Plant Science Center, Saint Louis, MO 63132
| | | | - Joel W Sher
- Donald Danforth Plant Science Center, Saint Louis, MO 63132
| | | | - Chelsea Pretz
- Donald Danforth Plant Science Center, Saint Louis, MO 63132
| | | | - Rebecca Bart
- Donald Danforth Plant Science Center, Saint Louis, MO 63132
| |
Collapse
|
11
|
Identification of an Extracellular Endoglucanase That Is Required for Full Virulence in Xanthomonas citri subsp. citri. PLoS One 2016; 11:e0151017. [PMID: 26950296 PMCID: PMC4780785 DOI: 10.1371/journal.pone.0151017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 02/23/2016] [Indexed: 01/04/2023] Open
Abstract
Xanthomonas citri subsp. citri causes citrus canker disease, which is characterized by the formation of water-soaked lesions, white or yellow spongy pustules and brown corky canker. In this work, we report the contribution of extracellular endoglucanase to canker development during infection. The ectopic expression of nine putative cellulases in Escherichia coli indicated that two endoglucanases, BglC3 and EngXCA, show carboxymethyl cellulase activity. Both bglC3 and engXCA genes were transcribed in X. citri subsp. citri, however, only BglC3 protein was detected outside the cell in western blot analysis. The deletion of bglC3 gene resulted in complete loss of extracellular carboxymethyl cellulase activity and delayed the onset of canker symptoms in both infiltration- and wound-inoculation assays. When growing in plant tissue, the cell density of bglC3 mutant was lower than that of the wild type. Our data demonstrated that BglC3 is an extracellular endoglucanase required for the full virulence of X. citri subsp. citri.
Collapse
|
12
|
Zhang Y, Jalan N, Zhou X, Goss E, Jones JB, Setubal JC, Deng X, Wang N. Positive selection is the main driving force for evolution of citrus canker-causing Xanthomonas. THE ISME JOURNAL 2015; 9:2128-38. [PMID: 25689023 PMCID: PMC4579464 DOI: 10.1038/ismej.2015.15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022]
Abstract
Understanding the evolutionary history and potential of bacterial pathogens is critical to prevent the emergence of new infectious bacterial diseases. Xanthomonas axonopodis subsp. citri (Xac) (synonym X. citri subsp. citri), which causes citrus canker, is one of the hardest-fought plant bacterial pathogens in US history. Here, we sequenced 21 Xac strains (14 XacA, 3 XacA* and 4 XacA(w)) with different host ranges from North America and Asia and conducted comparative genomic and evolutionary analyses. Our analyses suggest that acquisition of beneficial genes and loss of detrimental genes most likely allowed XacA to infect a broader range of hosts as compared with XacA(w) and XacA*. Recombination was found to have occurred frequently on the relative ancient branches, but rarely on the young branches of the clonal genealogy. The ratio of recombination/mutation ρ/θ was 0.0790±0.0005, implying that the Xac population was clonal in structure. Positive selection has affected 14% (395 out of 2822) of core genes of the citrus canker-causing Xanthomonas. The genes affected are enriched in 'carbohydrate transport and metabolism' and 'DNA replication, recombination and repair' genes (P<0.05). Many genes related to virulence, especially genes involved in the type III secretion system and effectors, are affected by positive selection, further highlighting the contribution of positive selection to the evolution of citrus canker-causing Xanthomonas. Our results suggest that both metabolism and virulence genes provide advantages to endow XacA with higher virulence and a wider host range. Our analysis advances our understanding of the genomic basis of specialization by positive selection in bacterial evolution.
Collapse
Affiliation(s)
- Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, USA
| | - Neha Jalan
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, USA
| | - Xiaofeng Zhou
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, USA
| | - Erica Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Xiaoling Deng
- Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
13
|
The Amino Acid Arginine 210 of the Response Regulator HrpG of Xanthomonas citri subsp. citri Is Required for HrpG Function in Virulence. PLoS One 2015; 10:e0125516. [PMID: 25961560 PMCID: PMC4427454 DOI: 10.1371/journal.pone.0125516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 03/24/2015] [Indexed: 11/19/2022] Open
Abstract
Xanthomonas citri subsp. citri colonizes its hosts through the trafficking of effector proteins to the plant cell by the type III protein secretion system. In X. citri subsp. citri, as in other plant pathogens, the hrp cluster encodes the type III protein secretion system and is regulated by the transcription factors HrpG and HrpX. HrpG belongs to the OmpR family's response regulator of EnvZ/OmpR two-component signal transduction system. Here, we show that the arginine 210 residue is crucial for the transcriptional activity of HrpG revealed by the absence of disease in host plants and hypersensitive response in non-host plants when a strain carrying this point mutation is used in plant infiltration assays. Also, this strain showed decreased expression levels of hrp genes in bacteria grown in culture or when they were recovered from citrus leaves. Moreover, we show for the first time that HrpG binds to both hrpX and its own promoter, and the change of the arginine 210 by a cysteine does not prevent the binding to both promoters. Nevertheless, in vitro hrpX transcription was observed only with HrpG whereas no transcription was detected with the R210C mutant. HrpG was able to interact with itself as well as with the mutant R210C suggesting that it functions as a dimer. The mutant protein R210C showed altered protease sensitivity, suggesting that Arg210 is essential for protein active conformation and thus for transcriptional activity. Our results indicate that arginine 210 in HrpG, as it may occur with this conserved residue in other members of this family of response regulators, is not required for DNA binding whereas is essential for hrp genes transcription and therefore for pathogenicity and HR induction.
Collapse
|
14
|
Identification of seven novel virulence genes from Xanthomonas citri subsp. citri by Tn5-based random mutagenesis. J Microbiol 2015; 53:330-6. [PMID: 25935304 DOI: 10.1007/s12275-015-4589-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/03/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
Abstract
To identify novel virulence genes, a mutant library of Xanthomonas citri subsp. citri 29-1 was produced using EZ-Tn5 transposon and the mutants were inoculated into susceptible grapefruit. Forty mutants with altered virulence phenotypes were identified. Nine of the mutants showed a complete loss of citrus canker induction, and the other 31 mutants resulted in attenuated canker symptoms. Southern blot analysis revealed that each of the mutants carried a single copy of Tn5. The flanking sequence was identified by plasmid rescue and 18 different ORFs were identified in the genome sequence. Of these 18 ORFs, seven had not been previously associated with the virulence of X. citri subsp. citri and were therefore confirmed by complementation analysis. Real-time PCR analysis showed that the seven genes were upregulated when the bacteria were grown in citrus plants, suggesting that the expression of these genes was essential for canker development.
Collapse
|
15
|
Oliveira MC, Teixeira RD, Andrade MO, Pinheiro GMS, Ramos CHI, Farah CS. Cooperative substrate binding by a diguanylate cyclase. J Mol Biol 2014; 427:415-32. [PMID: 25463434 DOI: 10.1016/j.jmb.2014.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/12/2014] [Accepted: 11/15/2014] [Indexed: 01/17/2023]
Abstract
XAC0610, from Xanthomonas citri subsp. citri, is a large multi-domain protein containing one GAF (cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA) domain, four PAS (Per-Arnt-Sim) domains and one GGDEF domain. This protein has a demonstrable in vivo and in vitro diguanylate cyclase (DGC) activity that leads to the production of cyclic di-GMP (c-di-GMP), a ubiquitous bacterial signaling molecule. Analysis of a XacΔ0610 knockout strain revealed that XAC0610 plays a role in the regulation of Xac motility and resistance to H2O2. Site-directed mutagenesis of a conserved DGC lysine residue (Lys759 in XAC0610) resulted in a severe reduction in XAC0610 DGC activity. Furthermore, experimental and in silico analyses suggest that XAC0610 is not subject to allosteric product inhibition, a common regulatory mechanism for DGC activity control. Instead, steady-state kinetics of XAC0610 DGC activity revealed a positive cooperative effect of the GTP substrate with a dissociation constant for the binding of the first GTP molecule (K1) approximately 5× greater than the dissociation constant for the binding of the second GTP molecule (K2). We present a general kinetics scheme that should be used when analyzing DGC kinetics data and propose that cooperative GTP binding could be a common, though up to now overlooked, feature of these enzymes that may in some cases offer a physiologically relevant mechanism for regulation of DGC activity in vivo.
Collapse
Affiliation(s)
- Maycon C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil
| | - Raphael D Teixeira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil
| | - Maxuel O Andrade
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil
| | - Glaucia M S Pinheiro
- Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil
| | - Chuck S Farah
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil.
| |
Collapse
|
16
|
Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner–Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. ACTA ACUST UNITED AC 2014; 10:2663-76. [DOI: 10.1039/c4mb00198b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex metabolic flux pattern ofX. campestris.
Collapse
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Heiko Neuweger
- Computational Genomics
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Germany
| | - Tony Francis Watt
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Bielefeld, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Christoph Wittmann
- Institut für Systembiotechnologie
- Universität des Saarlandes
- Saarbrücken, Germany
| | - Karsten Niehaus
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Frank-Jörg Vorhölter
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
- Institut für Genomforschung und Systembiologie
| |
Collapse
|
17
|
Soprano AS, Abe VY, Smetana JHC, Benedetti CE. Citrus MAF1, a repressor of RNA polymerase III, binds the Xanthomonas citri canker elicitor PthA4 and suppresses citrus canker development. PLANT PHYSIOLOGY 2013; 163:232-42. [PMID: 23898043 PMCID: PMC3762644 DOI: 10.1104/pp.113.224642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/29/2013] [Indexed: 05/23/2023]
Abstract
Transcription activator-like (TAL) effectors from Xanthomonas species pathogens act as transcription factors in plant cells; however, how TAL effectors activate host transcription is unknown. We found previously that TAL effectors of the citrus canker pathogen Xanthomonas citri, known as PthAs, bind the carboxyl-terminal domain of the sweet orange (Citrus sinensis) RNA polymerase II (Pol II) and inhibit the activity of CsCYP, a cyclophilin associated with the carboxyl-terminal domain of the citrus RNA Pol II that functions as a negative regulator of cell growth. Here, we show that PthA4 specifically interacted with the sweet orange MAF1 (CsMAF1) protein, an RNA polymerase III (Pol III) repressor that controls ribosome biogenesis and cell growth in yeast (Saccharomyces cerevisiae) and human. CsMAF1 bound the human RNA Pol III and rescued the yeast maf1 mutant by repressing tRNA(His) transcription. The expression of PthA4 in the maf1 mutant slightly restored tRNA(His) synthesis, indicating that PthA4 counteracts CsMAF1 activity. In addition, we show that sweet orange RNA interference plants with reduced CsMAF1 levels displayed a dramatic increase in tRNA transcription and a marked phenotype of cell proliferation during canker formation. Conversely, CsMAF1 overexpression was detrimental to seedling growth, inhibited tRNA synthesis, and attenuated canker development. Furthermore, we found that PthA4 is required to elicit cankers in sweet orange leaves and that depletion of CsMAF1 in X. citri-infected tissues correlates with the development of hyperplastic lesions and the presence of PthA4. Considering that CsMAF1 and CsCYP function as canker suppressors in sweet orange, our data indicate that TAL effectors from X. citri target negative regulators of RNA Pol II and Pol III to coordinately increase the transcription of host genes involved in ribosome biogenesis and cell proliferation.
Collapse
|
18
|
Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L. Variations in type III effector repertoires, pathological phenotypes and host range of Xanthomonas citri pv. citri pathotypes. MOLECULAR PLANT PATHOLOGY 2013; 14:483-96. [PMID: 23437976 PMCID: PMC6638789 DOI: 10.1111/mpp.12019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The mechanisms determining the host range of Xanthomonas are still undeciphered, despite much interest in their potential roles in the evolution and emergence of plant pathogenic bacteria. Xanthomonas citri pv. citri (Xci) is an interesting model of host specialization because of its pathogenic variants: pathotype A strains infect a wide range of Rutaceous species, whereas pathotype A*/A(W) strains have a host range restricted to Mexican lime (Citrus aurantifolia) and alemow (Citrus macrophylla). Based on a collection of 55 strains representative of Xci worldwide diversity assessed by amplified fragment length polymorphism (AFLP), we investigated the distribution of type III effectors (T3Es) in relation to host range. We examined the presence of 66 T3Es from xanthomonads in Xci and identified a repertoire of 28 effectors, 26 of which were shared by all Xci strains, whereas two (xopAG and xopC1) were present only in some A*/A(W) strains. We found that xopAG (=avrGf1) was present in all A(W) strains, but also in three A* strains genetically distant from A(W) , and that all xopAG-containing strains induced the hypersensitive response (HR) on grapefruit and sweet orange. The analysis of xopAD and xopAG suggested horizontal transfer between X. citri pv. bilvae, another citrus pathogen, and some Xci strains. A strains were genetically less diverse, induced identical phenotypic responses and possessed indistinguishable T3E repertoires. Conversely, A*/A(W) strains exhibited a wider genetic diversity in which clades correlated with geographical origin and T3E repertoire, but not with pathogenicity, according to T3E deletion experiments. Our data outline the importance of taking into account the heterogeneity of Xci A*/A(W) strains when analysing the mechanisms of host specialization.
Collapse
Affiliation(s)
- Aline Escalon
- UMR PVBMT, CIRAD, F-97410 Saint-Pierre, La Réunion, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|