1
|
Kadri NK, Zhang J, Oget-Ebrad C, Wang Y, Couldrey C, Spelman R, Charlier C, Georges M, Druet T. High male specific contribution of the X-chromosome to individual global recombination rate in dairy cattle. BMC Genomics 2022; 23:114. [PMID: 35144552 PMCID: PMC8832838 DOI: 10.1186/s12864-022-08328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background Meiotic recombination plays an important role in reproduction and evolution. The individual global recombination rate (GRR), measured as the number of crossovers (CO) per gametes, is a complex trait that has been shown to be heritable. The sex chromosomes play an important role in reproduction and fertility related traits. Therefore, variants present on the X-chromosome might have a high contribution to the genetic variation of GRR that is related to meiosis and to reproduction. Results We herein used genotyping data from 58,474 New Zealand dairy cattle to estimate the contribution of the X-chromosome to male and female GRR levels. Based on the pedigree-based relationships, we first estimated that the X-chromosome accounted for 30% of the total additive genetic variance for male GRR. This percentage was equal to 19.9% when the estimation relied on a SNP-BLUP approach assuming each SNP has a small contribution. We then carried out a haplotype-based association study to map X-linked QTL, and subsequently fine-mapped the identified QTL with imputed sequence variants. With this approach we identified three QTL with large effect accounting for 7.7% of the additive genetic variance of male GRR. The associated effects were equal to + 0.79, − 1.16 and + 1.18 CO for the alternate alleles. In females, the estimated contribution of the X-chromosome to GRR was null and no significant association with X-linked loci was found. Interestingly, two of the male GRR QTL were associated with candidate genes preferentially expressed in testis, in agreement with a male-specific effect. Finally, the most significant QTL was associated with PPP4R3C, further supporting the important role of protein phosphatase in double-strand break repair by homologous recombination. Conclusions Our study illustrates the important role the X-chromosome can have on traits such as individual recombination rate, associated with testis in males. We also show that contribution of the X-chromosome to such a trait might be sex dependent. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08328-8.
Collapse
Affiliation(s)
- N K Kadri
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium.,Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - J Zhang
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - C Oget-Ebrad
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - Y Wang
- Livestock Improvement Corporation Ltd, Private Bag 3016, 3240, Hamilton, New Zealand
| | - C Couldrey
- Livestock Improvement Corporation Ltd, Private Bag 3016, 3240, Hamilton, New Zealand
| | - R Spelman
- Livestock Improvement Corporation Ltd, Private Bag 3016, 3240, Hamilton, New Zealand
| | - C Charlier
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - M Georges
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - T Druet
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
2
|
Muñoz M, Bozzi R, García-Casco J, Núñez Y, Ribani A, Franci O, García F, Škrlep M, Schiavo G, Bovo S, Utzeri VJ, Charneca R, Martins JM, Quintanilla R, Tibau J, Margeta V, Djurkin-Kušec I, Mercat MJ, Riquet J, Estellé J, Zimmer C, Razmaite V, Araujo JP, Radović Č, Savić R, Karolyi D, Gallo M, Čandek-Potokar M, Fernández AI, Fontanesi L, Óvilo C. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Sci Rep 2019; 9:13546. [PMID: 31537860 PMCID: PMC6753209 DOI: 10.1038/s41598-019-49830-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/30/2019] [Indexed: 11/27/2022] Open
Abstract
Genetic characterization of local breeds is essential to preserve their genomic variability, to advance conservation policies and to contribute to their promotion and sustainability. Genomic diversity of twenty European local pig breeds and a small sample of Spanish wild pigs was assessed using high density SNP chips. A total of 992 DNA samples were analyzed with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip. Genotype data was employed to compute genetic diversity, population differentiation and structure, genetic distances, linkage disequilibrium and effective population size. Our results point out several breeds, such as Turopolje, Apulo Calabrese, Casertana, Mora Romagnola and Lithuanian indigenous wattle, having the lowest genetic diversity, supported by low heterozygosity and very small effective population size, demonstrating the need of enhanced conservation strategies. Principal components analysis showed the clustering of the individuals of the same breed, with few breeds being clearly isolated from the rest. Several breeds were partially overlapped, suggesting genetic closeness, which was particularly marked in the case of Iberian and Alentejana breeds. Spanish wild boar was also narrowly related to other western populations, in agreement with recurrent admixture between wild and domestic animals. We also searched across the genome for loci under diversifying selection based on FST outlier tests. Candidate genes that may underlie differences in adaptation to specific environments and productive systems and phenotypic traits were detected in potentially selected genomic regions.
Collapse
Affiliation(s)
- M Muñoz
- Departamento Mejora Genética Animal, INIA, Madrid, Spain
| | - R Bozzi
- DAGRI, Animal Science Section, Università degli Studi di Firenze, Firenze, Italy
| | - J García-Casco
- Departamento Mejora Genética Animal, INIA, Madrid, Spain
| | - Y Núñez
- Departamento Mejora Genética Animal, INIA, Madrid, Spain
| | - A Ribani
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - O Franci
- DAGRI, Animal Science Section, Università degli Studi di Firenze, Firenze, Italy
| | - F García
- Departamento Mejora Genética Animal, INIA, Madrid, Spain
| | - M Škrlep
- Kmetijski inštitut Slovenije, Hacquetova ulica 17, SI-1000, Ljubljana, Slovenia
| | - G Schiavo
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - S Bovo
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - V J Utzeri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - R Charneca
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - J M Martins
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - R Quintanilla
- IRTA, Programa de Genética y Mejora Animal, Barcelona, Spain
| | - J Tibau
- IRTA, Programa de Genética y Mejora Animal, Barcelona, Spain
| | - V Margeta
- Faculty of Agrobiotechnical Sciences Osijek, University of Osijek, Osijek, Croatia
| | - I Djurkin-Kušec
- Faculty of Agrobiotechnical Sciences Osijek, University of Osijek, Osijek, Croatia
| | - M J Mercat
- IFIP - Institut du Porc, Le Rheu, France
| | - J Riquet
- INRA, Génétique Physiologie et Système d'Elevage, Castanet-Tolosan, France
| | - J Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - C Zimmer
- Bäuerliche Erzeugergemeinschaft Schwäbisch Hall, Wolpertshausen, Germany
| | - V Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, Baisogala, Lithuania
| | - J P Araujo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Ponte de Lima, Portugal
| | - Č Radović
- Institute for Animal Husbandry-Pig Research Department, Autoput for Zagreb 16, 11080, Belgrade-Zemun, Serbia
| | - R Savić
- University of Belgrade, Faculty of agriculture, Nemanjina 6, 11080, Belgrade-Zemun, Serbia
| | - D Karolyi
- Department of Animal Science, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
| | - M Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Roma, Italy
| | - M Čandek-Potokar
- Kmetijski inštitut Slovenije, Hacquetova ulica 17, SI-1000, Ljubljana, Slovenia
| | - A I Fernández
- Departamento Mejora Genética Animal, INIA, Madrid, Spain
| | - L Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - C Óvilo
- Departamento Mejora Genética Animal, INIA, Madrid, Spain.
| |
Collapse
|
3
|
Gomez-Raya L, Rauw WM, Dunkelberger JR, Dekkers JCM. Autozygosity and Genetic Differentiation of Landrace and Large White Pigs as Revealed by the Genetic Analyses of Crossbreds. Front Genet 2019; 10:739. [PMID: 31543894 PMCID: PMC6739446 DOI: 10.3389/fgene.2019.00739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
Genomic information from crossbreds is routinely generated for genomic evaluations. The objective of this study is to investigate autozygosity and genetic differentiation in Landrace by Large-White breeds by using the genotypic information of SNP arrays in 1,173 crossbreds. A maximum likelihood approach was developed to estimate the probability of autozygosity (FL). Regions of differentiation between breeds were investigated using FST and the difference in allele frequencies between the two parental breeds (릌Δ) at each single-nucleotide polymorphism (SNP) position. A maximum likelihood approach was proposed to estimate allele frequencies in the parental populations. The average length of runs of homozygosity (ROH) across the genome was 3.91, 2.3, and 0.7 Mb for segments with at least 25, 15, and 5 SNPs, respectively. Average age to coalesce was 46, 414, and 388 years for segments with at least 25, 15, and 5 SNPs, respectively. The probability of autozygosity was not uniform along the crossbred genome, being higher at the center for most chromosomes. The correlation between autozygosity and distance to the closest telomere was positive and significant in most chromosomes, which could be attributed to the higher recombination rate near telomeres. We also report a relatively high negative correlation between probability of recombination (from a published map) and probability of autozygosity. It supports that structural characteristics of the chromosomes related to recombination rate determine autozygosity at each chromosomal position of the pig genome. The average is Δ across the genome was 0.17 (SD = 0.16). After testing for differences in allele frequencies between the parental breeds, there were 4,184 SNPs with a likelihood ratio test, LRT ≥ 32.02. The average FST across the genome was 0.038 (SD = 0.059). There were 2,949 SNPs with FST > 0.125. The correlation between estimates of FL and estimates of FST across the genome was -0.10 (SE = 0.006). Analysis of the gene content of the genomic regions with the 2000 SNPs with highest LRT for FL and high FST showed overrepresentation of genes with a regulatory function. Genes with biological functions associated with production, such as tissue development, anatomical structure, and animal organ development, were also overrepresented in regions with a high FST.
Collapse
Affiliation(s)
- Luis Gomez-Raya
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Wendy Mercedes Rauw
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | | | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Ruiz-Herrera A, Vozdova M, Fernández J, Sebestova H, Capilla L, Frohlich J, Vara C, Hernández-Marsal A, Sipek J, Robinson TJ, Rubes J. Recombination correlates with synaptonemal complex length and chromatin loop size in bovids-insights into mammalian meiotic chromosomal organization. Chromosoma 2017; 126:615-631. [PMID: 28101670 DOI: 10.1007/s00412-016-0624-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/14/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022]
Abstract
Homologous chromosomes exchange genetic information through recombination during meiosis, a process that increases genetic diversity, and is fundamental to sexual reproduction. In an attempt to shed light on the dynamics of mammalian recombination and its implications for genome organization, we have studied the recombination characteristics of 112 individuals belonging to 28 different species in the family Bovidae. In particular, we analyzed the distribution of RAD51 and MLH1 foci during the meiotic prophase I that serve, respectively, as proxies for double-strand breaks (DSBs) which form in early stages of meiosis and for crossovers. In addition, synaptonemal complex length and meiotic DNA loop size were estimated to explore how genome organization determines DSBs and crossover patterns. We show that although the number of meiotic DSBs per cell and recombination rates observed vary between individuals of the same species, these are correlated with diploid number as well as with synaptonemal complex and DNA loop sizes. Our results illustrate that genome packaging, DSB frequencies, and crossover rates tend to be correlated, while meiotic chromosomal axis length and DNA loop size are inversely correlated in mammals. Moreover, axis length, DSB frequency, and crossover frequencies all covary, suggesting that these correlations are established in the early stages of meiosis.
Collapse
Affiliation(s)
- Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain. .,Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Miluse Vozdova
- Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Jonathan Fernández
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hana Sebestova
- Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Laia Capilla
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jan Frohlich
- Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Covadonga Vara
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adrià Hernández-Marsal
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaroslav Sipek
- Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Terence J Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Jiri Rubes
- Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
5
|
Genome-wide population structure and evolutionary history of the Frizarta dairy sheep. Animal 2017; 11:1680-1688. [DOI: 10.1017/s1751731117000428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
6
|
Coding and noncoding variants in HFM1, MLH3, MSH4, MSH5, RNF212, and RNF212B affect recombination rate in cattle. Genome Res 2016; 26:1323-1332. [PMID: 27516620 PMCID: PMC5052053 DOI: 10.1101/gr.204214.116] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/10/2016] [Indexed: 11/29/2022]
Abstract
We herein study genetic recombination in three cattle populations from France, New Zealand, and the Netherlands. We identify 2,395,177 crossover (CO) events in 94,516 male gametes, and 579,996 CO events in 25,332 female gametes. The average number of COs was found to be larger in males (23.3) than in females (21.4). The heritability of global recombination rate (GRR) was estimated at 0.13 in males and 0.08 in females, with a genetic correlation of 0.66 indicating that shared variants are influencing GRR in both sexes. A genome-wide association study identified seven quantitative trait loci (QTL) for GRR. Fine-mapping following sequence-based imputation in 14,401 animals pinpointed likely causative coding (5) and noncoding (1) variants in genes known to be involved in meiotic recombination (HFM1, MSH4, RNF212, MLH3, MSH5) for 5/7 QTL, and noncoding variants (3) in RNF212B for 1/7 QTL. This suggests that this RNF212 paralog might also be involved in recombination. Most of the identified mutations had significant effects in both sexes, with three of them each accounting for ∼10% of the genetic variance in males.
Collapse
|
7
|
Gomez-Raya L, Rodríguez C, Barragán C, Silió L. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genet Sel Evol 2015; 47:81. [PMID: 26475049 PMCID: PMC4608316 DOI: 10.1186/s12711-015-0153-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 09/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increasing availability of DNA markers provides new metrics of inbreeding based on single nucleotide polymorphisms (SNPs), i.e. molecular inbreeding or the proportion of runs of homozygosity (ROH), as alternatives to traditional pedigree-based inbreeding coefficients. However, none of these metrics incorporate the length of ROH as an indicator of recent inbreeding. Novel inbreeding coefficients that incorporate length of ROH as a random variable with an associated density are investigated. METHODS New inbreeding metrics based on the distribution of the length of ROH are proposed: (1) the Kolmolgorov-Smirnov test, (2) a function of the quantiles of the cumulative distribution function of an individual versus the population, and (3) fitting of an exponential distribution to ROH lengths (mean, variance, and the probability of drawing at random a ROH larger than a given threshold). The new inbreeding and pedigree-based metrics were compared using 217 sows of an Iberian line that belong to three groups: C1 (conservation), C2 (conservation derived from C1), and S (selected and derived from C1), with complete pedigrees and genotyped for 35,023 SNPs. RESULTS Correlations between pedigree-based and the new genomic inbreeding coefficients ranged from 0.22 to 0.72 but most ranged from 0.60 to 0.70. The correlation between quantile chromosomal inbreeding coefficients (using molecular information of just one chromosome at the time) and chromosomal length was 0.84 (SE = 0.14), supporting the hypothesis that these coefficients incorporate information on ROH length as an indication of recent inbreeding. Kolmogorov-Smirnov and exponential chromosomal inbreeding coefficients were also correlated with chromosomal length (0.57). Chromosome 1 had the largest quantile ROH inbreeding coefficient (largest ROH sizes), whereas chromosome 10 had the lowest (shortest ROH sizes). Selection for lean growth increased ROH-based inbreeding coefficients for group S when compared to unselected groups C1 and C2. At the chromosomal level, this comparison showed that the level of autozygosity and the length of ROH for most of the autosomes increased in the selection line. CONCLUSIONS Quantile and exponential probability inbreeding coefficients using ROH length as a random variable provide additional information about recent inbreeding compared to existing inbreeding coefficients such as molecular, pedigree-based or total ROH content inbreeding coefficients.
Collapse
Affiliation(s)
- Luis Gomez-Raya
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña km 7, 28040, Madrid, Spain.
| | - Carmen Rodríguez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña km 7, 28040, Madrid, Spain.
| | - Carmen Barragán
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña km 7, 28040, Madrid, Spain.
| | - Luis Silió
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña km 7, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Silió L, Barragán C, Fernández AI, García-Casco J, Rodríguez MC. Assessing effective population size, coancestry and inbreeding effects on litter size using the pedigree and SNP data in closed lines of the Iberian pig breed. J Anim Breed Genet 2015; 133:145-54. [PMID: 26059912 DOI: 10.1111/jbg.12168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
The complete pedigree of two closed Iberian pig lines (Gamito and Torbiscal), with 798 and 4077 reproducers, has been used to measure the evolution of coancestry (f) and inbreeding (F) for autosomal and X-linked genes along 16 and 28 respective equivalent discrete generations. At the last generation, the mean values of each line were f = 0.41 and 0.22, F = 0.35 and 0.18, fX = 0.46 and 0.22 and FX = 0.47 and 0.19, respectively. Other calculated parameters were the effective number of founders (final values, 6.8 and 35.2) and non-founders (1.5 and 2.4), founder genome equivalents (1.2 and 2.3) and effective population size (16.0 and 57.7). Measures of Torbiscal effective size based on rates of coancestry (66.1), inbreeding (65.0) and linkage disequilibrium (71.0) were estimated from whole-genome SNP genotyping data. Values of new and old inbreeding and their respective rates by generation were computed to detect purging effects of natural selection. The analysis of 6854 Torbiscal litters showed significant negative impacts of new and fast inbreeding on litter size, as expected from the purging hypothesis: -0.20 born piglets per litter by a 10% of new inbreeding, and -0.03 and -0.02 piglets by 1% of total and new inbreeding rates, respectively. The analysis performed on 1274 litters of the Gamito line failed to show purging effects. The only significant results were reductions in -0.91 and -0.17 piglets by a 10% of old and X-linked genes inbreeding, respectively. These results may be useful for some practical issues in conservation programs of farm or captive wild animals.
Collapse
Affiliation(s)
- L Silió
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - C Barragán
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - A I Fernández
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - J García-Casco
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - M C Rodríguez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| |
Collapse
|
9
|
Saura M, Fernández A, Varona L, Fernández AI, de Cara MÁR, Barragán C, Villanueva B. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genet Sel Evol 2015; 47:1. [PMID: 25595431 PMCID: PMC4297446 DOI: 10.1186/s12711-014-0081-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The current availability of genotypes for very large numbers of single nucleotide polymorphisms (SNPs) is leading to more accurate estimates of inbreeding coefficients and more detailed approaches for detecting inbreeding depression. In the present study, genome-wide information was used to detect inbreeding depression for two reproductive traits (total number of piglets born and number of piglets born alive) in an ancient strain of Iberian pigs (the Guadyerbas strain) that is currently under serious danger of extinction. METHODS A total of 109 sows with phenotypic records were genotyped with the PorcineSNP60 BeadChip v1. Inbreeding depression was estimated using a bivariate animal model in which the inbreeding coefficient was included as a covariate. We used two different measures of genomic inbreeding to perform the analyses: inbreeding estimated on a SNP-by-SNP basis and inbreeding estimated from runs of homozygosity. We also performed the analyses using pedigree-based inbreeding. RESULTS Significant inbreeding depression was detected for both traits using all three measures of inbreeding. Genome-wide information allowed us to identify one region on chromosome 13 associated with inbreeding depression. This region spans from 27 to 54 Mb and overlaps with a previously detected quantitative trait locus and includes the inter-alpha-trypsin inhibitor gene cluster that is involved with embryo implantation. CONCLUSIONS Our results highlight the value of high-density SNP genotyping for providing new insights on where genes causing inbreeding depression are located in the genome. Genomic measures of inbreeding obtained on a SNP-by-SNP basis or those based on the presence/absence of runs of homozygosity represent a suitable alternative to pedigree-based measures to detect inbreeding depression, and a useful tool for mapping studies. To our knowledge, this is the first study in domesticated animals using the SNP-by-SNP inbreeding coefficient to map specific regions within chromosomes associated with inbreeding depression.
Collapse
Affiliation(s)
- María Saura
- />Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Almudena Fernández
- />Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Luis Varona
- />Unidad de Genética Cuantitativa y Mejora Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Ana I Fernández
- />Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Maria Ángeles R de Cara
- />Laboratoire d’Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS/MNHN/Université Paris 7, Muséum National d’Histoire Naturelle, CP 139, 57 rue Cuvier, F-75231 Paris, France
| | - Carmen Barragán
- />Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Beatriz Villanueva
- />Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
10
|
Fernández AI, Muñoz M, Alves E, Folch JM, Noguera JL, Enciso MP, Rodríguez MDC, Silió L. Recombination of the porcine X chromosome: a high density linkage map. BMC Genet 2014; 15:148. [PMID: 25526890 PMCID: PMC4293812 DOI: 10.1186/s12863-014-0148-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/08/2014] [Indexed: 01/22/2023] Open
Abstract
Background Linkage maps are essential tools for the study of several topics in genome biology. High density linkage maps for the porcine autosomes have been constructed exploiting the high density data provided by the PorcineSNP60 BeadChip. However, a high density SSCX linkage map has not been reported up to date. The aim of the current study was to build an accurate linkage map of SSCX to provide precise estimates of recombination rates along this chromosome and creating a new tool for QTL fine mapping. Results A female-specific high density linkage map was built for SSCX using Sscrofa10.2 annotation. The total length of this chromosome was 84.61 cM; although the average recombination rate was 0.60 cM/Mb, both cold and hot recombination regions were identified. A Bayesian probabilistic to genetic groups and revealed that the animals used in the current study for linkage map construction were likely to be carriers of X chromosomes of European origin. Finally, the newly generated linkage map was used to fine-map a QTL at 16 cM for intramuscular fat content (IMF) measured on longissimus dorsi. The sulfatase isozyme S gene constitutes a functional and positional candidate gene underlying the QTL effect. Conclusions The current study presents for the first time a high density linkage map for SSCX and supports the presence of cold and hot recombination intervals along this chromosome. The large cold recombination region in the central segment of the chromosome is not likely to be due to structural differences between X chromosomes of European and Asian origin. In addition, the newly generated linkage map has allowed us to fine-map a QTL on SSCX for fat deposition. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0148-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana I Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra. De la Coruña km. 7, Madrid, 28040, Spain.
| | - María Muñoz
- Departamento de Mejora Genética Animal, INIA, Ctra. De la Coruña km. 7, Madrid, 28040, Spain. .,The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK.
| | - Estefânia Alves
- Departamento de Mejora Genética Animal, INIA, Ctra. De la Coruña km. 7, Madrid, 28040, Spain.
| | - Josep María Folch
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, UAB, Bellaterra, 08193, Spain. .,Present Address: Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autonoma Barcelona, Bellaterra, 08193, Spain.
| | - Jose Luis Noguera
- Genètica i Millora Animal, IRTA, Av. Alcalde Rovira Roure, 191, Lleida, 25198, Spain.
| | - Miguel Pérez Enciso
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, UAB, Bellaterra, 08193, Spain. .,Present Address: Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autonoma Barcelona, Bellaterra, 08193, Spain. .,Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain.
| | | | - Luis Silió
- Departamento de Mejora Genética Animal, INIA, Ctra. De la Coruña km. 7, Madrid, 28040, Spain.
| |
Collapse
|
11
|
Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One 2014; 9:e98855. [PMID: 24905985 PMCID: PMC4048240 DOI: 10.1371/journal.pone.0098855] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/08/2014] [Indexed: 12/31/2022] Open
Abstract
Linkage maps enable the study of important biological questions. The construction of high-density linkage maps appears more feasible since the advent of next-generation sequencing (NGS), which eases SNP discovery and high-throughput genotyping of large population. However, the marker number explosion and genotyping errors from NGS data challenge the computational efficiency and linkage map quality of linkage study methods. Here we report the HighMap method for constructing high-density linkage maps from NGS data. HighMap employs an iterative ordering and error correction strategy based on a k-nearest neighbor algorithm and a Monte Carlo multipoint maximum likelihood algorithm. Simulation study shows HighMap can create a linkage map with three times as many markers as ordering-only methods while offering more accurate marker orders and stable genetic distances. Using HighMap, we constructed a common carp linkage map with 10,004 markers. The singleton rate was less than one-ninth of that generated by JoinMap4.1. Its total map distance was 5,908 cM, consistent with reports on low-density maps. HighMap is an efficient method for constructing high-density, high-quality linkage maps from high-throughput population NGS data. It will facilitate genome assembling, comparative genomic analysis, and QTL studies. HighMap is available at http://highmap.biomarker.com.cn/.
Collapse
Affiliation(s)
- Dongyuan Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Chouxian Ma
- Biomarker Technologies Corporation, Beijing, China
| | - Weiguo Hong
- Biomarker Technologies Corporation, Beijing, China
| | - Long Huang
- Biomarker Technologies Corporation, Beijing, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Hui Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Huaping Zeng
- Biomarker Technologies Corporation, Beijing, China
| | - Dejing Deng
- Biomarker Technologies Corporation, Beijing, China
| | - Huaigen Xin
- Biomarker Technologies Corporation, Beijing, China
| | - Jun Song
- Biomarker Technologies Corporation, Beijing, China
| | - Chunhua Xu
- Biomarker Technologies Corporation, Beijing, China
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xilin Hou
- State Key laboratory of Crop Genetic and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiaowu Wang
- Biomarker Technologies Corporation, Beijing, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (IVF, CAAS), Beijing, China
- * E-mail: (XWW) (XW); (HKZ) (HZ)
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing, China
- * E-mail: (XWW) (XW); (HKZ) (HZ)
| |
Collapse
|
12
|
Bergman IM, Edman K, van As P, Huisman A, Juul-Madsen HR. A two-nucleotide deletion renders the mannose-binding lectin 2 (MBL2) gene nonfunctional in Danish Landrace and Duroc pigs. Immunogenetics 2014; 66:171-84. [DOI: 10.1007/s00251-014-0758-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
|
13
|
Wang L, Sørensen P, Janss L, Ostersen T, Edwards D. Genome-wide and local pattern of linkage disequilibrium and persistence of phase for 3 Danish pig breeds. BMC Genet 2013; 14:115. [PMID: 24304600 PMCID: PMC4235030 DOI: 10.1186/1471-2156-14-115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 11/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extent of linkage disequilibrium (LD) is of critical importance for genomic selection and marker assisted selection. The primary purpose of this study is to examine patterns of LD in three Danish pig breeds (Duroc, Landrace and Yorkshire); we also examine patterns of persistence of phase between the breeds. We quantify local LD by fitting a model relating LD to physical distance between markers in sliding windows, and use this to visualize how LD varies according to physical position. We use a similar method to examine local persistence of phase. RESULTS Average LD decay over distance for Duroc was significantly different from Landrace and Yorkshire, that showed similar patterns. Persistence of phase between Landrace and Yorkshire was much higher than between these breeds and Duroc. Local r2 over the chromosomes showed more variation between breeds than average r2 decay across whole genome. Also local persistence of phase was higher between Landrace and Yorkshire than between these breeds and Duroc. CONCLUSIONS The results concerning genome-wide LD indicated that Duroc had "old inbreeding", and confirmed the mixture history of Landrace and Yorkshire, which is also implied by the higher level of persistence of phase between Landrace and Yorkshire. The method to estimate and visualize local pattern of LD and persistence of phase provides insight into how these quantities vary along chromosomes and between breeds.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark.
| | | | | | | | | |
Collapse
|
14
|
Muñoz M, Rodríguez MC, Alves E, Folch JM, Ibañez-Escriche N, Silió L, Fernández AI. Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics 2013; 14:845. [PMID: 24295214 PMCID: PMC4046688 DOI: 10.1186/1471-2164-14-845] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 11/25/2013] [Indexed: 01/15/2023] Open
Abstract
Background Porcine fatty acid composition is a key factor for quality and nutritive value of pork. Several QTLs for fatty acid composition have been reported in diverse fat tissues. The results obtained so far seem to point out different genetic control of fatty acid composition conditional on the fat deposits. Those studies have been conducted using simple approaches and most of them focused on one single tissue. The first objective of the present study was to identify tissue-specific and tissue-consistent QTLs for fatty acid composition in backfat and intramuscular fat, combining linkage mapping and GWAS approaches and conducted under single and multitrait models. A second aim was to identify powerful candidate genes for these tissue-consistent QTLs, using microarray gene expression data and following a targeted genetical genomics approach. Results The single model analyses, linkage and GWAS, revealed over 30 and 20 chromosomal regions, 24 of them identified here for the first time, specifically associated to the content of diverse fatty acids in BF and IMF, respectively. The analyses with multitrait models allowed identifying for the first time with a formal statistical approach seven different regions with pleiotropic effects on particular fatty acids in both fat deposits. The most relevant were found on SSC8 for C16:0 and C16:1(n-7) fatty acids, detected by both linkage and GWAS approaches. Other detected pleiotropic regions included one on SSC1 for C16:0, two on SSC4 for C16:0 and C18:2, one on SSC11 for C20:3 and the last one on SSC17 for C16:0. Finally, a targeted eQTL scan focused on regions showing tissue-consistent effects was conducted with Longissimus and fat gene expression data. Some powerful candidate genes and regions were identified such as the PBX1, RGS4, TRIB3 and a transcription regulatory element close to ELOVL6 gene to be further studied. Conclusions Complementary genome scans have confirmed several chromosome regions previously associated to fatty acid composition in backfat and intramuscular fat, but even more, to identify new ones. Although most of the detected regions were tissue-specific, supporting the hypothesis that the major part of genes affecting fatty acid composition differs among tissues, seven chromosomal regions showed tissue-consistent effects. Additional gene expression analyses have revealed powerful target regions to carry the mutation responsible for the pleiotropic effects. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-845) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Muñoz
- INIA, Mejora Genética Animal, 28040 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
Esteve-Codina A, Paudel Y, Ferretti L, Raineri E, Megens HJ, Silió L, Rodríguez MC, Groenen MAM, Ramos-Onsins SE, Pérez-Enciso M. Dissecting structural and nucleotide genome-wide variation in inbred Iberian pigs. BMC Genomics 2013; 14:148. [PMID: 23497037 PMCID: PMC3601988 DOI: 10.1186/1471-2164-14-148] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/21/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In contrast to international pig breeds, the Iberian breed has not been admixed with Asian germplasm. This makes it an important model to study both domestication and relevance of Asian genes in the pig. Besides, Iberian pigs exhibit high meat quality as well as appetite and propensity to obesity. Here we provide a genome wide analysis of nucleotide and structural diversity in a reduced representation library from a pool (n=9 sows) and shotgun genomic sequence from a single sow of the highly inbred Guadyerbas strain. In the pool, we applied newly developed tools to account for the peculiarities of these data. RESULTS A total of 254,106 SNPs in the pool (79.6 Mb covered) and 643,783 in the Guadyerbas sow (1.47 Gb covered) were called. The nucleotide diversity (1.31x10-3 per bp in autosomes) is very similar to that reported in wild boar. A much lower than expected diversity in the X chromosome was confirmed (1.79x10-4 per bp in the individual and 5.83x10-4 per bp in the pool). A strong (0.70) correlation between recombination and variability was observed, but not with gene density or GC content. Multicopy regions affected about 4% of annotated pig genes in their entirety, and 2% of the genes partially. Genes within the lowest variability windows comprised interferon genes and, in chromosome X, genes involved in behavior like HTR2C or MCEP2. A modified Hudson-Kreitman-Aguadé test for pools also indicated an accelerated evolution in genes involved in behavior, as well as in spermatogenesis and in lipid metabolism. CONCLUSIONS This work illustrates the strength of current sequencing technologies to picture a comprehensive landscape of variability in livestock species, and to pinpoint regions containing genes potentially under selection. Among those genes, we report genes involved in behavior, including feeding behavior, and lipid metabolism. The pig X chromosome is an outlier in terms of nucleotide diversity, which suggests selective constraints. Our data further confirm the importance of structural variation in the species, including Iberian pigs, and allowed us to identify new paralogs for known gene families.
Collapse
Affiliation(s)
- Anna Esteve-Codina
- Center for Research in Agricultural Genomics (CRAG), Campus UAB, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Yogesh Paudel
- Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Luca Ferretti
- Center for Research in Agricultural Genomics (CRAG), Campus UAB, Bellaterra, 08193, Spain
| | | | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Luis Silió
- Departamento de Mejora Genética Animal, INIA, Madrid, 28040, Spain
| | | | - Martein AM Groenen
- Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | | | - Miguel Pérez-Enciso
- Center for Research in Agricultural Genomics (CRAG), Campus UAB, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Carrer de Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
16
|
Corominas J, Ramayo-Caldas Y, Puig-Oliveras A, Pérez-Montarelo D, Noguera JL, Folch JM, Ballester M. Polymorphism in the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs. PLoS One 2013; 8:e53687. [PMID: 23341976 PMCID: PMC3544903 DOI: 10.1371/journal.pone.0053687] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/03/2012] [Indexed: 11/21/2022] Open
Abstract
Background The ELOVL fatty acid elongase 6 (ELOVL6), the only elongase related to de novo lipogenesis, catalyzes the rate-limiting step in the elongation cycle by controlling the fatty acid balance in mammals. It is located on pig chromosome 8 (SSC8) in a region where a QTL affecting palmitic, and palmitoleic acid composition was previously detected, using an Iberian x Landrace intercross. The main goal of this work was to fine-map the QTL and to evaluate the ELOVL6 gene as a positional candidate gene affecting the percentages of palmitic and palmitoleic fatty acids in pigs. Methodology and Principal Findings The combination of a haplotype-based approach and single-marker analysis allowed us to identify the main, associated interval for the QTL, in which the ELOVL6 gene was identified and selected as a positional candidate gene. A polymorphism in the promoter region of ELOVL6, ELOVL6:c.-533C>T, was highly associated with the percentage of palmitic and palmitoleic acids in muscle and backfat. Significant differences in ELOVL6 gene expression were observed in backfat when animals were classified by the ELOVL6:c.-533C>T genotype. Accordingly, animals carrying the allele associated with a decrease in ELOVL6 gene expression presented an increase in C16:0 and C16:1(n-7) fatty acid content and a decrease of elongation activity ratios in muscle and backfat. Furthermore, a SNP genome-wide association study with ELOVL6 relative expression levels in backfat showed the strongest effect on the SSC8 region in which the ELOVL6 gene is located. Finally, different potential genomic regions associated with ELOVL6 gene expression were also identified by GWAS in liver and muscle, suggesting a differential tissue regulation of the ELOVL6 gene. Conclusions and Significance Our results suggest ELOVL6 as a potential causal gene for the QTL analyzed and, subsequently, for controlling the overall balance of fatty acid composition in pigs.
Collapse
Affiliation(s)
- Jordi Corominas
- Departament de Genètica Animal, Centre de Recerca en Agrigenòmica, Bellaterra, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
Fernández AI, Pérez-Montarelo D, Barragán C, Ramayo-Caldas Y, Ibáñez-Escriche N, Castelló A, Noguera JL, Silió L, Folch JM, Rodríguez MC. Genome-wide linkage analysis of QTL for growth and body composition employing the PorcineSNP60 BeadChip. BMC Genet 2012; 13:41. [PMID: 22607048 PMCID: PMC3432624 DOI: 10.1186/1471-2156-13-41] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/30/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The traditional strategy to map QTL is to use linkage analysis employing a limited number of markers. These analyses report wide QTL confidence intervals, making very difficult to identify the gene and polymorphisms underlying the QTL effects. The arrival of genome-wide panels of SNPs makes available thousands of markers increasing the information content and therefore the likelihood of detecting and fine mapping QTL regions. The aims of the current study are to confirm previous QTL regions for growth and body composition traits in different generations of an Iberian x Landrace intercross (IBMAP) and especially identify new ones with narrow confidence intervals by employing the PorcineSNP60 BeadChip in linkage analyses. RESULTS Three generations (F3, Backcross 1 and Backcross 2) of the IBMAP and their related animals were genotyped with PorcineSNP60 BeadChip. A total of 8,417 SNPs equidistantly distributed across autosomes were selected after filtering by quality, position and frequency to perform the QTL scan. The joint and separate analyses of the different IBMAP generations allowed confirming QTL regions previously identified in chromosomes 4 and 6 as well as new ones mainly for backfat thickness in chromosomes 4, 5, 11, 14 and 17 and shoulder weight in chromosomes 1, 2, 9 and 13; and many other to the chromosome-wide signification level. In addition, most of the detected QTLs displayed narrow confidence intervals, making easier the selection of positional candidate genes. CONCLUSIONS The use of higher density of markers has allowed to confirm results obtained in previous QTL scans carried out with microsatellites. Moreover several new QTL regions have been now identified in regions probably not covered by markers in previous scans, most of these QTLs displayed narrow confidence intervals. Finally, prominent putative biological and positional candidate genes underlying those QTL effects are listed based on recent porcine genome annotation.
Collapse
Affiliation(s)
- Ana I Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra, De la Coruña km, 7, Madrid, 28040, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens. Heredity (Edinb) 2012; 109:6-18. [PMID: 22395157 DOI: 10.1038/hdy.2012.9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r(2) ≥ 0.3) in both traditional and village chickens at pairwise marker distances of ~10 Kb; while haplotype block analysis indicates a median block size of 11-12 Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55-38.89 Mb) and rose comb (Gga 7:18.41-22.09 Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25-67.28 Mb, Gga 1:67.28-67.32 Mb) totalling ~75 Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions.
Collapse
|
19
|
Muñoz M, Alves E, Corominas J, Folch JM, Casellas J, Noguera JL, Silió L, Fernández AI. Survey of SSC12 Regions Affecting Fatty Acid Composition of Intramuscular Fat Using High-Density SNP Data. Front Genet 2012; 2:101. [PMID: 22303395 PMCID: PMC3262226 DOI: 10.3389/fgene.2011.00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/14/2011] [Indexed: 11/13/2022] Open
Abstract
Fatty acid composition is a critical aspect of pork because it affects sensorial and technological aspects of meat quality and it is relevant for human health. Previous studies identified significant QTLs in porcine chromosome 12 for fatty acid profile of back fat (BF) and intramuscular fat (IMF). In the present study, 374 SNPs mapped in SSC12 from the 60K Porcine SNP Beadchip were used. We have combined linkage and association analyses with expression data analysis in order to identify regions of SSC12 that could affect fatty acid composition of IMF in longissimus muscle. The QTL scan showed a region around the 60-cM position that significantly affects palmitic fatty acid and two related fatty acid indexes. The Iberian QTL allele increased the palmitic content (+2.6% of mean trait). This QTL does not match any of those reported in the previous study on fatty acid composition of BF, suggesting different genetic control acting at both tissues. The SNP association analyses showed significant associations with linolenic and palmitic acids besides several indexes. Among the polymorphisms that affect palmitic fatty acid and match the QTL region at 60 cM, there were three that mapped in the Phosphatidylcholine transfer protein (PCTP) gene and one in the Acetyl-CoA Carboxylase ∝ gene (ACACA). Interestingly one of the PCTP SNPs also affected significantly unsaturated and double bound indexes and the ratio between polyunsaturated/monounsaturated fatty acids. Differential expression was assessed on longissimus muscle conditional on the genotype of the QTL and on the most significant SNPs, according to the results obtained in the former analyses. Results from the microarray expression analyses, validated by RT-qPCR, showed that PCTP expression levels significantly vary depending on the QTL as well as on the own PCTP genotype. The results obtained with the different approaches point out the PCTP gene as a powerful candidate underlying the QTL for palmitic content.
Collapse
Affiliation(s)
- María Muñoz
- Departament Mejora Genética Animal, Instituto Nacional de Investigaciones Agrarias Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|