1
|
Hai L, Li Y, Lan X, Luo Z, Pei C, Hu D. Insight into mtDNA diversity of wild forest musk deer (Moschus berezovskii) in Shanxi Province mountains. Sci Rep 2025; 15:5523. [PMID: 39953180 PMCID: PMC11829026 DOI: 10.1038/s41598-025-89478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Shanxi Province is the northernmost distribution range of Chinese forest musk deer (Moschus berezovskii), with wild populations scattered across Zhongtiao (ZT), Lüliang (LL), and Taiyue (TY) mountain ranges. Using line transect surveys and local guide assistance, coupled with infrared camera data, this study systematically collected fecal samples from wild forest musk deer from five nature reserves across the three mountain ranges. Genetic diversity was analyzed using the mtDNA control region, which yielded 129 effective sequences of 656 bp and 20 distinct haplotypes. Haplotype and nucleotide diversities were 0.916 and 0.01505, respectively, indicating a relatively high overall genetic diversity in the studied populations. Significant genetic differentiation was observed between the Lüliang-Taiyue (LLTY) and ZT mountain range populations, with most of the genetic variation existing within the populations. No significant correlation was detected between the geographical and genetic distances of the samples, which may have resulted from historical agricultural activities in Shanxi impeding gene flow among populations. Therefore, genetic exchange programs are recommended to improve the genetic diversity and population fitness of forest musk deer in this region to facilitate their recovery and growth.
Collapse
Affiliation(s)
- Luyao Hai
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Yixin Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Xianna Lan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Zhengwei Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Chao Pei
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Cao H, Li Z, Jin T, He S, Liu S, Li L, Wang Y, Gong Y, Wang G, Yang F, Dong W. Maslinic acid supplementation prevents di(2-ethylhexyl) phthalate-induced apoptosis via PRDX6 in peritubular myoid cells of Chinese forest musk deer. J Environ Sci (China) 2024; 143:47-59. [PMID: 38644023 DOI: 10.1016/j.jes.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 04/23/2024]
Abstract
Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Zhenpeng Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shuyang He
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Gang Wang
- Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
3
|
Wang Z, Lu G, Gao Y, Yan L, Li M, Hu D, Zhang D. mtDNA CR Evidence Indicates High Genetic Diversity of Captive Forest Musk Deer in Shaanxi Province, China. Animals (Basel) 2023; 13:2191. [PMID: 37443989 DOI: 10.3390/ani13132191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Forest musk deer (Moschus berezovskii) are endangered ruminants whose adult males secrete musk. China has been breeding forest musk deer artificially since the 1950s in an effort to restore wild populations, with Shaanxi and Sichuan provinces as the two main sites for captive breeding. Genetic diversity is a significant indicator that determines the long-term viability and status of a population, particularly for species at risk of extinction. In this study, we analyzed the current genetic makeup of seven captive forest musk deer populations in the Shaanxi province, using the mitochondrial DNA (mtDNA) control region (CR) as the molecular marker. We sequenced 604 bp of mtDNA CR, with an average content of A+T higher than G+C. We observed 111 variable sites and 39 different haplotypes from 338 sequences. The nucleotide diversity (Pi) and haplotype diversity (Hd) were 0.02887 and 0.908, respectively. Genetic differentiation between these populations was not significant, and the populations might not have experienced rapid growth. By combining our sequences with previous ones, we identified 65 unique haplotypes with 26 rare haplotypes and estimated a total of 90 haplotypes in Shaanxi province captive populations. The Shaanxi province and Sichuan province obtained 88 haplotypes, the haplotypes from the two populations were mixed together, and the two populations showed moderate genetic differentiation. Our findings suggested that captive forest musk deer populations in the Shaanxi province had high genetic diversity, with a rich founder population of about 90 maternal lines. Additionally, managers could develop genetic management plans for forest musk deer based on the haplotype database. Overall, our study will provide insights and guidelines for the conservation of genetic diversity in captive forest musk deer populations in the Shaanxi province.
Collapse
Affiliation(s)
- Zhe Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Guanjie Lu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Yunyun Gao
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Mingzhe Li
- China Wildlife Conservation Association, Beijing 100714, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| |
Collapse
|
4
|
Liu G, Zhang BF, Chang J, Hu XL, Li C, Xu TT, Liu SQ, Hu DF. Population genomics reveals moderate genetic differentiation between populations of endangered Forest Musk Deer located in Shaanxi and Sichuan. BMC Genomics 2022; 23:668. [PMID: 36138352 PMCID: PMC9503231 DOI: 10.1186/s12864-022-08896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Many endangered species exist in small, genetically depauperate, or inbred populations, hence promoting genetic differentiation and reducing long-term population viability. Forest Musk Deer (Moschus berezovskii) has been subject to illegal hunting for hundreds of years due to the medical and commercial values of musk, resulting in a significant decline in population size. However, it is still unclear to what extent the genetic exchange and inbreeding levels are between geographically isolated populations. By using whole-genome data, we reconstructed the demographic history, evaluated genetic diversity, and characterized the population genetic structure of Forest Musk Deer from one wild population in Sichuan Province and two captive populations from two ex-situ centers in Shaanxi Province. RESULTS SNP calling by GATK resulted in a total of 44,008,662 SNPs. Principal component analysis (PCA), phylogenetic tree (NJ tree), ancestral component analysis (ADMIXTURE) and the ABBA-BABA test separated Sichuan and Shaanxi Forest Musk Deer as two genetic clusters, but no obvious genetic differentiation was observed between the two captive populations. The average pairwise FST value between the populations in Sichuan and Shaanxi ranged from 0.05-0.07, suggesting a low to moderate genetic differentiation. The mean heterozygous SNPs rate was 0.14% (0.11%-0.15%) for Forest Musk Deer at the genomic scale, and varied significantly among three populations (Chi-square = 1.22, p < 0.05, Kruskal-Wallis Test), with the Sichuan population having the lowest (0.11%). The nucleotide diversity of three populations varied significantly (p < 0.05, Kruskal-Wallis Test), with the Sichuan population having the lowest genetic θπ (1.69 × 10-3). CONCLUSIONS Genetic diversity of Forest Musk Deer was moderate at the genomic scale compared with other endangered species. Genetic differentiation between populations in Sichuan and Shaanxi may not only result from historical biogeographical factors but also be associated with contemporary human disturbances. Our findings provide scientific aid for the conservation and management of Forest Musk Deer. They can extend the proposed measures at the genomic level to apply to other musk deer species worldwide.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China.
| | - Bao-Feng Zhang
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100085, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiao-Long Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330022, China
| | - Chao Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
| | - Tin-Tao Xu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shu-Qiang Liu
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100085, China
| | - De-Fu Hu
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100085, China.
| |
Collapse
|
5
|
Genetic evidence indicates the occurrence of the Endangered Kashmir musk deer Moschus cupreus in Uttarakhand, India. ORYX 2022. [DOI: 10.1017/s0030605321000417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
The Endangered Kashmir musk deer Moschus cupreus occurs in the western Himalayan region from Nepal to Afghanistan, but there is a lack of comprehensive and reliable information on its range. The region also harbours the Endangered Himalayan musk deer Moschus leucogaster, and this range overlap may have led to misidentification of the two musk deer species and errors in the delimitation of their ranges. Here, using genetic analysis of the mitochondrial DNA control region, we examined the phylogenetic relationship among musk deer samples from three regions in India: Ganderbal District in Jammu and Kashmir, and Kedarnath Wildlife Sanctuary and Nanda Devi Biosphere Reserve, both in Uttarakhand. The Bayesian phylogenetic analysis indicated a close genetic relationship between samples from Jammu and Kashmir, Kedarnath Wildlife Sanctuary and Nanda Devi Biosphere Reserve, validated by previously published sequences of Kashmir musk deer from Nepal. Our analyses confirmed the samples from Uttarakhand to be from the Kashmir musk deer, which was not previously known from this region. Therefore, we recommend further research in this area, to validate species identification and confirm the geographical distribution of the various species of musk deer. In addition, we recommend revision of the range of M. cupreus in the IUCN Red List assessment, to facilitate effective conservation and management of this Endangered species.
Collapse
|
6
|
Yang C, Huang W, Sun Y, You L, Jin H, Sun Z. Effect of probiotics on diversity and function of gut microbiota in Moschus berezovskii. Arch Microbiol 2021; 203:3305-3315. [PMID: 33860850 DOI: 10.1007/s00203-021-02315-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Abstract
The forest musk deer, Moschus berezovskii, is a nationally protected species of economic importance in China. However, in captive breeding programmes, they usually die as a result of diarrhoea. In this study, six M. berezovskii were randomly selected and divided into two groups: probiotics group (n = 3) and placebo (control) group (n = 3). The two groups were fed a basal diet that included 2 g probiotics (probiotic group) or 2 g whey powder (placebo group) for 30 days. Faecal samples were collected at day 0, 15 and 30 and evaluated for microbial diversity, species richness and metabolic function. Probiotic intervention significantly improved gut health in M. berezovskii by changing the overall community structure of the gut microbiota. Intake of probiotics reduced the relative abundance of pathogenic bacteria such as Escherichia coli and Citrobacter freundii in the intestinal flora and increased the relative abundance of beneficial Bifidobacterium species and other lactic acid bacteria. At the same time, gut microbiota in the probiotics group were involved in regulating degradation of phenylacetic acid and in dTDP-L-rhamnose synthesis; these processes have the potential to enhance immunity in M. berezovskii. This preliminary study revealed the beneficial effects of probiotics on the gut microbiota of M. berezovskii, which the potential to significantly improve the health, wellbeing and economic value of M. berezovskii.
Collapse
Affiliation(s)
- Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Weiqiang Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Yaru Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Lijun You
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Hao Jin
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.
| |
Collapse
|
7
|
A Genetic Evaluation System for New Zealand White Rabbit Germplasm Resources Based on SSR Markers. Animals (Basel) 2020; 10:ani10081258. [PMID: 32722175 PMCID: PMC7460188 DOI: 10.3390/ani10081258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The New Zealand white rabbit (Oryctolagus cuniculus) is one of the most important breeds of commercial and experimental rabbits in the world, and also one of the most raised rabbit breeds in China. Our goal was to develop a suite of microsatellite markers to aid future conservation genetics research for the Oryctolagus cuniculus breeds. Based on the genetic diversity of 130 New Zealand white rabbits, we obtained a set combination of 22 markers. Then, we performed a genetic analysis of 200 New Zealand white rabbits corresponding to two generations with this combination. It can be used to evaluate the breed conservation of rabbit germplasm resources. Abstract At present, there is an abundance of quality domestic rabbit breeds in China. However, due to the lack of technical standards for the genetic evaluation of rabbit germplasm resources, there have been a number of problems, such as poor breed conservation. By studying the genetic diversity of 130 New Zealand white rabbits (regardless of generation), we obtained the best simple sequence repeat (SSR) marker combination. We found that, when using microsatellite markers for the effective genetic evaluation of domestic rabbits, the number of records should be greater than 60 and the marker number more than 22. Through the comparative analysis of 30 combinations of 22 markers, the optimal combination of 22 markers was determined, and the 22 SSR polymorphic loci were distributed on different chromosomes. We performed a genetic analysis of 200 New Zealand white rabbits corresponding to two generations, using the best SSR polymorphic loci combination. There were no significant differences in the genetic diversity parameters between the two generations of rabbits (p > 0.05), indicating that the characteristics of this excellent rabbit germplasm have been effectively preserved. At the same time, we verified that the established method can be used to evaluate the breed conservation of rabbit germplasm resources.
Collapse
|
8
|
Cai Y, Yang J, Wang J, Yang Y, Fu W, Zheng C, Cheng J, Zeng Y, Zhang Y, Xu L, Ren Y, Lu C, Zhang M. Changes in the Population Genetic Structure of Captive Forest Musk Deer (Moschus Berezovskii) with the Increasing Number of Generation under Closed Breeding Conditions. Animals (Basel) 2020; 10:E255. [PMID: 32033449 PMCID: PMC7071047 DOI: 10.3390/ani10020255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022] Open
Abstract
We investigated the genetic diversity of the population of captive forest musk deer (Moschus berezovskii) in Barkam Musk Deer Breeding Centre using twelve microsatellite markers, and then analyzed the change in genetic structure of successive generation groups from the population. The data provide a new understanding for the evaluation and usage of the breeding management system. Microsatellite marker analysis detected 141 alleles with an average of 11.75 alleles for each marker. The average expected heterozygosity (HE) was 0.731. Performing an F-statistical analysis on the data showed that the genetic diversity of population decreased, and the inbreeding coefficient significant increased with the increase of generation, and FIS of the 1st generation is significantly lower than that of the second to fifth generation (p < 0.01). The result suggested that the captive population was facing the pressure of inbreeding (FIS = 0.115) and the subsequent loss of genetic diversity. Therefore, it is necessary to improve the breeding management system of the captive population by preventing close relatives from mating or inducing new individuals from the exotic population.
Collapse
Affiliation(s)
- Yonghua Cai
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, Chengdu 611845, China; (J.W.); (Y.Y.); (C.Z.); (J.C.)
| | - Jiandong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu campus, Wenjiang 611130, China; (J.Y.); (W.F.); (L.X.); (Y.R.); (C.L.)
| | - Jianming Wang
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, Chengdu 611845, China; (J.W.); (Y.Y.); (C.Z.); (J.C.)
| | - Ying Yang
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, Chengdu 611845, China; (J.W.); (Y.Y.); (C.Z.); (J.C.)
| | - Wenlong Fu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu campus, Wenjiang 611130, China; (J.Y.); (W.F.); (L.X.); (Y.R.); (C.L.)
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, Chengdu 611845, China; (J.W.); (Y.Y.); (C.Z.); (J.C.)
| | - Jianguo Cheng
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, Chengdu 611845, China; (J.W.); (Y.Y.); (C.Z.); (J.C.)
| | - Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu campus, Wenjiang 611130, China; (J.Y.); (W.F.); (L.X.); (Y.R.); (C.L.)
| | - Yan Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu campus, Wenjiang 611130, China; (J.Y.); (W.F.); (L.X.); (Y.R.); (C.L.)
| | - Ling Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu campus, Wenjiang 611130, China; (J.Y.); (W.F.); (L.X.); (Y.R.); (C.L.)
| | - Yan Ren
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu campus, Wenjiang 611130, China; (J.Y.); (W.F.); (L.X.); (Y.R.); (C.L.)
| | - Chuanzhi Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu campus, Wenjiang 611130, China; (J.Y.); (W.F.); (L.X.); (Y.R.); (C.L.)
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu campus, Wenjiang 611130, China; (J.Y.); (W.F.); (L.X.); (Y.R.); (C.L.)
| |
Collapse
|
9
|
Yi L, Dalai M, Su R, Lin W, Erdenedalai M, Luvsantseren B, Chimedtseren C, Wang Z, Hasi S. Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features. BMC Genomics 2020; 21:108. [PMID: 32005147 PMCID: PMC6995116 DOI: 10.1186/s12864-020-6495-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Siberian musk deer, one of the seven species, is distributed in coniferous forests of Asia. Worldwide, the population size of Siberian musk deer is threatened by severe illegal poaching for commercially valuable musk and meat, habitat losses, and forest fire. At present, this species is categorized as Vulnerable on the IUCN Red List. However, the genetic information of Siberian musk deer is largely unexplored. Results Here, we produced 3.10 Gb draft assembly of wild Siberian musk deer with a contig N50 of 29,145 bp and a scaffold N50 of 7,955,248 bp. We annotated 19,363 protein-coding genes and estimated 44.44% of the genome to be repetitive. Our phylogenetic analysis reveals that wild Siberian musk deer is closer to Bovidae than to Cervidae. Comparative analyses showed that the genetic features of Siberian musk deer adapted in cold and high-altitude environments. We sequenced two additional genomes of Siberian musk deer constructed demographic history indicated that changes in effective population size corresponded with recent glacial epochs. Finally, we identified several candidate genes that may play a role in the musk secretion based on transcriptome analysis. Conclusions Here, we present a high-quality draft genome of wild Siberian musk deer, which will provide a valuable genetic resource for further investigations of this economically important musk deer.
Collapse
Affiliation(s)
- Li Yi
- Inner Mongolia Agricultural University / Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China
| | - Menggen Dalai
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| | - Rina Su
- Inner Mongolia Agricultural University / Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China
| | - Weili Lin
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | | | | - Zhen Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Surong Hasi
- Inner Mongolia Agricultural University / Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China.
| |
Collapse
|
10
|
Fan J, Zheng X, Wang H, Qi H, Jiang B, Qiao M, Zhou J, Bu S. Analysis of Genetic Diversity and Population Structure in Three Forest Musk Deer Captive Populations with Different Origins. G3 (BETHESDA, MD.) 2019; 9:1037-1044. [PMID: 30737238 PMCID: PMC6469423 DOI: 10.1534/g3.119.400001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Musk deer (Moschidae), whose secretion is an expensive and irreplaceable component of traditional medicine, have become endangered in the wild due to habitat fragmentation and over-exploitation. In recent years, China has had success in the artificial breeding of forest musk deer, thus relieving the pressure on wild populations. However, many farmed populations are experiencing degradation, and little genetic information is available for conservation management. In this study, we selected 274 individuals from three typical captive populations (originated from the Ta-pa Mountains (Tp), the midrange of the Qinling Mountains (Ql) and the Western Sichuan Plateau (WS), respectively) to evaluate the genetic variations. A total of more than 3.15 billion high-quality clean reads and 4.37 million high-quality SNPs were generated by RAD sequencing. Based on the analysis, we found that captive forest musk deer populations exhibit a relatively low level of genetic diversity. Ql displayed a higher level of genetic diversity than the Tp and WS populations. Tp and WS had experienced population bottlenecks in the past as inferred from the values of Tajima's D. There were high levels of heterozygote deficiency caused by inbreeding within the three populations. Population structure analysis suggested that the three populations have evolved independently, and a moderate amount of genetic differentiation has developed, although there was a low level of gene flow between the Ql and Tp populations. Furthermore, the average quantities of musk secreted by musk deer in the Tp and WS populations were significantly higher than that in the Ql population. The present genetic information should be considered in management plans for the conservation and utilization of musk deer from captive breeding.
Collapse
Affiliation(s)
- Jiamin Fan
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xueli Zheng
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongyong Wang
- Fengxian Feng Chun Ji Min Breeding Limited Company, Baoji 721702, Shaanxi, China
- Qingchuan Jiu Yao Musk Deer Development Limited Company, Guangyuan 628109, Sichuan, China
| | - Hong Qi
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Benmo Jiang
- Fengxian Feng Chun Ji Min Breeding Limited Company, Baoji 721702, Shaanxi, China
| | - Meiping Qiao
- Qingchuan Jiu Yao Musk Deer Development Limited Company, Guangyuan 628109, Sichuan, China
| | - Jianwen Zhou
- Ecological and Wildlife Conservation Management Station in Feng County, Baoji 721700, Shaanxi, China
| | - Shuhai Bu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
11
|
Fan Z, Li W, Jin J, Cui K, Yan C, Peng C, Jian Z, Bu P, Price M, Zhang X, Shen Y, Li J, Q W, Yue B. The draft genome sequence of forest musk deer (Moschus berezovskii). Gigascience 2018; 7:4965115. [PMID: 29635287 PMCID: PMC5906906 DOI: 10.1093/gigascience/giy038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background The forest musk deer, Moschus berezovskii, is one of seven musk deer (Moschus spp.) and is distributed in Southwest China. Akin to other musk deer, the forest musk deer has been traditionally and is currently hunted for its musk (i.e., global perfume industry). Considerable hunting pressure and habitat loss have caused significant population declines. Consequently, the Chinese government commenced captive breeding programs for musk harvesting in the 1950s. However, the prevalence of fatal diseases is considerably restricting population increases. Disease severity and extent are exacerbated by inbreeding and genetic diversity declines in captive musk deer populations. It is essential that knowledge of captive and wild forest musk deer populations' immune system and genome be gained in order to improve their physical and genetic health. We have thus sequenced the whole genome of the forest musk deer, completed the genomic assembly and annotation, and performed preliminary bioinformatic analyses. Findings A total of 407 Gb raw reads from whole-genome sequencing were generated using the Illumina HiSeq 4000 platform. The final genome assembly is around 2.72 Gb, with a contig N50 length of 22.6 kb and a scaffold N50 length of 2.85 Mb. We identified 24,352 genes and found that 42.05% of the genome is composed of repetitive elements. We also detected 1,236 olfactory receptor genes. The genome-wide phylogenetic tree indicated that the forest musk deer was within the order Artiodactyla, and it appeared as the sister clade of four members of Bovidae. In total, 576 genes were under positive selection in the forest musk deer lineage. Conclusions We provide the first genome sequence and gene annotation for the forest musk deer. The availability of these resources will be very useful for the conservation and captive breeding of this endangered and economically important species and for reconstructing the evolutionary history of the order Artiodactyla.
Collapse
Affiliation(s)
- Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Wujiao Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jiazheng Jin
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Kai Cui
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Chaochao Yan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Changjun Peng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zuoyi Jian
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Ping Bu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Megan Price
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xiuyue Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yongmei Shen
- Sichuan Engineering Research Center for Medicinal Animals, Xichang 615000, People's Republic of China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Wenhua Q
- College of Life Science and Engineering, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
12
|
Yang C, Tang J, Bian K, Suo LJ, Yuan H, Wang Y, Huang Y. Next generation sequencing yields the complete mitogenome of captive forest musk deer, Moschus berezovskii (Ruminantia: Moschidae). Mitochondrial DNA B Resour 2018; 3:472-473. [PMID: 33474208 PMCID: PMC7800556 DOI: 10.1080/23802359.2018.1462670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 10/29/2022] Open
Abstract
Moschus berezovskii is an endangered species, but its captive populations are valuable on musk secretions in traditional Chinese medicine and perfume manufacture. The mitogenome of M. berezovskii was 16,353 bp in size. Stop codons in 13 PCGs were all typical types except incomplete stop codon T for COX3, ND2 and ND4, and TA for ND3. No tandem repeat was found in control region. Phylogenetic analysis indicated that Moschidae has the closest relationship with Bovidae. We supported that M. berezovskii should be categorized into two subspecies, and suggested that the status of M. chrysogaster JQ608470 should be further investigated.
Collapse
Affiliation(s)
- Chao Yang
- Shaanxi Institute of Zoology, Xi’an, China
- School of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Jie Tang
- Shaanxi Institute of Zoology, Xi’an, China
| | - Kun Bian
- Shaanxi Institute of Zoology, Xi’an, China
| | | | - Hao Yuan
- School of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yan Wang
- Shaanxi Institute of Zoology, Xi’an, China
| | - Yuan Huang
- School of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
13
|
Sun X, Cai R, Jin X, Shafer ABA, Hu X, Yang S, Li Y, Qi L, Liu S, Hu D. Blood transcriptomics of captive forest musk deer (Moschus berezovskii) and possible associations with the immune response to abscesses. Sci Rep 2018; 8:599. [PMID: 29330436 PMCID: PMC5766596 DOI: 10.1038/s41598-017-18534-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022] Open
Abstract
Forest musk deer (Moschus berezovskii; FMD) are both economically valuable and highly endangered. A problem for FMD captive breeding programs has been the susceptibility of FMD to abscesses. To investigate the mechanisms of abscess development in FMD, the blood transcriptomes of three purulent and three healthy individuals were generated. A total of ~39.68 Gb bases were generated using Illumina HiSeq 4000 sequencing technology and 77,752 unigenes were identified after assembling. All the unigenes were annotated, with 63,531 (81.71%) mapping to at least one database. Based on these functional annotations, 45,798 coding sequences (CDS) were detected, along with 12,697 simple sequence repeats (SSRs) and 65,536 single nucleotide polymorphisms (SNPs). A total of 113 unigenes were found to be differentially expressed between healthy and purulent individuals. Functional annotation indicated that most of these differentially expressed genes were involved in the regulation of immune system processes, particularly those associated with parasitic and bacterial infection pathways.
Collapse
Affiliation(s)
- Xiaoning Sun
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation,Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China
| | - Ruibo Cai
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation,Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China
| | - Xuelin Jin
- Shaanxi Institute of Zoology, No. 88 Xing Qing Ave Xian, Shaanxi, 710032, China
| | - Aaron B A Shafer
- Forensic Science and Environmental & Life Sciences, Trent University,1600 West Bank Drive,Peterborough, Ontario, Canada
| | - Xiaolong Hu
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation,Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China
| | - Shuang Yang
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation,Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China
| | - Yimeng Li
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation,Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China
| | - Lei Qi
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation,Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China
| | - Shuqiang Liu
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation,Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China.
| | - Defu Hu
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation,Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
14
|
Xu Z, Jie H, Chen B, Gaur U, Wu N, Gao J, Li P, Zhao G, Zeng D, Yang M, Li D. Illumina-based de novo transcriptome sequencing and analysis of Chinese forest musk deer. J Genet 2017; 96:1033-1040. [DOI: 10.1007/s12041-017-0872-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Sun Z, Pan T, Wang H, Pang M, Zhang B. Yangtze River, an insignificant genetic boundary in tufted deer ( Elaphodus cephalophus): the evidence from a first population genetics study. PeerJ 2016; 4:e2654. [PMID: 27843712 PMCID: PMC5103815 DOI: 10.7717/peerj.2654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 10/04/2016] [Indexed: 12/02/2022] Open
Abstract
Great rivers were generally looked at as the geographical barrier to gene flow for many taxonomic groups. The Yangtze River is the third largest river in the world, and flows across South China and into the East China Sea. Up until now, few studies have been carried out to evaluate its effect as a geographical barrier. In this study, we attempted to determine the barrier effect of the Yangtze River on the tufted deer (Elaphodus cephalophus) using the molecular ecology approach. Using mitochondrial DNA control region (CR) sequences and 13 nuclear microsatellite loci, we explored the genetic structure and gene flow in two adjacent tufted deer populations (Dabashan and Wulingshan populations), which are separated by the Yangtze River. Results indicated that there are high genetic diversity levels in the two populations, but no distinguishable haplotype group or potential genetic cluster was detected which corresponded to specific geographical population. At the same time, high gene flow was observed between Wulingshan and Dabashan populations. The tufted deer populations experienced population decrease from 0.3 to 0.09 Ma BP, then followed by a distinct population increase. A strong signal of recent population decline (T = 4,396 years) was detected in the Wulingshan population by a Markov-Switching Vector Autoregressions(MSVAR) process population demography analysis. The results indicated that the Yangtze River may not act as an effective barrier to gene flow in the tufted deer. Finally, we surmised that the population demography of the tufted deer was likely affected by Pleistocene climate fluctuations and ancient human activities.
Collapse
Affiliation(s)
- Zhonglou Sun
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Tao Pan
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Hui Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Mujia Pang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
16
|
Molecular polymorphism of MHC-DRB gene and genetic diversity analysis of captive forest musk deer (Moschus berezovskii). BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Yao G, Zhu Y, Wan QH, Fang SG. Major histocompatibility complex class II genetic variation in forest musk deer (Moschus berezovskii) in China. Anim Genet 2015; 46:535-43. [PMID: 26370614 DOI: 10.1111/age.12336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2015] [Indexed: 01/18/2023]
Abstract
The major histocompatibility complex (MHC) plays an important role in the immune system of vertebrates. We used the second exon of four MHC class II genes (DRA, DQA1, DQA2 and DRB3) to assess the overall MHC variation in forest musk deer (Moschus berezovskii). We also compared the MHC variation in captive and wild populations. We observed 22 alleles at four loci (four at DRA, four at DQA1, four at DQA2 and 10 at DRB3), 15 of which were newly identified alleles. Results suggest that forest musk deer maintain relatively high MHC variation, which may result from balancing selection. Moreover, considerable diversity was observed at the DRA locus. We found a high frequency of Mobe-DRA*02, Mobe-DQA1*01 and Mobe-DQA2*05 alleles, which may be important for pathogen resistance. A Ewens-Watterson test showed that the DRB3 locus in the wild population had experienced recent balancing selection. We detected a small divergence at the DRA locus, suggesting the effect of weak positive selection on the DRA gene. Alternatively, this locus may be young and not yet adapted a wide spectrum of alleles for pathogen resistance. The significant heterozygosity deficit observed at the DQA1 and DRB3 loci in the captive population and at all four loci in the wild population may be the result of a population bottleneck. Additionally, MHC genetic diversity was higher in the wild population than in the captive, suggesting that the wild population may have the ability to respond to a wider range of pathogens.
Collapse
Affiliation(s)
- Gang Yao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiu-Hong Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Guo Fang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Klimova A, Munguia-Vega A, Hoffman JI, Culver M. Genetic diversity and demography of two endangered captive pronghorn subspecies from the Sonoran Desert. J Mammal 2014. [DOI: 10.1644/13-mamm-a-321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Bei Y, Chen W, Sun B, Li J, Lai J, Meng S. Population structure of the endangered Hume's pheasant (Syrmaticus humiae) inferred from a partial sequence of the mitochondrial DNA control region. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Li L, Wang BB, Ge YF, Wan QH. Major histocompatibility complex class II polymorphisms in forest musk deer (Moschus berezovskii) and their probable association with purulent disease. Int J Immunogenet 2014; 41:401-12. [PMID: 25053118 DOI: 10.1111/iji.12135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/20/2014] [Accepted: 06/12/2014] [Indexed: 11/26/2022]
Abstract
Genes of the major histocompatibility complex (MHC) family are crucial in immune responses because they present pathogenic peptides to T cells. In this study, we analysed the genetic variation in forest musk deer (Moschus berezovskii) MHC II genes and its potential association with musk deer purulent disease. In total, 53 purulent disease-susceptible and 46 purulent disease-resistant individuals were selected for MHC II exon 2 fragment analysis. Among them, 16 DQ alleles and four additional DR alleles were identified, with DQ exon 2 fragments displaying a low level of polymorphism. The nonsynonymous substitutions exceeded the synonymous substitutions in the peptide-binding sites of DQA2, DQB1 and DQB2. Then, 28 MHC II alleles were used to analyse the distribution patterns of purulent disease between the susceptible and resistant groups. Among them, three alleles (DQA1*01, DQA1*02 and DQA2*04) were found to be resistant, and five alleles (DRB3*07, DQA1*03, DQA1*04, DQA2*05 and DQA2*06) were found to increase susceptibility. Additionally, three haplotypes were found to be putatively associated with musk deer purulent disease. However, these three haplotypes were only found in the resistant or susceptible group, and their frequencies were low. The results from our study support a contributory role of MHC II polymorphisms in the development of purulent disease in forest musk deer.
Collapse
Affiliation(s)
- L Li
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
21
|
He L, Li LH, Wang WX, Liu G, Liu SQ, Liu WH, Hu DF. Welfare of farmed musk deer: Changes in the biological characteristics of musk deer in farming environments. Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2014.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Huang J, Li YZ, Li P, Yue H, Zhang XY, Li XX, Zou FD, Ming H, Moermond T, Yue BS. Genetic quality of the Miyaluo captive forest musk deer (Moschus berezovskii) population as assessed by microsatellite loci. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2012.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|