1
|
Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28642799 PMCID: PMC5469997 DOI: 10.1155/2017/5435831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed.
Collapse
|
2
|
Su Q, Liu JJ, Cui W, Shi XL, Guo J, Li HB, Huo CJ, Miao YW, Zhang M, Yang Q, Kang YM. Alpha lipoic acid supplementation attenuates reactive oxygen species in hypothalamic paraventricular nucleus and sympathoexcitation in high salt-induced hypertension. Toxicol Lett 2015; 241:152-8. [PMID: 26518973 DOI: 10.1016/j.toxlet.2015.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/06/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022]
Abstract
AIMS High salt-induced oxidative stress plays an important role in the development of hypertension. Alpha lipoic acid (ALA) is extensively recognized as having a powerful superoxide inhibitory property. In this study, we determined whether ALA supplementation attenuates oxidative stress in hypothalamic paraventricular nucleus (PVN), decreases the sympathetic activity and arterial pressure in high salt-induced hypertension by cross-talking with renin-angiotensin system (RAS) and pro-inflammatory cytokines (PICs). METHODS Male Wistar rats were administered a normal-salt diet (NS, 0.3% NaCl) or a high-salt diet (HS, 8.0% NaCl) for 8 weeks. These rats received ALA (60mg/kg) dissolved in vehicle (0.9% saline) or an equal voleme of vehicle, by gastric perfusion for 9 weeks. RESULTS High salt intake resulted in higher renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP). These rats also had higher levels of superoxide, gp91(phox), gp47(phox) (subunits of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), angiotensin II type1 receptor (AT1-R), interleukin-1beta (IL-1β), interleukin-6 (IL-6), and lower levels of interleukin-10 (IL-10) and copper/zinc superoxide dismutase (Cu/Zn-SOD) than control animals. Treatment with ALA significantly attenuated the levels of superoxide, gp91(phox), gp47(phox), ACE, AT1-R, IL-1β and IL-6, increased the levels of IL-10 and Cu/Zn-SOD, and decreased MAP and RSNA compared with high-salt induced hypertensive rats. The mRNA expression of gp47(phox) and gp91(phox) are in accordance with their protein expression. CONCLUSION These findings suggest that supplementation of ALA obviously decreases the sympathetic activity and arterial pressure in high salt-induced hypertension by improving the superoxide inhibitory property, suppressing the activation of RAS and restoring the balance between pro- and anti-inflammatory cytokines in the PVN.
Collapse
Affiliation(s)
- Qing Su
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jing Guo
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Chan-Juan Huo
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Yu-Wang Miao
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Qing Yang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China.
| |
Collapse
|
3
|
Sànchez R, Nolly H, Giannone C, Baglivo HP, Ramírez AJ. Reduced activity of the kallikrein-kinin system predominates over renin-angiotensin system overactivity in all conditions of sodium balance in essential hypertensives and family-related hypertension. J Hypertens 2003; 21:411-7. [PMID: 12569273 DOI: 10.1097/00004872-200302000-00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To study the renin-angiotensin-aldosterone and kallikrein-kinin systems in essential hypertensives and offspring of hypertensive parents during different sodium loads, and to explore their possible influence on renal hemodynamics. METHODS Forty-five essential hypertensives (35 +/- 4 years old, 25 males), 30 offspring of hypertensive parents (26 +/- 8 years old, 16 males) and 30 normotensive controls (28 +/- 5 years old, 20 males) were submitted to three different sodium loads (high, 250 mmol/l; normal, 140 mmol/l; and low, 20 mmol/l). Blood pressure, plasma renin activity, serum aldosterone, total kallikrein and urinary kallikrein-like activity were measured after each period. Effective renal plasma flow and glomerular filtration rate were also measured. In essential hypertensive subjects, renal hemodynamic and hormonal parameters were also measured after 3 days of 20 mg enalapril administration. RESULTS Plasma renin activity and serum aldosterone were higher in normotensives, essential hypertensives and offspring of hypertensive parents only during low sodium intake, whereas urinary kallikrein activity was lower in hypertensive offspring and essential hypertensives, compared with normotensives, during the three diet conditions. Effective renal plasma flow was found to be reduced in hypertensives and normotensive offspring, while the glomerular filtration rated was similar in the three groups. Angiotensin converting enzyme inhibitor (ACEI) administration to essential hypertensives for 3 days normalized effective renal plasma flow, increased plasma renin activity and decreased aldosterone and urinary kallikrein activity. CONCLUSIONS Our observations confirmed the presence of a hormonal imbalance between the renin-angiotensin-aldosterone system and the kallikrein-kinin system, not only in essential hypertensives but also in the offspring of hypertensive parents. This imbalance probably affects the renal circulation and sodium homeostasis, since there was reduced effective renal plasma flow in both populations compared with normotensive subjects. The positive effect of ACEI, resulting in normalization of the effective renal plasma flow in essential hypertensive patients, suggests the involvement of both systems in impaired renal circulation.
Collapse
Affiliation(s)
- Ramiro Sànchez
- Sección Hipertensión Arterial, Instituto de Cardiología y Circugía Cardiovascular, Fundación Favaloro, Belgrano, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
4
|
Liu Y, Rusch NJ, Lombard JH. Loss of endothelium and receptor-mediated dilation in pial arterioles of rats fed a short-term high salt diet. Hypertension 1999; 33:686-8. [PMID: 10024328 DOI: 10.1161/01.hyp.33.2.686] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A high salt diet often is regarded as an accessory risk factor in hypertension, coincidental to the deleterious effect of high blood pressure on vasodilator function. The aim of this study was to determine whether short-term ingestion of a high salt diet per se impairs vasodilator function in the cerebral circulation independent of blood pressure changes. Adult Sprague-Dawley rats were fed a normal salt (0.8%) or high salt (4%) diet for 3 days. Mean arterial pressures were similar in the normal and high salt groups (123+/-2 and 125+/-2 mm Hg, respectively). Subsequently, the responses of the in situ pial arterioles to acetylcholine, iloprost, and sodium nitroprusside were determined in cranial windows using intravital videomicroscopy. Pial arterioles of rats fed normal and high salt diets showed similar resting diameters of 69+/-2 and 72+/-3 microm, respectively, but their reactivity patterns to vasodilator stimuli were markedly different. Arterioles of rats fed a normal salt diet dilated progressively up to 17+/-3% in response to the endothelium-dependent agent acetylcholine (10(-9) to 10(-6) mol/L) and dilated by 22+/-2% in response to the prostaglandin I2 receptor agonist iloprost (3x10(-11) mol/L). In contrast, pial arterioles of rats fed a high salt diet constricted by 4+/-3% and 8+/-2% in response to acetylcholine and iloprost, respectively. Sodium nitroprusside (10(-6) mol/L), a nitric oxide donor, dilated pial arterioles of rats fed low and high salt diets by a similar amount (19+/-3% and 16+/-2%, respectively), suggesting that signaling mechanisms for dilation distal to the vascular smooth muscle membrane were intact after high salt intake. These results provide the first evidence that the short-term ingestion of a high salt diet may severely impair the vasodilator function of the in situ cerebral microcirculation independent of blood pressure elevation.
Collapse
Affiliation(s)
- Y Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
5
|
Abstract
Nondrug measures have proven effective, to some extent, in lowering blood pressure, especially in mild hypertensives, in many well-controlled studies. The proven measures are reduction of a) salt (less than 5 g/day), b) alcohol (less than 30 ml/day) intake, and c) obesity, and d) regular physical exercise (30-60 minutes/day) and e) mental relaxation. The reported effectiveness of each of these measures ranges from one third to two thirds in mild hypertensives. Should all these nondrug measures, together with cessation of smoking, be applied in all mild hypertensives, it might help prevent their progression to moderate or even severe hypertension with complications, such as coronary heart disease in particular, thereby solving most of the problems that antihypertensive drugs have left behind.
Collapse
Affiliation(s)
- K Arakawa
- Department of Internal Medicine, Fukuoka University School of Medicine, Japan
| |
Collapse
|