1
|
Briggs K, Chrzastek K, Segovia K, Mo J, Kapczynski DR. Genetic insertion of mouse Myxovirus-resistance gene 1 increases innate resistance against both high and low pathogenic avian influenza virus by significantly decreasing replication in chicken DF1 cell line. Virology 2024; 595:110066. [PMID: 38574415 DOI: 10.1016/j.virol.2024.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Avian influenza virus (AIV) is a constant threat to animal health with recent global outbreaks resulting in the death of hundreds of millions of birds with spillover into mammals. Myxovirus-resistance (Mx) proteins are key mediators of the antiviral response that block virus replication. Mouse (Mu) Mx (Mx1) is a strong antiviral protein that interacts with the viral nucleoprotein to inhibit polymerase function. The ability of avian Mx1 to inhibit AIV is unclear. In these studies, Mu Mx1 was stably introduced into chicken DF1 cells to enhance the immune response against AIV. Following infection, titers of AIV were significantly decreased in cells expressing Mu Mx1. In addition, considerably less cytopathic effect (CPE) and matrix protein staining was observed in gene-edited cells expressing Mu Mx1, suggesting Mu Mx1 is broadly effective against multiple AIV subtypes. This work provides foundational studies for use of gene-editing to enhance innate disease resistance against AIV.
Collapse
Affiliation(s)
- Kelsey Briggs
- Exotic and Emerging Avian Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, Georgia
| | - Klaudia Chrzastek
- Exotic and Emerging Avian Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, Georgia
| | - Karen Segovia
- Exotic and Emerging Avian Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, Georgia
| | - Jongsuk Mo
- Exotic and Emerging Avian Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, Georgia
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, Georgia.
| |
Collapse
|
2
|
Zhang W, Chen Y, Yang F, Zhang H, Su T, Wang J, Zhang Y, Song X. Antiviral effect of palmatine against infectious bronchitis virus through regulation of NF-κB/IRF7/JAK-STAT signalling pathway and apoptosis. Br Poult Sci 2024; 65:119-128. [PMID: 38166582 DOI: 10.1080/00071668.2023.2296929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/29/2023] [Indexed: 01/04/2024]
Abstract
1. Infectious bronchitis virus (IBV), a gamma-coronavirus, can infect chickens of all ages and leads to an acute contact respiratory infection. This study evaluated the anti-viral activity of palmatine, a natural non-flavonoid alkaloid, against IBV in chicken embryo kidney (CEK) cells.2. The half toxic concentration (CC50) of palmatine was 672.92 μM, the half inhibitory concentration (IC50) of palmatine against IBV was 7.76 μM and the selection index (SI) was 86.74.3. Mode of action assay showed that palmatine was able to directly inactivate IBV and inhibited the adsorption, penetration and intracellular replication of IBV.4. Palmatine significantly upregulated TRAF6, TAB1 and IKK-β compared with the IBV-infected group, leading to the increased expressions of pro-inflammatory cytokines IL-1β and TNF-α in the downstream NF-κB signalling pathway.5. Palmatine significantly up-regulated the levels of MDA5, MAVS, IRF7, IFN-α and IFN-β in the IRF7 pathway, inducing type I interferon production. It up-regulated the expression of 2'5'-oligoadenylate synthase (OAS) in the JAK-STAT pathway.6. IBV infection induced cell apoptosis and palmatine-treatment delayed the process of apoptosis by regulation of the expression of apoptosis-related genes (BAX, BCL-2, CASPASE-3 and CASPASE-8).7. Palmatine could exert anti-IBV activity through regulation of NF-κB/IRF7/JAK-STAT signalling pathways and apoptosis, providing a theoretical basis for the utilisation of palmatine to treat IBV infection.
Collapse
Affiliation(s)
- W Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Y Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - F Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - H Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - T Su
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - J Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Y Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - X Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Dong X, Li Z, Zhao S, Liu J, Luo S, Zhang Y, Xu Q, Chen G, Zhang Y. Molecular cloning and expression analysis of Myxovirus resistance gene in Yangzhou goose ( Anser cygnoides domesticus). Br Poult Sci 2023:1-9. [PMID: 36637331 DOI: 10.1080/00071668.2022.2163617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Myxovirus resistance (Mx) is a protein produced by the interferon-induced natural immune response with broad spectrum antiviral function. However, the role and expression characteristics of the Mx gene in immune defence against viral infection in goose have not yet been reported.2. This study found a 2576 bp genomic sequence and a 2112 bp mRNA sequence for Mx, encoding 703 amino acids. Multiple sequence alignments of the amino acid sequences showed that the Yangzhou goose Mx (goMx) had 86.99% similarity to the mallard duck (Anas platyrhynchos).3. Tissue-specific expression profiling revealed that the expression of goMx was highest in the lung and spleen. Both poly (I:C) and GPV were found to elevate the expression of goMx. The upregulated expression of goMx was associated with interferon pathway-related genes IRF7, JAK1, STAT1, and STAT2. Furthermore, overexpression of goMx significantly activated the transcription of poly (I:C) induced TNF-α, IL-1β, IL-6, and IL-18.4. The findings of this study suggest that the goMx modulation of the antiviral response is mediated by the interferon pathway.
Collapse
Affiliation(s)
- X Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Z Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - S Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - J Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - S Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Q Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - G Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Layton DS, Mara K, Dai M, Malaver-Ortega LF, Gough TJ, Bruce K, Jenkins KA, Bean AGD. Interferon Signaling in Chickens Plays a Crucial Role in Inhibiting Influenza Replication in DF1 Cells. Microorganisms 2022; 10:133. [PMID: 35056582 PMCID: PMC8781551 DOI: 10.3390/microorganisms10010133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023] Open
Abstract
Influenza A viruses (IAV) pose a constant threat to human and poultry health. Of particular interest are the infections caused by highly pathogenic avian influenza (HPAI) viruses, such as H5N1, which cause significant production issues. In response to influenza infection, cells activate immune mechanisms that lead to increased interferon (IFN) production. To investigate how alterations in the interferon signaling pathway affect the cellular response to infection in the chicken, we used CRISPR/Cas9 to generate a chicken cell line that lacks a functional the type I interferon receptor (IFNAR1). We then assessed viral infections with the WSN strain of influenza. Cells lacking a functional IFNAR1 receptor showed reduced expression of the interferon stimulated genes (ISG) such as Protein Kinase R (PKR) and Myxovirus resistance (Mx) and were more susceptible to viral infection with WSN. We further investigated the role or IFNAR1 on low pathogenicity avian influenza (LPAI) strains (H7N9) and a HPAI strain (H5N1). Intriguingly, Ifnar-/- cells appeared more resistant than WT cells when infected with HPAI virus, potentially indicating a different interaction between H5N1 and the IFN signaling pathway. Our findings support that ChIFNAR1 is a key component of the chicken IFN signaling pathway and these data add contributions to the field of host-avian pathogen interaction and innate immunity in chickens.
Collapse
Affiliation(s)
- Daniel S. Layton
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kostlend Mara
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Meiling Dai
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Luis Fernando Malaver-Ortega
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Clayton Campus, Monash University, Clayton, VIC 3800, Australia;
| | - Tamara J. Gough
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kerri Bruce
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kristie A. Jenkins
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Andrew G. D. Bean
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| |
Collapse
|
5
|
SELVARAMESH AS, KUMAR PUSHPENDRA, MISHRA CHINMOY, BHATTACHARYA TARUNKUMAR, BHUSHAN BHARAT, TIWARI ASHOKKUMAR, SAXENA VISHESHKUMAR, SHARMA ARJAVA. Cloning, characterization and expression of GTPase effecter domain of chicken Mx1 gene. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i12.113170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Gosu V, Shin D, Song KD, Heo J, Oh JD. Molecular modeling and dynamic simulation of chicken Mx protein with the S631N polymorphism. J Biomol Struct Dyn 2020; 40:612-621. [PMID: 32962555 DOI: 10.1080/07391102.2020.1819419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myxovirus resistance (Mx) proteins are antiviral GTPases induced by type I interferons (IFNs). In chickens, a single Mx protein variant, S631N, has been suggested to possess antiviral activity. However, the impact of this variant on chicken Mx (chMx) protein structure and conformation has not been investigated. Hence, in this study, we applied computational methods such as molecular modeling, molecular dynamic simulation, inter domain motion and residue networks to examine the structure and dynamic behavior of wild-type and mutant chMx. At first, we built 3-dimensional structural models for both wild-type and mutant chMx proteins, which revealed that the structural organization of chMx was similar to that of human Mx proteins. Subsequently, molecular dynamics simulations revealed that angle variation around the hinge1 region led to the different stalk domain conformations between the wild-type and mutant chMx proteins. Domain motion analysis further suggested that the conformational differences in the loop region surrounded by the mutant residue may lead to an inclined stalk domain conformation in the mutant compared to the wild-type protein. In addition, we performed betweenness centrality analysis from residue interaction networks, to identify the crucial residues for intramolecular signal flow in chMx. The results of this study provided information on the differences in structure and dynamics between wild-type and mutant chMx, which may aid in understanding the structural features of the S631N mutant, that may be associated with chMx protein antiviral activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, Republic of Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea.,The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, Republic of Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jaeyoung Heo
- International Agricultural Development and Cooperation Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
7
|
Sánchez-González R, Ramis A, Nofrarías M, Wali N, Valle R, Pérez M, Perlas A, Majó N. Pathobiology of the highly pathogenic avian influenza viruses H7N1 and H5N8 in different chicken breeds and role of Mx 2032 G/A polymorphism in infection outcome. Vet Res 2020; 51:113. [PMID: 32912265 PMCID: PMC7488313 DOI: 10.1186/s13567-020-00835-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/27/2020] [Indexed: 11/10/2022] Open
Abstract
Chickens are highly susceptible to highly pathogenic avian influenza viruses (HPAIVs). However, the severity of infection varies depending of the viral strain and the genetic background of the host. In this study, we evaluated the pathogenesis of two HPAIVs (H7N1 and H5N8) and assessed the susceptibility to the infection of local and commercial chicken breeds from Spain. Eight chicken breeds were intranasally inoculated with 105 ELD50 of A/Chicken/Italy/5093/1999 (H7N1) or A/Goose/Spain/IA17CR02699/2017 (H5N8 clade 2.3.4.4. B) and monitored during 10 days. Chickens were highly susceptible to both HPAIVs, but H7N1 was considerably more virulent than H5N8 as demonstrated by the highest mortality rates and shortest mean death times (MDT). Both HPAIVs produced severe necrosis and intense viral replication in the central nervous system, heart and pancreas; however, the lesions and replication in other tissues were virus-dependent. High levels of viral RNA were detected by the oral route with both viruses. In contrast, a low number of H5N8-inoculated chickens shed by the cloacal route, demonstrating a different pattern of viral shedding dependent of the HPAIV. We found a high variation in the susceptibility to HPAIVs between the different chicken breeds. The birds carrying the genotype AA and AG at position 2032 in chicken Mx gene presented a slightly higher, but not significant, percentage of survival and a statistically significant longer MDT than GG individuals. Our study demonstrated that the severity of HPAI infection is largely dependent of the viral isolate and host factors, underlining the complexity of HPAI infections.
Collapse
Affiliation(s)
- Raúl Sánchez-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España. .,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.
| | - Antonio Ramis
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Miquel Nofrarías
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Nabil Wali
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Rosa Valle
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Albert Perlas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Natàlia Majó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| |
Collapse
|
8
|
Effects of infectious bursal disease virus infection on interferon and antiviral gene expression in layer chicken bursa. Microb Pathog 2020; 144:104182. [PMID: 32247644 DOI: 10.1016/j.micpath.2020.104182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
Abstract
Layer chickens were artificially challenged with infectious bursal disease virus (IBDV), and the kinetics of IFN-λ and antiviral genes in the bursa were explored using quantitative real-time PCR. Data showed that after the chickens were infected with IBDV, the virus load in the bursa of the Fabricius peaked at 96 h and gradually decreased. The relative mRNA expression levels of IFN-λ and antiviral genes (zinc-finger antiviral protein [ZAP], interferon alpha-inducible protein 6 [IFI6], laboratory of genetics and physiology 2 [LGP2], virus inhibitory protein [Viperin], and Mx) of the infected group dramatically increased at 24-168 h compared with those of the negative-infected group. Furthermore, the ZAP mRNA expression peaked at 24 h (3.97-fold). The Viperin mRNA transcript level was highest at 48 h (384.60-fold). The mRNA expression levels of IFI6 (96.31-fold), LGP2 (18.29-fold), and Mx (88.85-fold) peaked at 72 h, and that of IFN-λ was most remarkable at 96 h (2978.81-fold). Furthermore, the ZAP change rule was significantly positively correlated with the change rule of the IBDV load. The mRNA expression levels of IFN-λ and antiviral genes (ZAP, IFI6, LGP2, Viperin, and Mx) increased as the virus expression increased and then decreased. These results further corroborated that the IBDV infection seriously interfered with the chicken's innate immune response.
Collapse
|
9
|
Anjum FR, Rahman SU, Aslam MA, Qureshi AS. Comprehensive network map of transcriptional activation of chicken type I IFNs and IFN-stimulated genes. Comp Immunol Microbiol Infect Dis 2019; 68:101407. [PMID: 31877494 DOI: 10.1016/j.cimid.2019.101407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
Chicken type I interferons (type I IFNs) are key antiviral players of the chicken immune system and mediate the first line of defense against viral pathogens infecting the avian species. Recognition of viral pathogens by specific pattern recognition receptors (PRRs) induce chicken type I IFNs expression followed by their subsequent interaction to IFN receptors and induction of a variety of IFN stimulated antiviral proteins. These antiviral effectors establish the antiviral state in neighboring cells and thus protect the host from infection. Three subtypes of chicken type I IFNs; chIFN-α, chIFN-β, and a recently discovered chIFN-κ have been identified and characterized in chicken. Chicken type I IFNs are activated by various host cell pathways and constitute a major antiviral innate defense in chicken. This review will help to understand the chicken type 1 IFNs, host cellular pathways that are involved in activation of chicken type I IFNs and IFN stimulated antiviral effectors along with the gaps in knowledge which will be important for future investigation. These findings will help us to comprehend the role of chicken type I IFNs and to develop different strategies for controlling viral infection in poultry.
Collapse
Affiliation(s)
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anas Sarwar Qureshi
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
10
|
Polymorphisms of the Chicken Mx Gene Promoter and Association with Chicken Embryos' Susceptibility to Virulent Newcastle Disease Virus Challenge. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1486072. [PMID: 31687378 PMCID: PMC6794983 DOI: 10.1155/2019/1486072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/22/2022]
Abstract
Newcastle disease is a devastating viral disease of chicken in low- and middle-income countries where the backyard production system is predominant. Marker-assisted selection of chickens that are resistant to Newcastle disease virus (NDV) is the promising strategy that needs to be explored. The aim of the present study was to investigate polymorphisms of the promoter region of the chicken Mx gene and association with Kuroiler, Sasso, and local Tanzanian chicken embryos' survival variability to virulent NDV infection. Chicken embryos were initially challenged with a minimum lethal dose of virulent NDV suspension and then were followed over time to gather information on their survival variability. Using the survival data, high and less susceptible cohorts were established, and a total of 88 DNA samples from high and less susceptible groups were genotypes by sequencing. Five single-nucleotide polymorphisms (SNPs), which were previously reported, were detected. Interestingly, for the first time, the findings demonstrated the association of the promoter region of chicken myxovirus-resistance (Mx) gene polymorphisms with chicken embryos' susceptibility to the virulent NDV challenge. At the genotypic level, the SNP4 G > A mutation that was located within the IFN-stimulating response element was associated (LR: 6.97, P=0.03) with chicken embryos' susceptibility to the virulent NDV challenge. An allele G frequency was higher in the less susceptible cohort, whereas an allele A frequency was higher in the high susceptible cohort. At the haplotype level, the haplotype group ACGC was associated (OR: 9.8, 95% CI: 1.06–79.43, P=0.042) with the same trait and had a resistant effect. In conclusion, the results have demonstrated the association of chicken Mx gene promoter polymorphisms and chicken embryos' survival variability to the virulent NDV challenge, and the information is useful for breeding programs designed to develop chicken genotypes that are resistant to Newcastle disease virus.
Collapse
|
11
|
Hassanin O, Abdallah F, Mohamed MHA, Abdel Fattah DM. Influence of Marek's disease virus vaccines on chicken melanoma differentiation-associated gene 5-dependent-type I interferon signal transduction pathway with a highlight on their secondary impact on the immune responses post Newcastle disease virus vaccination. Vet Microbiol 2019; 235:248-256. [PMID: 31383309 DOI: 10.1016/j.vetmic.2019.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/24/2022]
Abstract
Marek's disease virus (MDV) leads to a lytic infection of B-lymphocytes in chickens, and also latently infects T-lymphocytes. Although Marek's disease vaccines have been widely in use, little is known about the innate immune response of this important livestock vaccine. In this study, we tested the effect of different commercially applied Marek's disease vaccines on the expression pattern of selected genes related to chicken interferon-alpha (chIFN-α) (melanoma differentiation associated gene 5 "MDA5″ dependent) signal transduction pathway. Both MDV serotype I (Rispens) and serotype III (Herpesvirus of turkey "HVT") vaccines could stimulate MDA5 dependent-type I interferon response as early as three days post vaccination in a dose-dependent manner. The stimulation continued up to 10 days in the instance of HVT vaccine and declined in the case of Rispens. Surprisingly, increasing the doses of the two vaccines led to dose-dependent down-regulation in the expression pattern of the investigated pathway, five and ten days post vaccination. Additionally, to shed the light on the consequent effect on the immune responses of the other viral vaccine, another experimental model based on Newcastle disease virus (NDV) vaccines was designed using HVT, HVT-VP2 and Rispens MDV vaccines. The three MDV vaccines were found to reduce chicken humoral immune response post NDV vaccination. However, only Rispens and HVT-VP2 had suppressive effects on the expression of MDA5-dependent-chIFN-α related cytokines. Consistent with this finding, the protection rate and NDV- humoral immune response post challenge with virulent NDV strain was lower in case of Rispens and HVT-VP2 vaccines.
Collapse
Affiliation(s)
- Ola Hassanin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Fatma Abdallah
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Mahmoud H A Mohamed
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt; Department of Clinical Studies, Collage of Veterinary, King Faisal University, Saudi Arabia
| | - Doaa M Abdel Fattah
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| |
Collapse
|
12
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
13
|
Genotype frequency contributions of Mx1 gene in eight chicken breeds under different selection pressures. 3 Biotech 2018; 8:483. [PMID: 30456017 DOI: 10.1007/s13205-018-1504-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
Chicken Mx1 gene, as a positive antiviral gene, has been reported to provide resistance to several viruses especially avian influenza virus. In present research, the genotype frequency contributions of chicken Mx1 polymorphisms were characterized in five lowly selected as well as one moderately selected Sichuan native chicken populations and two highly selected commercial chicken breeds. Together with two newly-identified mutation sites (r.8A > G and r.1257T > C), a total of 13 single nucleotide polymorphisms (SNPs), including seven nonsynonymous mutation and six synonymous mutation, were found in the coding region of chicken Mx1 gene. Local Chinese chicken populations exhibited higher nucleotide diversity than commercial populations. Moreover, amino acid substitution sites as well as positive selection sites were located only in the domain not determined and GTPase domain, implying that amino acids mutations were likely needed in the modulatory and structural regions to better adapt the environment. Collectively, our results suggest that different selection pressures greatly influenced the genotype frequency contributions of chicken Mx1 gene. Understanding the interaction between genetic diversity and artificial selection may help us to better select and breed superior domestic chickens.
Collapse
|
14
|
Hassanane MS, Hassan AA, Ahmed FM, El-Komy EM, Roushdy KM, Hassan NA. Identification of Mx gene nucleotide dimorphism (G/A) as genetic marker for antiviral activity in Egyptian chickens. J Genet Eng Biotechnol 2018; 16:83-88. [PMID: 30647709 PMCID: PMC6296577 DOI: 10.1016/j.jgeb.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/22/2017] [Accepted: 11/17/2017] [Indexed: 11/22/2022]
Abstract
Egyptian chickens, representing 2 breeds and 7 strains, were genotyped using the PCR-RFLP and sequencing techniques for detection of a non-synonymous dimorphism (G/A) in exon 14 of chicken Myxovirus resistance (Mx) gene. This dimorphic position is responsible for altering Mx protein's antiviral activity. Polymerase Chain reactions were performed using Egyptian chickens DNA and specific primer set to amplify Mx DNA fragments of 299 or 301 bp, containing the dimorphic position. Amplicons were cut with restriction enzyme Hpy81. Genotype and allele frequencies for the resistant allele A and sensitive allele G were calculated in all the tested chickens. Results of PCR-RFLP were confirmed by sequencing. The three genotypes AA, AG, GG at the target nucleotide position in Mx gene were represented in all the studied Egyptian chicken breeds and strains except Baladi strain which showed only one genotype AA. The average allele frequency of the resistant A allele in the tested birds (0.67) was higher than the sensitive G allele average frequency in the same birds (0.33). Appling PCR-RFLP technique in the breeding program can be used to select chickens carrying the A allele with high frequencies. This will help in improving poultry breeding in Egypt by producing infectious disease-resistant chickens.
Collapse
Affiliation(s)
| | | | - Fatma M. Ahmed
- Cell Biology Department, National Research Centre, Egypt
| | | | - Khaled M. Roushdy
- Poultry Breeding Dept., Animal Production Research Institute and Animal Genetic Resources Dept., National Gene Bank, Agricultural Research Center, Giza, Egypt
| | - Nagwa A. Hassan
- Department of Zoology, Faculty of Science, Ain Shams University, Egypt
| |
Collapse
|
15
|
Selvaramesh AS, Kumar P, Mishra C, Bhattacharya TK, Bhushan B, Tiwari AK, Saxena VK, Sharma A. Molecular Characterization of Mx1 Gene in Native Indian Breeds of Chicken. Anim Biotechnol 2018; 30:113-117. [PMID: 29504453 DOI: 10.1080/10495398.2018.1439845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The genetic polymorphism of Mx1 gene was explored in Indian chicken breeds. PCR-RFLP analysis in 102 bp fragment of partial intron 13 and partial exon 14 of Mx1 gene revealed two genotypes viz. RS and SS with two alleles viz. R and S both in Naked Neck and Tellicherry breeds of chicken. The homozygous genotype RR was not identified. When deduced amino acid sequences were compared, the asparagine amino acid was found to be substituted in "R" allele for serine in "S" allele. PCR-SSCP analysis of 284 bp fragment in 5'-UTR and partial promoter region revealed three genotypes viz. CC, CG, and CH with three different alleles viz. C, G, and H in Naked Neck breed of chicken and five genotypes viz. DI, JK, KK, KL, and KM with six different alleles viz. D, I, J, K, L, and M in Tellicherry breed of chicken. The homozygous genotypes viz. GG and HH in Naked Neck and DD, II, JJ, LL, and MM in Tellicherry chicken was not identified. The nucleotide substitution rate estimated to be in the range of 0.004-0.011. The identified genetic variation can be helpful for better insight to disease resistance property of the Mx1 gene.
Collapse
Affiliation(s)
- A S Selvaramesh
- a Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP) , India
| | - Pushpendra Kumar
- a Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP) , India
| | - Chinmoy Mishra
- a Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP) , India
| | - Tarun K Bhattacharya
- b Directorate on Poultry Research , Rajendranagar, Hyderabad , Telangana , India
| | - Bharat Bhushan
- a Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP) , India
| | - Ashok Kumar Tiwari
- c Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP) , India
| | | | - Arjava Sharma
- e National Bureau of Animal Genetic Resources , Karnal , Haryana , India
| |
Collapse
|
16
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
17
|
Santhakumar D, Rubbenstroth D, Martinez-Sobrido L, Munir M. Avian Interferons and Their Antiviral Effectors. Front Immunol 2017; 8:49. [PMID: 28197148 PMCID: PMC5281639 DOI: 10.3389/fimmu.2017.00049] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds.
Collapse
Affiliation(s)
| | - Dennis Rubbenstroth
- Institute for Virology, Faculty of Medicine, University Medical Center, University of Freiburg , Freiburg , Germany
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | | |
Collapse
|
18
|
Kjærner-Semb E, Ayllon F, Furmanek T, Wennevik V, Dahle G, Niemelä E, Ozerov M, Vähä JP, Glover KA, Rubin CJ, Wargelius A, Edvardsen RB. Atlantic salmon populations reveal adaptive divergence of immune related genes - a duplicated genome under selection. BMC Genomics 2016; 17:610. [PMID: 27515098 PMCID: PMC4982270 DOI: 10.1186/s12864-016-2867-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Background Populations of Atlantic salmon display highly significant genetic differences with unresolved molecular basis. These differences may result from separate postglacial colonization patterns, diversifying natural selection and adaptation, or a combination. Adaptation could be influenced or even facilitated by the recent whole genome duplication in the salmonid lineage which resulted in a partly tetraploid species with duplicated genes and regions. Results In order to elucidate the genes and genomic regions underlying the genetic differences, we conducted a genome wide association study using whole genome resequencing data from eight populations from Northern and Southern Norway. From a total of ~4.5 million sequencing-derived SNPs, more than 10 % showed significant differentiation between populations from these two regions and ten selective sweeps on chromosomes 5, 10, 11, 13–15, 21, 24 and 25 were identified. These comprised 59 genes, of which 15 had one or more differentiated missense mutation. Our analysis showed that most sweeps have paralogous regions in the partially tetraploid genome, each lacking the high number of significant SNPs found in the sweeps. The most significant sweep was found on Chr 25 and carried several missense mutations in the antiviral mx genes, suggesting that these populations have experienced differing viral pressures. Interestingly the second most significant sweep, found on Chr 5, contains two genes involved in the NF-KB pathway (nkap and nkrf), which is also a known pathogen target that controls a large number of processes in animals. Conclusion Our results show that natural selection acting on immune related genes has contributed to genetic divergence between salmon populations in Norway. The differences between populations may have been facilitated by the plasticity of the salmon genome. The observed signatures of selection in duplicated genomic regions suggest that the recently duplicated genome has provided raw material for evolutionary adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2867-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erik Kjærner-Semb
- Institute of Marine Research, Bergen, Norway. .,Department of Biology, University of Bergen, Bergen, Norway.
| | | | | | | | - Geir Dahle
- Institute of Marine Research, Bergen, Norway
| | - Eero Niemelä
- Natural Resources Institute Finland, Helsinki, Finland
| | - Mikhail Ozerov
- Kevo Subarctic Research Institute, University of Turku, Turku, Finland
| | - Juha-Pekka Vähä
- Kevo Subarctic Research Institute, University of Turku, Turku, Finland.,Association for Water and Environment of Western Uusimaa, Uusimaa, Finland
| | - Kevin A Glover
- Institute of Marine Research, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| | - Carl J Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
19
|
Cloning the Horse RNA Polymerase I Promoter and Its Application to Studying Influenza Virus Polymerase Activity. Viruses 2016; 8:v8060119. [PMID: 27258298 PMCID: PMC4926170 DOI: 10.3390/v8060119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
An influenza virus polymerase reconstitution assay based on the human, dog, or chicken RNA polymerase I (PolI) promoter has been developed and widely used to study the polymerase activity of the influenza virus in corresponding cell types. Although it is an important member of the influenza virus family and has been known for sixty years, no studies have been performed to clone the horse PolI promoter or to study the polymerase activity of equine influenza virus (EIV) in horse cells. In our study, the horse RNA PolI promoter was cloned from fetal equine lung cells. Using the luciferase assay, it was found that a 500 bp horse RNA PolI promoter sequence was required for efficient transcription. Then, using the developed polymerase reconstitution assay based on the horse RNA PolI promoter, the polymerase activity of two EIV strains was compared, and equine myxovirus resistance A protein was identified as having the inhibiting EIV polymerase activity function in horse cells. Our study enriches our knowledge of the RNA PolI promoter of eukaryotic species and provides a useful tool for the study of influenza virus polymerase activity in horse cells.
Collapse
|
20
|
Zeng M, Chen S, Wang M, Jia R, Zhu D, Liu M, Sun K, Yang Q, Wu Y, Chen X, Cheng A. Molecular identification and comparative transcriptional analysis of myxovirus resistance GTPase (Mx) gene in goose (Anser cygnoide) after H9N2 AIV infection. Comp Immunol Microbiol Infect Dis 2016; 47:32-40. [PMID: 27477505 DOI: 10.1016/j.cimid.2016.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/20/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Interferon (IFN)-induced myxovirus resistance (Mx) GTPases belong to the family of dynamin-like GTPases and control a diverse range of viruses. In this study, the identified goose Mx (goMx) mRNA is 2009bp long, shares partially conserved exons with other homologues, and shares highly conserved domains in its primary structure. The amino acid position 629 (629aa) of the goMx protein was identified as serine (Ser), in contrast to the Ser located at 631aa in chicken Mx, which is considered to be responsible for the lack of chicken Mx antiviral activity. In addition, the goMx 142aa residue in the dynamin family signature differs from that of other functional Mx proteins. Transcriptional analysis revealed that goMx was mainly expressed in the digestive, respiratory and immune systems in an age-specific manner. GoMx transcript levels in goose peripheral blood mononuclear cells (PBMCs) were found to be significantly up-regulated by various agonists and avian viruses. Furthermore, a time course study of the effects of H9N2 avian influenza virus (AIV) on goMx expression in infected goslings suggested that H9N2 AIV affected goMx expression. However, significant changes in goMx expression were observed in the trachea, lung and small intestine of infected birds. Altogether, these results indicate that goMx protein may have acquired its broad antiviral activity by changing only a few amino acids at select sites, even as it shares a conserved architectures with species.
Collapse
Affiliation(s)
- Miao Zeng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
21
|
Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds. PLoS One 2016; 11:e0153649. [PMID: 27078641 PMCID: PMC4841636 DOI: 10.1371/journal.pone.0153649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV.
Collapse
|
22
|
Fulton JE, Arango J, Ali RA, Bohorquez EB, Lund AR, Ashwell CM, Settar P, O'Sullivan NP, Koci MD. Genetic variation within the Mx gene of commercially selected chicken lines reveals multiple haplotypes, recombination and a protein under selection pressure. PLoS One 2014; 9:e108054. [PMID: 25244433 PMCID: PMC4171530 DOI: 10.1371/journal.pone.0108054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
The Mx protein is one of the best-characterized interferon-stimulated antiviral mediators. Mx homologs have been identified in most vertebrates examined; however, their location within the cell, their level of activity, and the viruses they inhibit vary widely. Recent studies have demonstrated multiple Mx alleles in chickens and some reports have suggested a specific variant (S631N) within exon 14 confers antiviral activity. In the current study, the complete genome of nine elite egg-layer type lines were sequenced and multiple variants of the Mx gene identified. Within the coding region and upstream putative promoter region 36 SNP variants were identified, producing a total of 12 unique haplotypes. Each elite line contained from one to four haplotypes, with many of these haplotypes being found in only one line. Observation of changes in haplotype frequency over generations, as well as recombination, suggested some unknown selection pressure on the Mx gene. Trait association analysis with either individual SNP or haplotypes showed a significant effect of Mx haplotype on several egg production related traits, and on mortality following Marek's disease virus challenge in some lines. Examination of the location of the various SNP within the protein suggests synonymous SNP tend to be found within structural or enzymatic regions of the protein, while non-synonymous SNP are located in less well defined regions. The putative resistance variant N631 was found in five of the 12 haplotypes with an overall frequency of 47% across the nine lines. Two Mx recombinants were identified within the elite populations, indicating that novel variation can arise and be maintained within intensively selected lines. Collectively, these results suggest the conflicting reports in the literature describing the impact of the different SNP on chicken Mx function may be due to the varying context of haplotypes present in the populations studied.
Collapse
Affiliation(s)
- Janet E. Fulton
- Hy-Line International, Dallas Center, Iowa, United States of America
- * E-mail: (JEF); (MDK)
| | - Jesus Arango
- Hy-Line International, Dallas Center, Iowa, United States of America
| | - Rizwana A. Ali
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Elaine B. Bohorquez
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ashlee R. Lund
- Hy-Line International, Dallas Center, Iowa, United States of America
| | - Chris M. Ashwell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Petek Settar
- Hy-Line International, Dallas Center, Iowa, United States of America
| | | | - Matthew D. Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (JEF); (MDK)
| |
Collapse
|
23
|
Manuja BK, Manuja A, Dahiya R, Singh S, Sharma RC, Gahlot SK. Diversity of interferon inducible Mx gene in horses and association of variations with susceptibility vis-à-vis resistance against equine influenza infection. INFECTION GENETICS AND EVOLUTION 2014; 27:142-8. [PMID: 25064524 DOI: 10.1016/j.meegid.2014.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
Equine influenza (EI) is primarily an infection of the upper respiratory tract and is one of the major infectious respiratory diseases of economic importance in equines. Re-emergence of the disease, species jumping by H3N8 virus in canines and possible threat of human pandemic due to the unpredictable nature of the virus have necessitated research on devising strategies for preventing the disease. The myxovirus resistance protein (Mx) has been reported to confer resistance to Orthomyxo virus infection by modifying cellular functions needed along the viral replication pathway. Polymorphisms and differential antiviral activities of Mx gene have been reported in pigs and chicken. Here we report the diversity of Mx gene, its expression in response to stimulation with interferon (IFN) α/β and their association with EI resistance and susceptibility in Marwari horses. Blood samples were collected from horses declared positive for equine influenza and in contact animals with a history of no clinical signs. Mx gene was amplified by reverse transcription from total RNA isolated from peripheral blood mononuclear cells (PBMCs) stimulated with IFN α/β using gene specific primers. The amplified gene products from representative samples were cloned and sequenced. Nucleotide sequences and deduced amino acid sequences were analyzed. Out of a total 24 amino acids substitutions sorting intolerant from tolerant (SIFT) analysis predicted 13 substitutions with functional consequences. Five substitutions (V67A, W123L, E346Y, N347Y, S689N) were observed only in resistant animals. Evolutionary distances based on nucleotide sequences with in equines ranged between 0.3-2.0% and 20-24% with other species. On phylogenetic analysis all equine sequences clustered together while other species formed separate clades.
Collapse
Affiliation(s)
| | - Anju Manuja
- National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Rajni Dahiya
- National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Sandeep Singh
- National Research Centre on Equines, Hisar 125001, Haryana, India
| | - R C Sharma
- National Research Centre on Equines, Hisar 125001, Haryana, India
| | - S K Gahlot
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125005, Haryana, India
| |
Collapse
|
24
|
Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiol Mol Biol Rev 2014; 77:551-66. [PMID: 24296571 DOI: 10.1128/mmbr.00024-13] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fifty years after the discovery of the mouse Mx1 gene, researchers are still trying to understand the molecular details of the antiviral mechanisms mediated by Mx proteins. Mx proteins are evolutionarily conserved dynamin-like large GTPases, and GTPase activity is required for their antiviral activity. The expression of Mx genes is controlled by type I and type III interferons. A phylogenetic analysis revealed that Mx genes are present in almost all vertebrates, usually in one to three copies. Mx proteins are best known for inhibiting negative-stranded RNA viruses, but they also inhibit other virus families. Recent structural analyses provide hints about the antiviral mechanisms of Mx proteins, but it is not known how they can suppress such a wide variety of viruses lacking an obvious common molecular pattern. Perhaps they interact with a (partially) symmetrical invading oligomeric structure, such as a viral ribonucleoprotein complex. Such an interaction may be of a fairly low affinity, in line with the broad target specificity of Mx proteins, yet it would be strong enough to instigate Mx oligomerization and ring assembly. Such a model is compatible with the broad "substrate" specificity of Mx proteins: depending on the size of the invading viral ribonucleoprotein complexes that need to be wrapped, the assembly process would consume the necessary amount of Mx precursor molecules. These Mx ring structures might then act as energy-consuming wrenches to disassemble the viral target structure.
Collapse
|
25
|
Wang Y, Lupiani B, Reddy SM, Lamont SJ, Zhou H. RNA-seq analysis revealed novel genes and signaling pathway associated with disease resistance to avian influenza virus infection in chickens. Poult Sci 2014; 93:485-93. [PMID: 24570473 DOI: 10.3382/ps.2013-03557] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Avian influenza virus (AIV) is a type A virus of the family Orthomyxoviridae. Avian influenza virus infection can cause significant economic losses to the poultry industry, and raises a great public health threat due to potential host jump from animals to humans. To develop more effective intervention strategies to prevent and control AIV infection in poultry, it is essential to elucidate molecular mechanisms of host response to AIV infection in chickens. The objective of this study was to identify genes and signal pathways associated with resistance to AIV infection in 2 genetically distinct highly inbred chicken lines (Fayoumi, relatively resistant to AIV infection, and Leghorn, susceptible to AIV infection). Three-week-old chickens were inoculated with 10(7) EID50 of low pathogenic H5N3 AIV, and lungs and trachea were harvested 4 d postinoculation. Four cDNA libraries (1 library each for infected and noninfected Leghorn, and infected and noninfected Fayoumi) were prepared from the lung samples and sequenced by Illumina Genome Analyzer II, which yielded a total of 116 million, 75-bp single-end reads. Gene expression levels of all annotated chicken genes were analyzed using CLC Genomics Workbench. DESeq was used to identify differentially expressed transcripts between infected and noninfected birds and between genetic lines (false discovery rate < 0.05 and fold-change > 2). Of the expressed transcripts in a total of 17,108 annotated chicken genes in Ensembl database, 82.44 and 81.40% were identified in Leghorn and Fayoumi birds, respectively. The bioinformatics analysis suggests that the hemoglobin family genes, the functional involvements for oxygen transportation and circulation, and cell adhesion molecule signaling pathway play significant roles in disease resistance to AIV infection in chickens. Further investigation of the roles of these candidate genes and signaling pathways in the regulation of host-AIV interaction can lead new directions for the development of antiviral drugs or vaccines in poultry.
Collapse
Affiliation(s)
- Y Wang
- Department of Animal Science, University of California, Davis 95616
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Lee CC, Wu CC, Lin TL. Chicken melanoma differentiation-associated gene 5 (MDA5) recognizes infectious bursal disease virus infection and triggers MDA5-related innate immunity. Arch Virol 2014; 159:1671-86. [PMID: 24452668 PMCID: PMC7086882 DOI: 10.1007/s00705-014-1983-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/09/2013] [Indexed: 12/24/2022]
Abstract
The objective of the present study was to determine if chicken melanoma differentiation-associated gene 5 (MDA5) senses infectious bursal disease virus (IBDV) infection to initiate and amplify an innate immune response in the chicken MDA5 (chMDA5) signaling pathway. Chicken embryo fibroblast DF-1 cells were infected with IBDV LP1 at a multiplicity of infection (MOI) of 0.5 or 10. In addition, knockdown and overexpression of chMDA5 were performed by transfecting DF-1 cells with chMDA5-targeting small interfering RNA (siRNA) or chMDA5-expressing DNA. The transfected cells were infected with IBDV LP1 at an MOI of 10. Cell culture supernatants and lysates were collected at 2, 8, 16 and 24 hours postinfection (hpi) for IBDV titer determination and RNA extraction, respectively. IBDV RNA loads and mRNA expression levels of chicken MDA5, interferon-β (IFN-β) promoter stimulator 1 (IPS-1), interferon regulatory factor-3 (IRF-3), IFN-β, double-stranded RNA-dependent protein kinase (PKR), 2′,5′-oligoadenylate synthetase (OAS), myxovirus resistance gene (Mx), and major histocompatibility complex class I (MHC class I) were determined by real-time RT-PCR. The IBDV titer increased up to 1.4 × 107 plaque-forming units (PFU)/mL at 24 hpi, and the IBDV RNA load reached 464 ng/μL at 24 hpi. The mRNA expression levels of chicken MDA5, IRF-3, IFN-β, PKR, OAS, Mx and MHC class I in IBDV-infected DF-1 cells exhibited significant (p < 0.05) upregulation up to 906-, 199-, 26,310-, 12-, 66,144-, 64,039- and 33-fold, respectively. Expressed chMDA5 from transfection and double-stranded RNA from IBDV infection were localized or colocalized in the cytoplasm of DF-1 cells at 16 hpi. When chMDA5 was knocked down in DF-1 cells, IBDV titers and RNA loads were significantly higher (p < 0.05) than those in DF-1 cells without chMDA5 knockdown at 24 hpi. The expression levels of chicken MDA5, IRF-3, IFN-β and MHC class I in chMDA5-knockdown DF-1 cells were significantly lower (p < 0.05) at 16 and 24 hpi. DF-1 cells overexpressing chMDA5 by transfection with chMDA5 expressing DNA had significantly lower (p < 0.05) IBDV titers and RNA loads at 16 and 24 hpi and showed significantly higher (p < 0.05) expression of chicken MDA5, IRF-3, IFN-β, PKR, OAS, Mx and MHC class I at 2 hpi. The results indicated that chicken MDA5 recognized IBDV infection and that this interaction resulted in the activation of chMDA5-related innate immune genes and upregulation of chicken MHC class I.
Collapse
Affiliation(s)
- Chih-Chun Lee
- Department of Comparative Pathobiology, Purdue University, 406, S. University St, West Lafayette, IN, 47907, USA
| | | | | |
Collapse
|
28
|
Barber MRW, Aldridge JR, Fleming-Canepa X, Wang YD, Webster RG, Magor KE. Identification of avian RIG-I responsive genes during influenza infection. Mol Immunol 2012; 54:89-97. [PMID: 23220072 DOI: 10.1016/j.molimm.2012.10.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/26/2012] [Accepted: 10/27/2012] [Indexed: 12/28/2022]
Abstract
Ducks can survive infection with highly pathogenic avian influenza viruses that are lethal to chickens. We showed that the influenza detector, RIG-I can initiate antiviral responses in ducks, but this gene is absent in chickens. We can reconstitute this pathway by transfecting chicken DF-1 embryonic fibroblast cells with duck RIG-I, which augments their antiviral response to influenza and decreases viral titer. However, the genes downstream of duck RIG-I that mediate this antiviral response to influenza are not known. Using microarrays, we compared the transcriptional profile of chicken embryonic fibroblasts transfected with duck RIG-I or empty vector, and infected with low or highly pathogenic avian influenza viruses. Transfected duck RIG-I expressed in chicken cells was associated with the marked induction of many antiviral innate immune genes upon infection with both viruses. We used real-time PCR to confirm upregulation of a subset of these antiviral genes including MX1, PKR, IFIT5, OASL, IFNB, and downregulation of the influenza matrix gene. These results provide some insight into the genes induced by duck RIG-I upon influenza infection, and provide evidence that duck RIG-I can function to elicit an interferon-driven, antiviral response against influenza in chicken embryonic fibroblasts.
Collapse
Affiliation(s)
- Megan R W Barber
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Wang Y, Brahmakshatriya V, Lupiani B, Reddy S, Okimoto R, Li X, Chiang H, Zhou H. Associations of chicken Mx1 polymorphism with antiviral responses in avian influenza virus infected embryos and broilers. Poult Sci 2012; 91:3019-24. [DOI: 10.3382/ps.2012-02471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
30
|
Connell S, Meade KG, Allan B, Lloyd AT, Kenny E, Cormican P, Morris DW, Bradley DG, O'Farrelly C. Avian resistance to Campylobacter jejuni colonization is associated with an intestinal immunogene expression signature identified by mRNA sequencing. PLoS One 2012; 7:e40409. [PMID: 22870198 PMCID: PMC3411578 DOI: 10.1371/journal.pone.0040409] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/06/2012] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is the most common cause of human bacterial gastroenteritis and is associated with several post-infectious manifestations, including onset of the autoimmune neuropathy Guillain-Barré syndrome, causing significant morbidity and mortality. Poorly-cooked chicken meat is the most frequent source of infection as C. jejuni colonizes the avian intestine in a commensal relationship. However, not all chickens are equally colonized and resistance seems to be genetically determined. We hypothesize that differences in immune response may contribute to variation in colonization levels between susceptible and resistant birds. Using high-throughput sequencing in an avian infection model, we investigate gene expression associated with resistance or susceptibility to colonization of the gastrointestinal tract with C. jejuni and find that gut related immune mechanisms are critical for regulating colonization. Amongst a single population of 300 4-week old chickens, there was clear segregation in levels of C. jejuni colonization 48 hours post-exposure. RNAseq analysis of caecal tissue from 14 C. jejuni-susceptible and 14 C. jejuni-resistant birds generated over 363 million short mRNA sequences which were investigated to identify 219 differentially expressed genes. Significantly higher expression of genes involved in the innate immune response, cytokine signaling, B cell and T cell activation and immunoglobulin production, as well as the renin-angiotensin system was observed in resistant birds, suggesting an early active immune response to C. jejuni. Lower expression of these genes in colonized birds suggests suppression or inhibition of a clearing immune response thus facilitating commensal colonization and generating vectors for zoonotic transmission. This study describes biological processes regulating C. jejuni colonization of the avian intestine and gives insight into the differential immune mechanisms incited in response to commensal bacteria in general within vertebrate populations. The results reported here illustrate how an exaggerated immune response may be elicited in a subset of the population, which alters host-microbe interactions and inhibits the commensal state, therefore having wider relevance with regard to inflammatory and autoimmune disease.
Collapse
Affiliation(s)
- Sarah Connell
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li B, Fu D, Zhang Y, Xu Q, Ni L, Chang G, Zheng M, Gao B, Sun H, Chen G. Partial antiviral activities of the Asn631 chicken Mx against newcastle disease virus and vesicular stomatitis virus. Mol Biol Rep 2012; 39:8415-24. [PMID: 22711303 DOI: 10.1007/s11033-012-1694-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
Conflicting data existed for the antiviral potential of the chicken Mx protein and the importance of the Asn631 polymorphism in determination of the antiviral activity. In this study we modified the chicken Mx cDNA from the Ser631 to Asn631 genotype and transfected them into COS-I cells, chicken embryonic fibroblast (CEF) or NIH 3T3 cells. The Mx protein was mainly located at the cytoplasm. The transfected cell cultures were challenged with newcastle disease virus (NDV) or vesicular stomatitis virus (VSV), cytopathic affect (CPE) inhibition assay showed that the times for development of visible and full CPE were significantly postponed by the Asn631 cDNA transfection at 48 h transfection, but not by the Ser631 cDNA transfection. Viral titration assay showed that the virus titers were significantly reduced before 72 h postinfection. CEF cells was incubated by the cell lysates extracted from the COS-I cells transfected with pcDNA-Mx/Asn631, could resist and delayed NDV infection. These data suggested the importance of the Asn631 polymorphism of the chicken Mx in determination of the antiviral activities against NDV and VSV at early stage of viral infection, which were relatively weak and not sufficient to inhibit the viral replication at late stage of viral infection.
Collapse
Affiliation(s)
- Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schusser B, Reuter A, von der Malsburg A, Penski N, Weigend S, Kaspers B, Staeheli P, Härtle S. Mx is dispensable for interferon-mediated resistance of chicken cells against influenza A virus. J Virol 2011; 85:8307-15. [PMID: 21632756 PMCID: PMC3147972 DOI: 10.1128/jvi.00535-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/24/2011] [Indexed: 12/14/2022] Open
Abstract
The type I interferon (IFN) system plays an important role in antiviral defense against influenza A viruses (FLUAV), which are natural chicken pathogens. Studies of mice identified the Mx1 protein as a key effector molecule of the IFN-induced antiviral state against FLUAV. Chicken Mx genes are highly polymorphic, and recent studies suggested that an Asn/Ser polymorphism at amino acid position 631 determines the antiviral activity of the chicken Mx protein. By employing chicken embryo fibroblasts with defined Mx-631 polymorphisms and retroviral vectors for the expression of Mx isoforms in chicken cells and embryonated eggs, we show here that neither the 631Asn nor the 631Ser variant of chicken Mx was able to confer antiviral protection against several lowly and highly pathogenic FLUAV strains. Using a short interfering RNA (siRNA)-mediated knockdown approach, we noted that the antiviral effect of type I IFN in chicken cells was not dependent on Mx, suggesting that some other IFN-induced factors must contribute to the inhibition of FLUAV in chicken cells. Finally, we found that both isoforms of chicken Mx protein appear to lack GTPase activity, which might explain the observed lack of antiviral activity.
Collapse
Affiliation(s)
| | - Antje Reuter
- Department of Virology, University Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Freiburg, Germany
| | | | - Nicola Penski
- Department of Virology, University Freiburg, Germany
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich Loeffler Institute, Neustadt-Mariensee, Germany
| | - Bernd Kaspers
- Department of Veterinary Science, University Munich, Germany
| | | | - Sonja Härtle
- Department of Veterinary Science, University Munich, Germany
| |
Collapse
|
33
|
Ewald SJ, Kapczynski DR, Livant EJ, Suarez DL, Ralph J, McLeod S, Miller C. Association of Mx1 Asn631 variant alleles with reductions in morbidity, early mortality, viral shedding, and cytokine responses in chickens infected with a highly pathogenic avian influenza virus. Immunogenetics 2011; 63:363-75. [PMID: 21286706 DOI: 10.1007/s00251-010-0509-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/27/2010] [Indexed: 12/18/2022]
Abstract
Myxovirus-resistance (Mx) proteins are produced by host cells in response to type I interferons, and some members of the Mx gene family in mammals have been shown to limit replication of influenza and other viruses. According to an early report, chicken Mx1 variants encoding Asn at position 631 have antiviral activity, whereas variants with Ser at 631 lack activity in experiments evaluating Mx1 complementary DNA (cDNA) expressed ectopically in a cell line. We evaluated whether the Mx1 631 dimorphism influenced pathogenesis of highly pathogenic avian influenza virus (HPAIV) infection in chickens of two commercial broiler lines, each segregating for Asn631 and Ser631 variants. Following intranasal infection with HPAIV strain A/Chicken/Queretaro/14588-19/1995 H5N2, chickens homozygous for Asn631 allele were significantly more resistant to disease based on early mortality, morbidity, or virus shedding than Ser631 homozygotes. Higher amounts of splenic cytokine transcripts were observed in the Ser631 birds after infection, consistent with higher viral loads seen in this group and perhaps contributing to their higher morbidity. Nucleotide sequence determination of Mx1 cDNAs demonstrated that the Asn631 variants in the two chicken lines differed at several amino acid positions outside 631. In vitro experiments with a different influenza strain (low pathogenicity) failed to demonstrate an effect of Mx1 Asn631 on viral replication suggesting that in vivo responses may differ markedly from in vitro, or that choice of virus strain may be critical in demonstrating effects of chicken Mx1. Overall, these studies provide the first evidence that Mx1 has antiviral effects in chickens infected with influenza virus.
Collapse
Affiliation(s)
- Sandra J Ewald
- Department of Pathobiology, Auburn University, 166 Greene Hall, Auburn, AL 36849-5519, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Yin CG, Zhang CS, Zhang AM, Qin HW, Wang XQ, Du LX, Zhao GP. Expression analyses and antiviral properties of the Beijing-You and White Leghorn myxovirus resistance gene with different amino acids at position 631. Poult Sci 2010; 89:2259-64. [PMID: 20852117 DOI: 10.3382/ps.2010-00826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza is a topic of wide public concern, particularly because of the recent emergence of avian flu. The myxovirus resistance (Mx) protein has been shown to have an inhibitory effect on influenza virus and is therefore of great interest. This study examines the Mx protein in 8 local Chinese chicken breeds and 2 exotic chicken breeds. Amino acid 631, found in the Mx GTPase effector domain, was examined in 534 individuals by comparing PCR results, and individuals were separated into the A/A genotype or the G/G genotype, depending on whether amino acid 631 is an Asn or Ser. In the native breed, the frequency of G/G homozygotes is 0.780 (294/377). The Mx expression levels in tissues and chicken embryo fibroblast cells with different genotypes were also studied. The A/A individuals from Beijing-You and White Leghorn breeds had higher Mx expression levels than G/G individuals. The liver, heart, and spleen had higher expression levels than muscle or kidney. The A/A chicken embryo fibroblast cells had higher antiviral activity against vesicular stomatitis virus and Newcastle disease. We provide the first report examining the expression level and antiviral activity of different Mx alleles of nucleotide 2216(S631N) genotypes. This study lays a good foundation for correlative studies examining genotype and antiviral function.
Collapse
Affiliation(s)
- C G Yin
- Life Sciences and Engineering Department, Jining University, Shandong, 273155, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhu Y, Li H, Han W, Shu J, Song W, Zhang X, Chen K. Detecting Adaptive Evolution of Galliform and Anseriform Avians Mx Genes. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/javaa.2010.1811.1815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Benfield CTO, Lyall JW, Tiley LS. The cytoplasmic location of chicken mx is not the determining factor for its lack of antiviral activity. PLoS One 2010; 5:e12151. [PMID: 20808435 PMCID: PMC2922328 DOI: 10.1371/journal.pone.0012151] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/21/2010] [Indexed: 12/26/2022] Open
Abstract
Background Chicken Mx belongs to the Mx family of interferon-induced dynamin-like GTPases, which in some species possess potent antiviral properties. Conflicting data exist for the antiviral capability of chicken Mx. Reports of anti-influenza activity of alleles encoding an Asn631 polymorphism have not been supported by subsequent studies. The normal cytoplasmic localisation of chicken Mx may influence its antiviral capacity. Here we report further studies to determine the antiviral potential of chicken Mx against Newcastle disease virus (NDV), an economically important cytoplasmic RNA virus of chickens, and Thogoto virus, an orthomyxovirus known to be exquisitely sensitive to the cytoplasmic MxA protein from humans. We also report the consequences of re-locating chicken Mx to the nucleus. Methodology/Principal Findings Chicken Mx was tested in virus infection assays using NDV. Neither the Asn631 nor Ser631 Mx alleles (when transfected into 293T cells) showed inhibition of virus-directed gene expression when the cells were subsequently infected with NDV. Human MxA however did show significant inhibition of NDV-directed gene expression. Chicken Mx failed to inhibit a Thogoto virus (THOV) minireplicon system in which the cytoplasmic human MxA protein showed potent and specific inhibition. Relocalisation of chicken Mx to the nucleus was achieved by inserting the Simian Virus 40 large T antigen nuclear localisation sequence (SV40 NLS) at the N-terminus of chicken Mx. Nuclear re-localised chicken Mx did not inhibit influenza (A/PR/8/34) gene expression during virus infection in cell culture or influenza polymerase activity in A/PR/8/34 or A/Turkey/50-92/91 minireplicon systems. Conclusions/Significance The chicken Mx protein (Asn631) lacks inhibitory effects against THOV and NDV, and is unable to suppress influenza replication when artificially re-localised to the cell nucleus. Thus, the natural cytoplasmic localisation of the chicken Mx protein does not account for its lack of antiviral activity.
Collapse
Affiliation(s)
- Camilla T O Benfield
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
37
|
Dillon D, Runstadler J. Mx gene diversity and influenza association among five wild dabbling duck species (Anas spp.) in Alaska. INFECTION GENETICS AND EVOLUTION 2010; 10:1085-93. [PMID: 20621205 DOI: 10.1016/j.meegid.2010.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/01/2010] [Accepted: 07/02/2010] [Indexed: 12/29/2022]
Abstract
Mx (myxovirus-resistant) proteins are induced by interferon and inhibit viral replication as part of the innate immune response to viral infection in many vertebrates. Influenza A virus appears to be especially susceptible to Mx antiviral effects. We characterized exon 13 and the 3' UTR of the Mx gene in wild ducks, the natural reservoir of influenza virus and explored its potential relevance to influenza infection. We observed a wide range of intra- and interspecies variations. Total nucleotide diversity per site was 0.0014, 0.0027, 0.0044, 0.0051, and 0.0061 in mallards, northern shovelers, northern pintails, American wigeon, and American green-winged teals, respectively. There were 61 haplotypes present across all five species and four were shared among species. Additionally, we observed a significant association between Mx haplotype and influenza infection status in northern shovelers. However, we found no evidence of balancing or diversifying selection in this region of the Mx gene. Characterization of the duck Mx gene is an important step in understanding how the gene may affect disease resistance or susceptibility in wild populations. Furthermore, given that waterfowl act as a natural reservoir for influenza virus, the Mx gene could be an important determinant in the ecology of the virus.
Collapse
Affiliation(s)
- Danielle Dillon
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | | |
Collapse
|
38
|
Ye X, Zhang Y, Tan Z, Li K. Single-tube real-time multiple allele-specific PCR for genotyping chicken Mx gene G2032A SNP. Br Poult Sci 2010; 51:361-7. [PMID: 20680871 DOI: 10.1080/00071668.2010.499140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. A non-synonymous, single nucleotide polymorphism (G to A) at position 2032 (Ser 631 Asn) of the chicken Mx gene has been demonstrated to be related to resistance to antiviral activity. This study developed a new real-time PCR-based allelic discrimination assay for the rapid genotyping of the chicken Mx gene G2032A SNP. The distribution of the Mx gene G2032A SNP genotypes and the allele frequencies of A and G alleles among different chicken breed populations were screened with the use of this method. 2. We combined previously described allele-specific PCR and SYBR Green I-based real-time PCR melting curve analysis with a novel primer design strategy. A pair of outer nested primers was designed to amplify a fragment containing the SNP site, and two 3'-specific, allele-specific primers were combined with the outer primers to amplify SNP-specific fragments. Genotypes were identified based on the characteristic melting temperature of the SNP-specific fragments. 3. Genotyping assignments were successfully performed on samples from 8 chicken breeds, which were analysed by agarose gel electrophoresis of the PCR products and compared with results obtained from the direct sequencing of the outer primer amplicon. Five native breeds from Southern China carried a relatively higher frequency of the resistant A allele than the three commercial chicken lines. 4. This single-tube real-time multiplex allele-specific PCR assay is rapid, reliable, sensitive and easy to perform. It is appropriate for high-throughput sample analysis in large population-based Mx SNP genotyping studies.
Collapse
Affiliation(s)
- X Ye
- First Affiliated Hospital, Shantou University Medical College, Guangdong Province, China.
| | | | | | | |
Collapse
|
39
|
Shim E, Galvani AP. Evolutionary repercussions of avian culling on host resistance and influenza virulence. PLoS One 2009; 4:e5503. [PMID: 19430529 PMCID: PMC2675103 DOI: 10.1371/journal.pone.0005503] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 04/20/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Keeping pandemic influenza at bay is a global health priority. Of particular concern is the continued spread of the influenza subtype H5N1 in avian populations and the increasing frequency of transmission to humans. To decrease this threat, mass culling is the principal strategy for eradicating influenza in avian populations. Although culling has a crucial short-term epidemiological benefit, evolutionary repercussions on reservoir hosts and on the viral population have not been considered. METHODS AND FINDINGS To explore the epidemiological and evolutionary repercussions of mass avian culling, we combine population genetics and epidemiological influenza dynamics in a mathematical model parameterized by clinical, epidemiological, and poultry data. We model the virulence level of influenza and the selection on a dominant allele that confers resistance against influenza [1, 2] in a poultry population. Our findings indicate that culling impedes the evolution of avian host resistance against influenza. On the pathogen side of the coevolutionary race between pathogen and host, culling selects for heightened virulence and transmissibility of influenza. CONCLUSIONS Mass culling achieves a short-term benefit at the expense of long-term detriments: a more genetically susceptible host population, ultimately greater mortality, and elevated influenza virulence.
Collapse
MESH Headings
- Algorithms
- Animals
- Birds
- Evolution, Molecular
- Gene Frequency
- Host-Pathogen Interactions
- Humans
- Immunity, Innate/genetics
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza in Birds/genetics
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Influenza, Human/genetics
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Models, Theoretical
- Poultry Diseases/genetics
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Selection, Genetic
- Virulence/genetics
Collapse
Affiliation(s)
- Eunha Shim
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
40
|
YIN CG, DU LX, ZHAO GP, LI HB. Optimizing the expression of Mx gene in Escherichia coli based on rare codon and mRNA structure. YI CHUAN = HEREDITAS 2009; 31:75-82. [DOI: 10.3724/sp.j.1005.2009.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Razafindraibe H, Mobegi VA, Ommeh SC, Rakotondravao, Bjørnstad G, Hanotte O, Jianlin H. Mitochondrial DNA Origin of Indigenous Malagasy Chicken. Ann N Y Acad Sci 2008; 1149:77-9. [DOI: 10.1196/annals.1428.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Berlin S, Qu L, Li X, Yang N, Ellegren H. Positive diversifying selection in avian Mx genes. Immunogenetics 2008; 60:689-97. [DOI: 10.1007/s00251-008-0324-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/16/2008] [Indexed: 12/01/2022]
|
43
|
Sironi L, Williams JL, Moreno-Martin AM, Ramelli P, Stella A, Jianlin H, Weigend S, Lombardi G, Cordioli P, Mariani P. Susceptibility of different chicken lines to H7N1 highly pathogenic avian influenza virus and the role of Mx gene polymorphism coding amino acid position 631. Virology 2008; 380:152-6. [PMID: 18723201 DOI: 10.1016/j.virol.2008.07.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
Five chicken lines were experimentally infected with a HPAI H7N1 virus, to examine the variation in susceptibility to infection. Three lines showed high susceptibility to the virus, while two showed some resistance, with 7 out of 20, and 11 out of 15 birds, respectively, remaining healthy and surviving the experimental infection. Genotyping for the G/A polymorphism at position 2032 of Mx cDNA showed that one line was fixed for the G allele, and two were segregating for A and G alleles. Birds in the other two lines were selected to be fixed for the A allele. Statistical analyses indicated that the Mx genotype did not affect the clinical status or the time course of infection after viral inoculation.
Collapse
Affiliation(s)
- Laura Sironi
- Parco Tecnologico Padano, CERSA, Polo Universitario, Lodi, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Asparagine 631 variants of the chicken Mx protein do not inhibit influenza virus replication in primary chicken embryo fibroblasts or in vitro surrogate assays. J Virol 2008; 82:7533-9. [PMID: 18508886 DOI: 10.1128/jvi.00185-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whether chicken Mx inhibits influenza virus replication is an important question with regard to strategies aimed at enhancing influenza resistance in domestic flocks. The Asn631 polymorphism of the chicken Mx protein found in the Shamo (SHK) chicken line was previously reported to be crucial for the antiviral activity of this highly polymorphic chicken gene. Our aims were to determine whether cells from commercial chicken lines containing Asn631 alleles were resistant to influenza virus infection and to investigate the effects that other polymorphisms might have on Mx function. Unexpectedly, we found that the Asn631 genotype had no impact on multicycle replication of influenza virus (A/WSN/33 [H1N1]) in primary chicken embryo fibroblast lines. Furthermore, expression of the Shamo (SHK) chicken Mx protein in transfected 293T cells did not inhibit viral gene expression (A/PR/8/34 [H1N1], A/Duck/England/62 [H4N6], and A/Duck/Singapore/97 [H5N3]). Lastly, in minireplicon systems (A/PR/8/34 and A/Turkey/England/50-92/91 [H5N1]), which were highly sensitive to inhibition by the murine Mx1 and human MxA proteins, respectively, Shamo chicken Mx also proved ineffective in the context of avian as well as mammalian cell backgrounds. Our findings demonstrate that Asn631 chicken Mx alleles do not inhibit influenza virus replication of the five strains tested here and efforts to increase the frequency of Asn631 alleles in commercial chicken populations are not warranted. Nevertheless, chicken Mx variants with anti-influenza activity might still exist. The flow cytometry and minireplicon assays described herein could be used as efficient functional screens to identify such active chicken Mx alleles.
Collapse
|
45
|
Yang KT, Lin CY, Liou JS, Fan YH, Chiou SH, Huang CW, Wu CP, Lin EC, Chen CF, Lee YP, Lee WC, Ding ST, Cheng WTK, Huang MC. Differentially expressed transcripts in shell glands from low and high egg production strains of chickens using cDNA microarrays. Anim Reprod Sci 2007; 101:113-24. [PMID: 17034964 DOI: 10.1016/j.anireprosci.2006.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 08/14/2006] [Accepted: 09/05/2006] [Indexed: 11/24/2022]
Abstract
We have constructed a tissue-specific in-house cDNA microarray to identify differentially expressed transcripts in shell glands from low (B) and high (L2) egg production strains of Taiwanese country chickens during their egg-laying period. The shell gland cDNA library was constructed from the high egg production strain. cDNA clones (7680) were randomly selected and their 5'-end sequences characterized. After excluding overlapping sequences, an in-house cDNA microarray, representing 2743 non-redundant transcripts, was generated for functional genomic studies. Using our microarray, we have successfully identified 85 differentially expressed transcripts from the two different strains of chicken shell glands. In this study, 34 of these transcripts were associated with signal transduction, protein biosynthesis, cell adhesion, cellular metabolism, skeletal development, cell organization and biogenesis. We selected a number of the differentially expressed transcripts for further validation using semi-quantitative RT-PCR. These included elongation factor 2 (EEF2), ovocalyxin-32 (OCX-32) and annexin A2 (ANXA2) which were expressed at high levels in the chicken shell glands of the B strain and, in contrast, the coactosin-like protein (COTL1), transcription factor SOX18 and MX protein were more highly expressed in the L2 strain. Our results suggest that these differentially expressed transcripts may be suitable to use as molecular markers for high rates of egg production, and now need to be investigated further to assess whether they can be applied for use in breeding selection programs in Taiwanese country chickens.
Collapse
Affiliation(s)
- Kuo-Tai Yang
- Department of Animal Science, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Watanabe T. Polymorphisms of the chicken antiviral MX gene. Cytogenet Genome Res 2007; 117:370-5. [PMID: 17675880 DOI: 10.1159/000103200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022] Open
Abstract
The Mx gene was originally found in laboratory mice in an infection experiment using influenza virus (Lindermann, 1962). Almost all of the mouse strains in that experiment died from the infection, and only the A2G strain had resistance to the virus. This resistant character was shown to be inherited as a single autosomal dominant trait (Lindermann et al., 1963; Lindermann, 1964; Haller et al., 1979). A congenic mouse strain was established by introducing the Mx+ allele of the A2G resistant strain into the Mx- sensitive inbred strain BALB/c (Staeheli et al., 1984). By immunizing parental BALB/c mice with extracts of interferon (IFN)-treated cultured cells from congenic BALB/c-Mx+ mice, a specific antibody against Mx protein was obtained (Horisberger et al., 1983; Staeheli et al., 1985). The Mx protein was detected in the nucleus of IFN-alpha/beta-treated mouse cells by immunofluorescence using the anti-Mx antibody (Dreiding et al., 1985). Thereafter, by using the antibody as an indicator, cDNA encoding the Mx protein was cloned from a cDNA library constructed from IFN-treated cells of congenic BALB/c-Mx+ mice (Staeheli et al., 1986a). IFN-treated Mx+ mouse cells contained a 3.5-kb Mx mRNA in the Northern blot, while Mx- cells failed to express the transcript. The functional Mx+ gene from an A2G mouse was found to contain 14 exons and encode 631 amino acids. The Mx- allelic mouse strains were found to be missing sequence of exons 9 through 11 or to contain a point mutation that converts lysine at position 389 to a stop codon (Staeheli et al., 1988). If these polymorphisms of the Mx gene could be detected in domestic animals, it would be possible to produce breeds that show resistance to infectious diseases.
Collapse
Affiliation(s)
- T Watanabe
- Animal Breeding and Reproduction, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
47
|
Balkissoon D, Staines K, McCauley J, Wood J, Young J, Kaufman J, Butter C. Low frequency of the Mx allele for viral resistance predates recent intensive selection in domestic chickens. Immunogenetics 2007; 59:687-91. [PMID: 17609940 DOI: 10.1007/s00251-007-0235-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 06/11/2007] [Indexed: 11/27/2022]
Abstract
Avian influenza is a serious threat to the poultry industry and, as the potential source of a human pandemic virus, to public health. Different Mx alleles have been reported to confer resistance or susceptibility to influenza virus replication, and so knowledge of their frequencies is important when considering the potential for improvement of modern commercial flocks. We analysed a range of chicken lines and ancestral breeds for the relevant Mx codon that confers resistance or susceptibility to influenza virus replication. We confirmed the high frequency of the susceptibility allele in contemporary meat-type (broiler) birds compared to egg-laying strains and found this difference is present already in ancestral breeds. We sequenced full-length complementary DNA (cDNA) and noted additional substitutions, which may be associated with the resistance haplotypes. High frequencies of the susceptibility allele could be readily reduced by modern breeding techniques.
Collapse
|
48
|
Mundt E. Human MxA protein confers resistance to double-stranded RNA viruses of two virus families. J Gen Virol 2007; 88:1319-1323. [PMID: 17374778 DOI: 10.1099/vir.0.82526-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interferon-induced human MxA protein belongs to the dynamin superfamily of large GTPases and accumulates in the cytoplasm. MxA is a key component of the innate antiviral response and has previously been shown to inhibit several viruses with single-stranded RNA genomes of both polarities and a DNA virus. In addition, MxA also targets two double-stranded RNA viruses, Infectious bursal disease virus and a mammalian reovirus as shown in this study. Thus, the antiviral spectrum of human MxA is broader than hitherto suspected. Interestingly, virus growth was not affected in cells expressing MxA(E645R), a mutant form of MxA that showed antiviral activity against orthomyxoviruses.
Collapse
Affiliation(s)
- Egbert Mundt
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
49
|
Cauthen AN, Swayne DE, Sekellick MJ, Marcus PI, Suarez DL. Amelioration of influenza virus pathogenesis in chickens attributed to the enhanced interferon-inducing capacity of a virus with a truncated NS1 gene. J Virol 2007; 81:1838-47. [PMID: 17121796 PMCID: PMC1797581 DOI: 10.1128/jvi.01667-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 11/10/2006] [Indexed: 11/20/2022] Open
Abstract
Avian influenza virus (AIV) A/turkey/Oregon/71-SEPRL (TK/OR/71-SEPRL) (H7N3) encodes a full-length NS1 protein and is a weak inducer of interferon (IFN). A variant, TK/OR/71-delNS1 (H7N3), produces a truncated NS1 protein and is a strong inducer of IFN. These otherwise genetically related variants differ 20-fold in their capacities to induce IFN in primary chicken embryo cells but are similar in their sensitivities to the action of IFN. Furthermore, the weak IFN-inducing strain actively suppresses IFN induction in cells that are otherwise programmed to produce it. These phenotypic differences are attributed to the enhanced IFN-inducing capacity that characterizes type A influenza virus strains that produce defective NS1 protein. The pathogenesis of these two variants was evaluated in 1-day-old and 4-week-old chickens. The cell tropisms of both viruses were similar. However, the lesions in chickens produced by the weak IFN inducer were more severe and differed somewhat in character from those observed for the strong IFN inducer. Differences in lesions included the nature of inflammation, the rate of resolution of the infection, and the extent of viral replication and/or virus dissemination. The amelioration of pathogenesis is attributed to the higher levels of IFN produced by the variant encoding the truncated NS1 protein and the antiviral state subsequently induced by that IFN. The high titer of virus observed in kidney tissue ( approximately 10(9) 50% embryo lethal doses/g) from 1-day-old chickens infected intravenously by the weak IFN-inducing strain is attributed to the capacity of chicken kidney cells to activate the hemagglutinin fusion peptide along with their unresponsiveness to inducers of IFN as measured in vitro. Thus, the IFN-inducing capacity of AIV appears to be a significant factor in regulating the pathogenesis, virulence, and viral transmission of AIV in chickens. This suggests that the IFN-inducing and IFN induction suppression phenotypes of AIV should be considered when characterizing strains of influenza virus.
Collapse
Affiliation(s)
- Angela N Cauthen
- Southeast Poultry Research Laboratory, ARS/USDA, 934 College Station Road, Athens, GA 30605, USA
| | | | | | | | | |
Collapse
|
50
|
Seyama T, Ko JH, Ohe M, Sasaoka N, Okada A, Gomi H, Yoneda A, Ueda J, Nishibori M, Okamoto S, Maeda Y, Watanabe T. Population Research of Genetic Polymorphism at Amino Acid Position 631 in Chicken Mx Protein with Differential Antiviral Activity. Biochem Genet 2006; 44:437-48. [PMID: 16955367 DOI: 10.1007/s10528-006-9040-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 01/17/2006] [Indexed: 11/28/2022]
Abstract
A single amino acid substitution between Asn and Ser at position 631 in the chicken Mx protein has been reported to determine resistant and sensitive antiviral activity. In this study, we investigate whether various kinds of chicken breeds and jungle fowls carry the resistant or sensitive Mx allelic gene by using the mismatched PCR-restriction fragment length polymorphism (RFLP) technique. In total, 271 samples from 36 strains of 17 chicken breeds and from 3 kinds of jungle fowls were examined. The rates of the resistant Mx gene and sensitive gene were 59.2% and 40.8%, respectively. Only a Red jungle fowl captured in Laos carried the resistant Mx gene, and the other three Red jungle fowls from Indonesia and Gray and Green jungle fowls all had the sensitive Mx gene. These results were confirmed by the determination of amino acid sequences in the GTPase effector domain of jungle fowls.
Collapse
Affiliation(s)
- T Seyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|