1
|
Wen Y, Dungan CM, Mobley CB, Valentino T, von Walden F, Murach KA. Nucleus Type-Specific DNA Methylomics Reveals Epigenetic "Memory" of Prior Adaptation in Skeletal Muscle. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab038. [PMID: 34870208 PMCID: PMC8636928 DOI: 10.1093/function/zqab038] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Using a mouse model of conditional and inducible in vivo fluorescent myonuclear labeling (HSA-GFP), sorting purification of nuclei, low-input reduced representation bisulfite sequencing (RRBS), and a translatable and reversible model of exercise (progressive weighted wheel running, PoWeR), we provide the first nucleus type-specific epigenetic information on skeletal muscle adaptation and detraining. Adult (>4 mo) HSA-GFP mice performed PoWeR for 8 wk then detrained for 12 wk; age-matched untrained mice were used to control for the long duration of the study. Myonuclei and interstitial nuclei from plantaris muscles were isolated for RRBS. Relative to untrained, PoWeR caused similar myonuclear CpG hypo- and hyper-methylation of promoter regions and substantial hypomethylation in interstitial nuclear promoters. Over-representation analysis of promoters revealed a larger number of hyper- versus hypo-methylated pathways in both nuclear populations after training and evidence for reciprocal regulation of methylation between nucleus types, with hypomethylation of promoter regions in Wnt signaling-related genes in myonuclei and hypermethylation in interstitial nuclei. After 12 wk of detraining, promoter CpGs in documented muscle remodeling-associated genes and pathways that were differentially methylated immediately after PoWeR were persistently differentially methylated in myonuclei, along with long-term promoter hypomethylation in interstitial nuclei. No enduring gene expression changes in muscle tissue were observed using RNA-sequencing. Upon 4 wk of retraining, mice that trained previously grew more at the whole muscle and fiber type-specific cellular level than training naïve mice, with no difference in myonuclear number. Muscle nuclei have a methylation epi-memory of prior training that may augment muscle adaptability to retraining.
Collapse
Affiliation(s)
- Yuan Wen
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA,The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA,College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - C Brooks Mobley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA,The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Taylor Valentino
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA,The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm 171 77, Sweden
| | | |
Collapse
|
2
|
Hansson KA, Eftestøl E, Bruusgaard JC, Juvkam I, Cramer AW, Malthe-Sørenssen A, Millay DP, Gundersen K. Myonuclear content regulates cell size with similar scaling properties in mice and humans. Nat Commun 2020; 11:6288. [PMID: 33293572 PMCID: PMC7722898 DOI: 10.1038/s41467-020-20057-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Muscle fibers are the largest cells in the body, and one of its few syncytia. Individual cell sizes are variable and adaptable, but what governs cell size has been unclear. We find that muscle fibers are DNA scarce compared to other cells, and that the nuclear number (N) adheres to the relationship N = aVb where V is the cytoplasmic volume. N invariably scales sublinearly to V (b < 1), making larger cells even more DNA scarce. N scales linearly to cell surface in adult humans, in adult and developing mice, and in mice with genetically reduced N, but in the latter the relationship eventually fails when they reach adulthood with extremely large myonuclear domains. Another exception is denervation-atrophy where nuclei are not eliminated. In conclusion, scaling exponents are remarkably similar across species, developmental stages and experimental conditions, suggesting an underlying scaling law where DNA-content functions as a limiter of muscle cell size.
Collapse
Affiliation(s)
- Kenth-Arne Hansson
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Inga Juvkam
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alyssa W Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Anders Malthe-Sørenssen
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | | |
Collapse
|
3
|
Landry NM, Dixon IMC. Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: Looking beyond TGF-β. Cell Signal 2020; 76:109802. [PMID: 33017619 DOI: 10.1016/j.cellsig.2020.109802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022]
Abstract
Cardiac fibroblast activation to hyper-synthetic myofibroblasts following a pathological stimulus or in response to a substrate with increased stiffness may be a key tipping point for the evolution of cardiac fibrosis. Cardiac fibrosis per se is associated with progressive loss of heart pump function and is a primary contributor to heart failure. While TGF-β is a common cytokine stimulus associated with fibroblast activation, a druggable target to quell this driver of fibrosis has remained an elusive therapeutic goal due to its ubiquitous use by different cell types and also in the signaling complexity associated with SMADs and other effector pathways. More recently, mechanical stimulus of fibroblastic cells has been revealed as a major point of activation; this includes cardiac fibroblasts. Further, the complexity of TGF-β signaling has been offset by the discovery of members of the SKI family of proteins and their inherent anti-fibrotic properties. In this respect, SKI is a protein that may bind a number of TGF-β associated proteins including SMADs, as well as signaling proteins from other pathways, including Hippo. As SKI is also known to directly deactivate cardiac myofibroblasts to fibroblasts, this mode of action is a putative candidate for further study into the amelioration of cardiac fibrosis. Herein we provide a synthesis of this topic and highlight novel candidate pathways to explore in the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Natalie M Landry
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
4
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Murach KA, Fry CS, Kirby TJ, Jackson JR, Lee JD, White SH, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation. Physiology (Bethesda) 2018; 33:26-38. [PMID: 29212890 PMCID: PMC5866409 DOI: 10.1152/physiol.00019.2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Recent loss-of-function studies show that satellite cell depletion does not promote sarcopenia or unloading-induced atrophy, and does not prevent regrowth. Although overload-induced muscle fiber hypertrophy is normally associated with satellite cell-mediated myonuclear accretion, hypertrophic adaptation proceeds in the absence of satellite cells in fully grown adult mice, but not in young growing mice. Emerging evidence also indicates that satellite cells play an important role in remodeling the extracellular matrix during hypertrophy.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Christopher S Fry
- Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Tyler J Kirby
- The Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| | - Janna R Jackson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jonah D Lee
- Environment, Health, and Safety, University of Michigan, Ann Arbor, Michigan
| | - Sarah H White
- Department of Animal Science, Texas A&M University, College Station, Texas; and
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky;
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
6
|
Egner IM, Bruusgaard JC, Gundersen K. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle. Development 2017; 143:2898-906. [PMID: 27531949 DOI: 10.1242/dev.134411] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/28/2016] [Indexed: 12/18/2022]
Abstract
The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei.
Collapse
Affiliation(s)
- Ingrid M Egner
- Department of Biosciences, University of Oslo, Blindern, Oslo N-0316, Norway
| | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo, Blindern, Oslo N-0316, Norway Department of Health Sciences, Kristiania University College, P.O. Box 1190, Sentrum, Oslo N-0107, Norway
| | - Kristian Gundersen
- Department of Biosciences, University of Oslo, Blindern, Oslo N-0316, Norway
| |
Collapse
|
7
|
Gundersen K. Muscle memory and a new cellular model for muscle atrophy and hypertrophy. ACTA ACUST UNITED AC 2016; 219:235-42. [PMID: 26792335 DOI: 10.1242/jeb.124495] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Memory is a process in which information is encoded, stored, and retrieved. For vertebrates, the modern view has been that it occurs only in the brain. This review describes a cellular memory in skeletal muscle in which hypertrophy is 'remembered' such that a fibre that has previously been large, but subsequently lost its mass, can regain mass faster than naive fibres. A new cell biological model based on the literature, with the most reliable methods for identifying myonuclei, can explain this phenomenon. According to this model, previously untrained fibres recruit myonuclei from activated satellite cells before hypertrophic growth. Even if subsequently subjected to grave atrophy, the higher number of myonuclei is retained, and the myonuclei seem to be protected against the elevated apoptotic activity observed in atrophying muscle tissue. Fibres that have acquired a higher number of myonuclei grow faster when subjected to overload exercise, thus the nuclei represent a functionally important 'memory' of previous strength. This memory might be very long lasting in humans, as myonuclei are stable for at least 15 years and might even be permanent. However, myonuclei are harder to recruit in the elderly, and if the long-lasting muscle memory also exists in humans, one should consider early strength training as a public health advice. In addition, myonuclei are recruited during steroid use and encode a muscle memory, at least in rodents. Thus, extending the exclusion time for doping offenders should be considered.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Biosciences, University of Oslo, Blindernveien 31, Oslo N0316, Norway
| |
Collapse
|
8
|
DNA vaccines: MHC II-targeted vaccine protein produced by transfected muscle fibres induces a local inflammatory cell infiltrate in mice. PLoS One 2014; 9:e108069. [PMID: 25299691 PMCID: PMC4191975 DOI: 10.1371/journal.pone.0108069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 08/25/2014] [Indexed: 01/27/2023] Open
Abstract
Vaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined. Here we have constructed DNA vaccines that express the fluorescent protein mCherry, a strategy which allowed tracking of vaccine proteins. Transfected muscle fibres in mice were visualized, and their relationship to infiltrating mononuclear cells could be determined. Interestingly, muscle fibers that produced MHC class II-specific dimeric vaccine proteins with mCherry were for weeks surrounded by a localized intense cellular infiltrate composed of CD45+, MHC class II+ and CD11b+ cells. Increasing numbers of eosinophils were observed among the infiltrating cells from day 7 after immunization. The local infiltrate surrounding mCherry+ muscle fibers was dependent on the MHC II-specificity of the vaccine proteins since the control, a non-targeted vaccine protein, failed to induce similar infiltrates. Chemokines measured on day 3 in immunized muscle indicate both a DNA effect and an electroporation effect. No influence of targeting was observed. These results contribute to our understanding for why targeted DNA vaccines have an improved immunogenicity.
Collapse
|
9
|
The role of satellite cells in muscle hypertrophy. J Muscle Res Cell Motil 2014; 35:3-10. [DOI: 10.1007/s10974-014-9376-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
|
10
|
Egner IM, Bruusgaard JC, Eftestøl E, Gundersen K. A cellular memory mechanism aids overload hypertrophy in muscle long after an episodic exposure to anabolic steroids. J Physiol 2013; 591:6221-30. [PMID: 24167222 DOI: 10.1113/jphysiol.2013.264457] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous strength training with or without the use of anabolic steroids facilitates subsequent re-acquisition of muscle mass even after long intervening periods of inactivity. Based on in vivo and ex vivo microscopy we here propose a cellular memory mechanism residing in the muscle cells. Female mice were treated with testosterone propionate for 14 days, inducing a 66% increase in the number of myonuclei and a 77% increase in fibre cross-sectional area. Three weeks after removing the drug, fibre size was decreased to the same level as in sham treated animals, but the number of nuclei remained elevated for at least 3 months (>10% of the mouse lifespan). At this time, when the myonuclei-rich muscles were exposed to overload-exercise for 6 days, the fibre cross-sectional area increased by 31% while control muscles did not grow significantly. We suggest that the lasting, elevated number of myonuclei constitutes a cellular memory facilitating subsequent muscle overload hypertrophy. Our findings might have consequences for the exclusion time of doping offenders. Since the ability to generate new myonuclei is impaired in the elderly our data also invites speculation that it might be beneficial to perform strength training when young in order to benefit in senescence.
Collapse
Affiliation(s)
- Ingrid M Egner
- K. Gundersen: Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316 Oslo, Norway.
| | | | | | | |
Collapse
|
11
|
Bruusgaard JC, Egner IM, Larsen TK, Dupre-Aucouturier S, Desplanches D, Gundersen K. No change in myonuclear number during muscle unloading and reloading. J Appl Physiol (1985) 2012; 113:290-6. [PMID: 22582213 DOI: 10.1152/japplphysiol.00436.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Muscle fibers are the cells in the body with the largest volume, and they have multiple nuclei serving different domains of cytoplasm. A large body of previous literature has suggested that atrophy induced by hindlimb suspension leads to a loss of "excessive" myonuclei by apoptosis. We demonstrate here that atrophy induced by hindlimb suspension does not lead to loss of myonuclei despite a strong increase in apoptotic activity of other types of nuclei within the muscle tissue. Thus hindlimb suspension turns out to be similar to other atrophy models such as denervation, nerve impulse block, and antagonist ablation. We discuss how the different outcome of various studies can be attributed to difficulties in separating myonuclei from other nuclei, and to systematic differences in passive properties between normal and unloaded muscles. During reload, after hindlimb suspension, a radial regrowth is observed, which has been believed to be accompanied by recruitment of new myonuclei from satellite cells. The lack of nuclear loss during unloading, however, puts these findings into question. We observed that reload led to an increase in cross sectional area of 59%, and fiber size was completely restored to the presuspension levels. Despite this notable growth there was no increase in the number of myonuclei. Thus radial regrowth seems to differ from de novo hypertrophy in that nuclei are only added during the latter. We speculate that the number of myonuclei might reflect the largest size the muscle fibers have had in its previous history.
Collapse
Affiliation(s)
- J C Bruusgaard
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
12
|
Matthews GDK, Huang CLH, Sun L, Zaidi M. Translational musculoskeletal science: is sarcopenia the next clinical target after osteoporosis? Ann N Y Acad Sci 2012; 1237:95-105. [PMID: 22082371 DOI: 10.1111/j.1749-6632.2011.06236.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Translational medicine must increasingly turn its attention to the aging population and the musculoskeletal deterioration that it entails. The latter involves the integrated function of both muscle and bone. Musculoskeletal science has an established interest in such problems in relationship to osteoporosis of bone. The introductory concepts in this paper consider the extent to which loss of muscle mass and function, or sarcopenia, will be the next major translational target. Its epidemiology shows parallels with that of osteoporosis, and the two tissues have a close functional relationship. Its etiology likely involves a loss of motor units combined with cellular signaling and endocrine changes. Finally, the possibility of modification of these physiological changes in the context of management of the sarcopenic condition is considered.
Collapse
|
13
|
Nguyen MAT, Joya JE, Kee AJ, Domazetovska A, Yang N, Hook JW, Lemckert FA, Kettle E, Valova VA, Robinson PJ, North KN, Gunning PW, Mitchell CA, Hardeman EC. Hypertrophy and dietary tyrosine ameliorate the phenotypes of a mouse model of severe nemaline myopathy. ACTA ACUST UNITED AC 2011; 134:3516-29. [PMID: 22067542 DOI: 10.1093/brain/awr274] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nemaline myopathy, the most common congenital myopathy, is caused by mutations in genes encoding thin filament and thin filament-associated proteins in skeletal muscles. Severely affected patients fail to survive beyond the first year of life due to severe muscle weakness. There are no specific therapies to combat this muscle weakness. We have generated the first knock-in mouse model for severe nemaline myopathy by replacing a normal allele of the α-skeletal actin gene with a mutated form (H40Y), which causes severe nemaline myopathy in humans. The Acta1(H40Y) mouse has severe muscle weakness manifested as shortened lifespan, significant forearm and isolated muscle weakness and decreased mobility. Muscle pathologies present in the human patients (e.g. nemaline rods, fibre atrophy and increase in slow fibres) were detected in the Acta1(H40Y) mouse, indicating that it is an excellent model for severe nemaline myopathy. Mating of the Acta1(H40Y) mouse with hypertrophic four and a half LIM domains protein 1 and insulin-like growth factor-1 transgenic mice models increased forearm strength and mobility, and decreased nemaline pathologies. Dietary L-tyrosine supplements also alleviated the mobility deficit and decreased the chronic repair and nemaline rod pathologies. These results suggest that L-tyrosine may be an effective treatment for muscle weakness and immobility in nemaline myopathy.
Collapse
Affiliation(s)
- Mai-Anh T Nguyen
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mendias CL, Kayupov E, Bradley JR, Brooks SV, Claflin DR. Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation. J Appl Physiol (1985) 2011; 111:185-91. [PMID: 21565991 PMCID: PMC3137541 DOI: 10.1152/japplphysiol.00126.2011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/05/2011] [Indexed: 12/31/2022] Open
Abstract
Myostatin (MSTN) is a member of the transforming growth factor-β superfamily of cytokines and is a negative regulator of skeletal muscle mass. Compared with MSTN(+/+) mice, the extensor digitorum longus muscles of MSTN(-/-) mice exhibit hypertrophy, hyperplasia, and greater maximum isometric force production (F(o)), but decreased specific maximum isometric force (sF(o); F(o) normalized by muscle cross-sectional area). The reason for the reduction in sF(o) was not known. Studies in myotubes indicate that inhibiting myostatin may increase muscle mass by decreasing the expression of the E3 ubiquitin ligase atrogin-1, which could impact the force-generating capacity and size of muscle fibers. To gain a greater understanding of the influence of myostatin on muscle contractility, we determined the impact of myostatin deficiency on the contractility of permeabilized muscle fibers and on the levels of atrogin-1 and ubiquitinated myosin heavy chain in whole muscle. We hypothesized that single fibers from MSTN(-/-) mice have a greater F(o), but no difference in sF(o), and a decrease in atrogin-1 and ubiquitin-tagged myosin heavy chain levels. The results indicated that fibers from MSTN(-/-) mice have a greater cross-sectional area, but do not have a greater F(o) and have a sF(o) that is significantly lower than fibers from MSTN(+/+) mice. The extensor digitorum longus muscles from MSTN(-/-) mice also have reduced levels of atrogin-1 and ubiquitinated myosin heavy chain. These findings suggest that myostatin inhibition in otherwise healthy muscle increases the size of muscle fibers and decreases atrogin-1 levels, but does not increase the force production of individual muscle fibers.
Collapse
Affiliation(s)
- Christopher L Mendias
- School of Kinesiology, Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl., BSRB 2017, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | |
Collapse
|
15
|
Isaacs J, Loveland K, Mallu S, Adams S, Wodicka R. The use of anabolic steroids as a strategy in reversing denervation atrophy after delayed nerve repair. Hand (N Y) 2011; 6:142-8. [PMID: 22654697 PMCID: PMC3092896 DOI: 10.1007/s11552-011-9331-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Denervation atrophy is one factor contributing to suboptimal motor recovery following major nerve repair. The hypertrophic effects of anabolic steroids may have a potential role in improving reinnervated muscle strength after delayed repair. METHODS Forty-five immature female Sprague-Dawley rats underwent three surgeries and final testing. The tibial nerve was transected in the hind limb of the experimental (n = 13) and control (n = 14) animals and exposed, but not transected in the sham (n = 15) group animals. Three months later, once denervation atrophy was established, all transected nerves underwent repair using an autograft from the contralateral limb. After waiting an additional month to allow axonal regeneration to the gastrocnemius muscles, the rodents were implanted with a subcutaneous infusion pump. For the experimental group, nandrolone was administered over the next 30 days via this pump, while the control and sham group pumps were filled with carrier only. RESULTS Final testing, 6 weeks later, showed improved muscle contraction strength in the steroid-treated animals (72% of sham group strength) compared to control animals (57% of sham group strength, p < 0.5). A trend towards increased weight and muscle belly diameter in the steroid-treated group was not statistically significant. CONCLUSIONS These findings support the potential role of anabolic steroids in improving recovery of atrophic muscle after delayed reinnervation.
Collapse
Affiliation(s)
- Jonathan Isaacs
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Health Systems, 1200 East Broad Street, P.O. Box 980153, Richmond, VA 23298 USA
| | - Kerry Loveland
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Health Systems, 1200 East Broad Street, P.O. Box 980153, Richmond, VA 23298 USA
| | - Satya Mallu
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Health Systems, 1200 East Broad Street, P.O. Box 980153, Richmond, VA 23298 USA
| | - Scott Adams
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Health Systems, 1200 East Broad Street, P.O. Box 980153, Richmond, VA 23298 USA
| | - Ross Wodicka
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Health Systems, 1200 East Broad Street, P.O. Box 980153, Richmond, VA 23298 USA
| |
Collapse
|
16
|
Gundersen K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc 2010; 86:564-600. [PMID: 21040371 PMCID: PMC3170710 DOI: 10.1111/j.1469-185x.2010.00161.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine fashion. Induction of hypertrophy is accompanied by the satellite cells fusing to myofibres and thereby increasing the capacity for protein synthesis. These extra nuclei seem to remain part of the fibre even during subsequent atrophy as a form of muscle memory facilitating retraining. In addition to changes in myonuclear number during hypertrophy, changes in muscle fibre size seem to be caused by alterations in transcription, translation (per nucleus) and protein degradation.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
17
|
Cunnington RH, Nazari M, Dixon IM. c-Ski, Smurf2, and Arkadia as regulators of TGF-β signaling: new targets for managing myofibroblast function and cardiac fibrosisThis article is one of a selection of papers published in a special issue celebrating the 125th anniversary of the Faculty of Medicine at the University of Manitoba. Can J Physiol Pharmacol 2009; 87:764-72. [DOI: 10.1139/y09-076] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies demonstrate the critical role of the extracellular matrix in the organization of parenchymal cells in the heart. Thus, an understanding of the modes of regulation of matrix production by cardiac myofibroblasts is essential. Transforming growth factor β (TGF-β) signaling is transduced through the canonical Smad pathway, and the involvement of this pathway in matrix synthesis and other processes requires precise control. Inhibition of Smad signaling may be achieved at the receptor level through the targeting of the TGF-β type I receptors with an inhibitory Smad7 / Smurf2 complex, or at the transcriptional level through c-Ski / receptor-Smad / co-mediator Smad4 interactions. Conversely, Arkadia protein intensifies TGF-β-induced effects by marking c-Ski and inhibitory Smad7 for destruction. The study of these TGF-β mediators is essential for future treatment of fibrotic disease, and this review highlights recent relevant findings that may impact our understanding of cardiac fibrosis.
Collapse
Affiliation(s)
- Ryan H. Cunnington
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Mansoreh Nazari
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Ian M.C. Dixon
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
18
|
Blaauw B, Canato M, Agatea L, Toniolo L, Mammucari C, Masiero E, Abraham R, Sandri M, Schiaffino S, Reggiani C. Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 2009; 23:3896-905. [DOI: 10.1096/fj.09-131870] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
| | - Marta Canato
- Department of Human Anatomy and Physiology CNR Institute of Neurosciences University of Padova Padova Italy
| | - Lisa Agatea
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
| | - Luana Toniolo
- Department of Human Anatomy and Physiology CNR Institute of Neurosciences University of Padova Padova Italy
| | - Cristina Mammucari
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
| | - Eva Masiero
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
| | - Reimar Abraham
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
- Dulbecco Telethon Institute Rome Italy
| | - Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM) Padova Italy
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
| | - Carlo Reggiani
- Department of Human Anatomy and Physiology CNR Institute of Neurosciences University of Padova Padova Italy
- Department of Biomedical Sciences CNR Institute of Neurosciences University of Padova Padova Italy
| |
Collapse
|
19
|
Hardy KM, Dillaman RM, Locke BR, Kinsey ST. A skeletal muscle model of extreme hypertrophic growth reveals the influence of diffusion on cellular design. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1855-67. [PMID: 19321701 DOI: 10.1152/ajpregu.00076.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Muscle fibers that power swimming in the blue crab Callinectes sapidus are <80 microm in diameter in juveniles but grow hypertrophically, exceeding 600 microm in adults. Therefore, intracellular diffusion distances become progressively greater as the animals grow and, in adults, vastly exceed those in most cells. This developmental trajectory makes C. sapidus an excellent model for characterization of the influence of diffusion on fiber structure. The anaerobic light fibers, which power burst swimming, undergo a prominent shift in organelle distribution with growth. Mitochondria, which require O2 and rely on the transport of small, rapidly diffusing metabolites, are evenly distributed throughout the small fibers of juveniles, but in the large fibers of adults they are located almost exclusively at the fiber periphery where O2 concentrations are high. Nuclei, which do not require O2, but rely on the transport of large, slow-moving macromolecules, have the inverse pattern: they are distributed peripherally in small fibers but are evenly distributed across the large fibers, thereby reducing diffusion path lengths for large macromolecules. The aerobic dark fibers, which power endurance swimming, have evolved an intricate network of cytoplasmically isolated, highly perfused subdivisions that create the short diffusion distances needed to meet the high aerobic ATP turnover demands of sustained contraction. However, fiber innervation patterns are the same in the dark and light fibers. Thus the dark fibers appear to have disparate functional units for metabolism (fiber subdivision) and contraction (entire fiber). Reaction-diffusion mathematical models demonstrate that diffusion would greatly constrain the rate of metabolic processes without these developmental changes in fiber structure.
Collapse
Affiliation(s)
- Kristin M Hardy
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403-5915, USA
| | | | | | | |
Collapse
|
20
|
Gundersen K, Bruusgaard JC. Nuclear domains during muscle atrophy: nuclei lost or paradigm lost? J Physiol 2008; 586:2675-81. [PMID: 18440990 DOI: 10.1113/jphysiol.2008.154369] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
According to the current paradigm, muscle nuclei serve a certain cytoplasmic domain. To preserve the domain size, it is believed that nuclei are injected from satellite cells fusing to fibres undergoing hypertrophy, and lost by apoptosis during atrophy. Based on single fibre observations in and ex vivo we suggest that nuclear domains are not as constant as is often indicated. Moreover, recent time lapse in vivo imaging of single fibres suggests that at least for the first few weeks, atrophy is not accompanied by any loss of nuclei. Apoptosis is abundant in muscle tissue during atrophy conditions, but in our opinion it has not been unequivocally demonstrated that such nuclei are myonuclei. As we see it, the preponderance of current evidence suggests that disuse atrophy is not accompanied by loss of nuclei, at least not for the first 2 months. Moreover, it has not been proven that myonuclear apoptosis does occur in permanent fibres undergoing atrophy; it seems more likely that it is confined to stromal cells and satellite cells. If muscle atrophy is not related to loss of nuclei, design of intervention therapies should focus on protein metabolism rather than regeneration from stem cells.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, N-0316 Oslo, Norway.
| | | |
Collapse
|
21
|
Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbóva G, Partridge T, Zammit P, Bunger L, Patel K. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A 2007; 104:1835-40. [PMID: 17267614 PMCID: PMC1794294 DOI: 10.1073/pnas.0604893104] [Citation(s) in RCA: 316] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lack of myostatin promotes growth of skeletal muscle, and blockade of its activity has been proposed as a treatment for various muscle-wasting disorders. Here, we have examined two independent mouse lines that harbor mutations in the myostatin gene, constitutive null (Mstn(-/-)) and compact (Berlin High Line, BEH(c/c)). We report that, despite a larger muscle mass relative to age-matched wild types, there was no increase in maximum tetanic force generation, but that when expressed as a function of muscle size (specific force), muscles of myostatin-deficient mice were weaker than wild-type muscles. In addition, Mstn(-/-) muscle contracted and relaxed faster during a single twitch and had a marked increase in the number of type IIb fibers relative to wild-type controls. This change was also accompanied by a significant increase in type IIB fibers containing tubular aggregates. Moreover, the ratio of mitochondrial DNA to nuclear DNA and mitochondria number were decreased in myostatin-deficient muscle, suggesting a mitochondrial depletion. Overall, our results suggest that lack of myostatin compromises force production in association with loss of oxidative characteristics of skeletal muscle.
Collapse
Affiliation(s)
- Helge Amthor
- Department of Paediatrics, University Hospital of Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|