1
|
Dhuya M, Pal MM, Hazra A, Chatterjee S, Gogtay N. Cytochrome P 450 2D6 polymorphism in eastern Indian population. Indian J Pharmacol 2020; 52:189-195. [PMID: 32874001 PMCID: PMC7446679 DOI: 10.4103/ijp.ijp_530_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/30/2019] [Accepted: 07/13/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES: Cytochrome P450 2D6 (CYP2D6) enzyme metabolizes a quarter of prescription drugs. Polymorphisms of CYP2D6 gene and resultant phenotypic variations in metabolic activity have been described in various populations. We assessed the prevalence of CYP2D6 activity phenotypes, employing dextromethorphan (DXM) as probe drug in subjects with at least two parental generations residing in eastern India. MATERIALS AND METHODS: Unrelated healthy subjects took 60 mg DXM after fasting overnight. Blood samples were collected 3 h after dosing and plasma separated. DXM and its primary metabolite dextrorphan (DXT) were measured by liquid chromatography with tandem mass spectrometry. The DXM-to-DXT metabolic ratio (MR) was obtained for each subject. Histogram of MR values suggested bimodal distribution. A polynomial regression equation derived through probit analysis was solved to identify the antimode of the MR values. Subjects with log(MR) < antimode were extensive metabolizers (EMs). Log(MR) ≥ antimode indicated poor metabolizers (PMs). RESULTS: We evaluated the results from 97 participants. The median MR was 0.209 (interquartile range: 0.090–0.609), while the antimode for MR was 3.055. From these, it was inferred that three subjects were PMs, while the rest were EMs. CYP2D6 polymorphism prevalence is low (3.09%; 95% confidence interval: 0.35%–6.54%) in the population of eastern India and matches the prevalence in other zones of the country. CONCLUSIONS: Differences in CYP2D6 activity has treatment implications and may lead to adverse events or therapeutic failure. Phenotyping of subjects receiving CYP2D6 metabolized drugs may help clinicians personalize treatment and avert adverse drug-drug interactions. However, the frequency of the PM phenotype is low in India, and routinely phenotyping for CYP2D6 activity will not be cost-effective. We cannot recommend it at this stage.
Collapse
Affiliation(s)
- Monalisa Dhuya
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Murari Mohan Pal
- Department of Pharmaceutical Technology, Bioequivalence Study Centre, Jadavpur University, Kolkata, West Bengal, India
| | - Avijit Hazra
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Suparna Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Nithya Gogtay
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Del Re M, Citi V, Crucitta S, Rofi E, Belcari F, van Schaik RH, Danesi R. Pharmacogenetics of CYP2D6 and tamoxifen therapy: Light at the end of the tunnel? Pharmacol Res 2016; 107:398-406. [PMID: 27060675 DOI: 10.1016/j.phrs.2016.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
The clinical usefulness of assessing the enzymatic activity of CYPD6 in patients taking tamoxifen had been longly debated. In favour of preemptive evaluation of phenotypic profile of patients is the strong pharmacologic rationale, being that the formation of endoxifen, the major and clinically most important metabolite of tamoxifen, is largely dependent on the activity of CYP2D6. This enzyme is highly polymorphic for which the activity is largely depending on genetics, but that can also be inhibited by a number of drugs, i.e. antidepressants, which are frequently used in patients with cancer. Unfortunately, the clinical trials that have been published in the last years are contradicting each other on the association between CYP2D6 and significant clinical endpoints, and for this reason CYP2D6 genotyping is at present not generally recommended. Despite this, the CYP2D6 genotyping test for tamoxifen is available in many laboratories and it may still be an appropriate test to use it in specific cases.
Collapse
Affiliation(s)
- M Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy.
| | - V Citi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - S Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - E Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - F Belcari
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - R H van Schaik
- Department of Clinical Chemistry, Erasmus MC, Rotterdam, The Netherlands
| | - R Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| |
Collapse
|
3
|
LLerena A, Naranjo MEG, Rodrigues-Soares F, Penas-LLedó EM, Fariñas H, Tarazona-Santos E. Interethnic variability ofCYP2D6alleles and of predicted and measured metabolic phenotypes across world populations. Expert Opin Drug Metab Toxicol 2014; 10:1569-83. [PMID: 25316321 DOI: 10.1517/17425255.2014.964204] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Han J, Wang L, Yang Y, Zhang J. Meta-analyses of the effect of CYP1A1 and CYP2D6 polymorphisms on the risk of head and neck squamous cell carcinoma. Oncol Res Treat 2014; 37:406-11. [PMID: 25138301 DOI: 10.1159/000363428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 04/04/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND CYP1A1 and CYP2D6 are important genes encoding enzymes involved in the metabolism of toxic chemicals and carcinogens. However, inconclusive results for the association between CYP1A1 and CYP2D6 polymorphisms and the risk of head and neck squamous cell carcinoma (HNSCC) have been reported. We conducted a meta-analysis to evaluate the association of CYP1A1 and CYP2D6 polymorphisms with the risk of HNSCC. METHODS A database search yielded 19 relevant studies. 3 polymorphisms were included in the meta-analysis: CYP1A1, CYP2D6*4 and CYP2D6*10. Random or fixed effect models were used in the analysis. RESULTS The CYP1A1 polymorphism was associated with HNSCC (for m1m1 vs. m1m2: odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.030-1.542, pheterogeneity = 0.025; for the recessive model: OR = 1.316, 95% CI = 1.065-1.625, pheterogeneity = 0.001). The analysis showed evidence for association between the CYP2D6*4 polymorphism and HNSCC in Asian populations; however, negative results were also observed in other models. A significant association was also observed between CYP2D6*10 polymorphism and HNSCC risk. CONCLUSIONS The current study demonstrates that the CYP1A1 and CYP2D6 polymorphisms are associated with susceptibility to both development and progression of HNSCC.
Collapse
Affiliation(s)
- Jiming Han
- Department of Nursing Faculty, Medical College of Yan'an University, Shanxi, China
| | | | | | | |
Collapse
|
5
|
Teh LK, Bertilsson L. Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet 2011; 27:55-67. [PMID: 22185816 DOI: 10.2133/dmpk.dmpk-11-rv-121] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CYP2D6 has received intense attention since the beginning of the pharmacogenetic era in the 1970s. This is because of its involvement in the metabolism of more than 25% of the marketed drugs, the large geographical and inter-ethnic differences in the genetic polymorphism and possible drug-induced toxicity. Many interesting reviews have been published on CYP2D6 and this review aims to reinstate the importance of the genetic polymorphism of CYP2D6 in different populations as well as some clinical implications and important drug interactions.
Collapse
Affiliation(s)
- Lay Kek Teh
- Pharmacogenomics Centre PROMISE, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor DE, Malaysia.
| | | |
Collapse
|
6
|
Ismail R, Hussein A, Teh LK, Isa MN. CYP2D6 phenotypes among Malays in Malaysia. J Clin Pharm Ther 2008. [DOI: 10.1111/j.1365-2710.2000.00304.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Bernard S, Neville KA, Nguyen AT, Flockhart DA. Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist 2006; 11:126-35. [PMID: 16476833 DOI: 10.1634/theoncologist.11-2-126] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA polymorphisms have been identified in the genes encoding a number of the cytochrome P450 (CYP) enzymes, leading to wide interindividual variation in drug clearance. CYP2D6 metabolizes a significant number of clinically used medications, and genetic variants of the CYP2D6 isozyme that result in varying levels of metabolic activity are of clinical importance in some settings. The exact nature of the clinical effect caused by polymorphisms of the gene depends on the drug in question and the specific variant alleles expressed, as individual variants result in differing phenotypes with a range of levels of enzymatic activity. Compromised drug efficacy due to CYP2D6 variation has been documented with a variety of agents, and this review considers a number of examples, including the 5-HT(3)-receptor antagonists, which are used in oncology supportive care for the prophylaxis of nausea and vomiting. CYP2D6 is involved in the metabolism of all of the most commonly available agents, except granisetron, and their efficacy and side effects may therefore be affected by the CYP2D6 polymorphism. Significant interethnic differences in CYP2D6 allele frequencies have been demonstrated from studies across many countries. However, incidences of polymorphisms in the U.S. population have been challenging to characterize because of the country's wide ethnic diversity. The CYP2D6 polymorphism may become more important as robust clinical tests become widely available and as the use of multiple medications and the attendant risk for drug-drug interactions increases.
Collapse
Affiliation(s)
- Stephen Bernard
- Division of Hematology and Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7305, USA.
| | | | | | | |
Collapse
|
8
|
Abstract
Much has been learned in recent years about the genetics of familial Parkinson's disease. However, far less is known about those malfunctioning genes which contribute to the emergence and/or progression of the vast majority of cases, the 'sporadic Parkinson's disease', which is the focus of our current review. Drastic differences in the reported prevalence of Parkinson's disease in different continents and countries suggest ethnic and/or environmental-associated multigenic contributions to this disease. Numerous association studies showing variable involvement of multiple tested genes in these distinct locations support this notion. Also, variable increases in the risk of Parkinson's disease due to exposure to agricultural insecticides indicate complex gene-environment interactions, especially when genes involved in protection from oxidative stress are explored. Further consideration of the brain regions damaged in Parkinson's disease points at the age-vulnerable cholinergic-dopaminergic balance as being involved in the emergence of sporadic Parkinson's disease in general and in the exposure-induced risks in particular. More specifically, the chromosome 7 ACHE/PON1 locus emerges as a key region controlling this sensitive balance, and animal model experiments are compatible with this concept. Future progress in the understanding of the genetics of sporadic Parkinson's disease depends on globally coordinated, multileveled studies of gene-environment interactions.
Collapse
Affiliation(s)
- Liat Benmoyal-Segal
- Department of Biological Chemistry, The Life Sciences Institute, Jerusalem, Israel
| | | |
Collapse
|
9
|
Shimizu T, Ochiai H, Asell F, Shimizu H, Saitoh R, Hama Y, Katada J, Hashimoto M, Matsui H, Taki K, Kaminuma T, Yamamoto M, Aida Y, Ohashi A, Ozawa N. Bioinformatics Research on Inter-racial Difference in Drug Metabolism I. Analysis on Frequencies of Mutant Alleles and Poor Metabolizers on CYP2D6 and CYP2C19. Drug Metab Pharmacokinet 2003; 18:48-70. [PMID: 15618719 DOI: 10.2133/dmpk.18.48] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme activities of CYP2D6 and CYP2C19 show a genetic polymorphism, and the frequency of poor metabolizers (PMs) on these enzymes depends on races. In the present study, the frequencies of mutant alleles and PMs in each race were analyzed based on information from published studies, considering the genetic polymorphisms of CYP2D6 and CYP2C19 as the causal factors of racial and inter-individual differences in pharmacokinetics. As a result, it was shown that there were racial differences in the frequencies of each mutant allele and PMs. The frequencies of PMs on CYP2D6 are 1.9% of Asians and 7.7% of Caucasians, and those of PMs on CYP2C19 are 15.8% of Asians and 2.2% of Caucasians. Based on the results, it was suggested that there would be racial differences in the frequencies of PM subjects whose blood concentrations might be higher for drugs metabolized by these enzymes. Additionally, it was suggested that enzyme activities would vary according to the number of functional alleles even in subjects judged to be extensive metabolizers (EMs). In the bridging study, genetic information regarding CYP2D6 and CYP2C19 of the subjects will help extrapolate foreign clinical data to a domestic population.
Collapse
|
10
|
Teh LK, Ismail R, Yusoff R, Hussein A, Isa MN, Rahman AR. Heterogeneity of the CYP2D6 gene among Malays in Malaysia. J Clin Pharm Ther 2001; 26:205-11. [PMID: 11422605 DOI: 10.1046/j.1365-2710.2001.00347.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Although Malays shared an origin with Chinese, their evolution saw substantial divergences. Phenotyping studies suggested that they differed in CYP2D6 polymorphism, with higher PM prevalence but lesser right-shift for debrisoquine MRs. OBJECTIVE To study the genotype distribution of CYP2D6 among the Malays in Malaysia. METHOD We obtained DNA from 107 Malays and used PCR to determine common CYP2D6 alleles. RESULT CYP2D6*1 occurred at a frequency of 36.0%, duplicated gene, 0.93%, CYP2D6*4, 2.8%, CYP2D6*5, 5.1%, CYP2D6*9, 3.3%, CYP2D6*10, 49.5% and CYP2D6*17, 0.5%. The findings of CYP2D6*17 and CYP2D6*9 were novel for Asia. The frequency for CYP2D6*10 was lower than in other Asian races. The most frequent genotypes were CYP2D6*1/*10 at 39.3%. Two subjects had genotypes that predicted PM phenotype, 35% showed genotypes that predicted intermediate metabolizers and one subject had a genotype that predicted ultra-rapid metabolism. CONCLUSION The genetic polymorphism of CYP2D6 in Malays is different from Chinese and Far Eastern races. They may be intermediate between East Asians and Caucasians in CYP2D6 activity. Further study in relation to the evolution of races and disease prevalence may help to identify the contributions of the polymorphism in alleged susceptibility to diseases apart from delineating its contributions to ethnic differences in the pharmacology of CYP2D6 drugs.
Collapse
Affiliation(s)
- L K Teh
- Department of Pharmacy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Although they originated from China, Malays have undergone a lot of intermarriages. A study suggested that CYP2D6 poor metabolism (PM) phenotype was more common in Malays compared to Chinese. CYP2D6 is highly polymorphic and is involved in the metabolism of many drugs and has been implicated in some environmentally-induced diseases. It is therefore useful to further study this polymorphism in Malays. OBJECTIVE To study debrisoquine metabolism phenotypes in healthy Malay volunteers. METHOD We administered debrisoquine to 51 Malays and used HPLC to measure urinary debrisoquine and 4-hydroxy debrisoquine to calculate debrisoquine metabolic ratios (MR). RESULTS Debrisoquine MR varied widely and with probit analysis we were able to identify population subsets. Although the frequency distribution for the MR showed a right shift, the shift was less than that reported for the Chinese population. We also found 2 poor metabolizers and one ultra rapid metaboliser in the population. CONCLUSION The genetic polymorphism of debrisoquine in Malays differs from that in the Chinese. Both their PM prevalence and their MR distribution suggest that they are intermediate between Europeans and Chinese in relation to this polymorphism. Studies to compare CYP2D6 genotypes between them and related races would be useful to further define these differences.
Collapse
Affiliation(s)
- R Ismail
- Department of Pharmacology, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia.
| | | | | | | |
Collapse
|
12
|
Abstract
Response to drugs can vary between individuals and between different ethnic populations. The biological (age, gender, disease and genetics), cultural and environmental factors which contribute to these variations are considered in this review. The most important aspect is the genetic variability between individuals in their ability to metabolize drugs due to expression of 'polymorphic' enzymes. Polymorphism enables division of individuals within a given population into at least two groups, poor metabolisers (PMs) and extensive metabolisers (EMs) of certain drugs. The two most extensively studied genetic polymorphisms are those involving cytochrome P450 2D6 (CYP2D6) and CYP2C19. CYP2D6 metabolizes a number of antidepressants, antipsychotics, beta-adrenoceptor blockers, and antiarrhythmic drugs. About 7% of Caucasians and 1% of Asians are PMs of CYP2D6 substrates. CYP2C19 enzyme participates in the metabolism of omeprazole, propranolol and psychotropic drugs such as hexobarbital, diazepam, citalopram, imipramine, clomipramine and amitriptyline. The incidence of PMs of CYP2C19 substrates is much higher in Asians (15-30%) than in Caucasians (3-6%). Variations in metabolism of psychotropic drugs result in variations in their pharmacokinetic parameters. This may lead to clinically significant intra- and inter-ethnic differences in pharmacological responses. Such variations are discussed in this review. Differential receptor-mediated response may play a role in ethnic differences in responses to antipsychotics and tricyclic antidepressants, but such pharmacodynamic factors remain to be systematically investigated. The results of studies of ethnic differences in response to psychopharmacotherapy appear to be discrepant, most probably due to limitations of study design, small sample size, inadequately defined study sample, and lack of control of confounding factors. The clinical value of understanding pharmacogenetics is in its use to optimize therapeutic efficacy, to prevent toxicity of those drugs whose metabolism is catalysed by polymorphic isoenzymes, and to contribute to the rational design of new drugs. Finally, applications and impact of pharmacogenetics in the field of psychopharmacotherapy are discussed.
Collapse
Affiliation(s)
- N Poolsup
- Centre for Evidence-Based Pharmacotherapy, Aston University, Birmingham, U.K
| | | | | |
Collapse
|
13
|
Abraham BK, Adithan C, Shashindran CH, Vasu S, Alekutty NA. Genetic polymorphism of CYP2D6 in a keralite (South India) population. Br J Clin Pharmacol 2000; 49:285-6. [PMID: 10718787 PMCID: PMC2014911 DOI: 10.1046/j.1365-2125.2000.00142-2.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Prows DR, Prows CA. Optimizing drug therapy based on genetic differences: implications for the clinical setting. AACN CLINICAL ISSUES 1998; 9:499-512; quiz 618-20. [PMID: 9855860 DOI: 10.1097/00044067-199811000-00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Differences in drug responses due to gene alterations are rapidly being identified. Gene alterations may inhibit the function of an enzyme so that an active drug accumulates, causing adverse reactions with normal doses. Alternatively, gene alterations may accelerate enzymatic function so that an active drug is rapidly eliminated, causing subtherapeutic responses to normal doses. Mutations and polymorphisms have been identified that affect a person's response to many currently prescribed medications including cardiovascular, anti-infective, chemotherapeutic, psychiatric, and analgesic drugs. The potential exists for drug therapy to be optimized by selecting medication and doses based on a person's genotype rather than by trial and error. In the near future, advanced practice nurses in the acute care setting may be expected to order, provide patient education about, and explain results of genetic tests before initiating a specific drug therapy. Advanced practice nurses must be knowledgeable about what genetic tests are analyzing and their benefits, limitations, and risks.
Collapse
Affiliation(s)
- D R Prows
- University of Cincinnati Medical College, Department of Environmental Health, Ohio, USA
| | | |
Collapse
|
15
|
Linder MW, Prough RA, Valdes R. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin Chem 1997. [DOI: 10.1093/clinchem/43.2.254] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractPharmacogenetics is the study of the linkage between an individual’s genotype and that individual’s ability to metabolize a foreign compound. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Phenotypes exhibiting poor and ultraextensive metabolism result from genetic variance (polymorphism) of enzymes involved in metabolism. Thus, in pharmacogenetic studies one applies genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual’s drug metabolism phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic efficiency. More than 25 commonly prescribed medicines are metabolized by the cytochrome P-4502D6 (CYP2D6) isoenzyme, and polymorphism of the CYP2D6 gene affects the therapeutic management of up to 17% of individuals in some ethnic groups. In this review, we summarize and update information concerning drug-metabolizing genotypes with emphasis on CYP2D6 genotyping techniques that can be applied by the clinical laboratory for linking human genetics to therapeutic management.
Collapse
Affiliation(s)
| | - Russell A Prough
- Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292
| | - Roland Valdes
- Departments of Pathology and
- Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292
| |
Collapse
|
16
|
Wanwimolruk S, Thou MR, Woods DJ. Evidence for the polymorphic oxidation of debrisoquine and proguanil in a Khmer (Cambodian) population. Br J Clin Pharmacol 1995; 40:166-9. [PMID: 8562301 PMCID: PMC1365178 DOI: 10.1111/j.1365-2125.1995.tb05772.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The frequency distributions of the urinary metabolic ratios of debrisoquine and proguanil were measured in a population of unrelated Khmers. Out of 98 Khmer subjects studied, two were identified as poor metabolisers of debrisoquine when a metabolic ratio of 12.6 was used as the cut off point. This represents a prevalence of debrisoquine poor metabolisers of 2.1% (95% confidence interval 0.25-7.3%) which is similar to other Asian populations. Based on the distribution of the ratio of proguanil to cycloguanil excreted in urine, and using an antimode value of 10, the prevalence of poor metabolisers of proguanil in a Khmer population was estimated to be 18.4% (95% confidence interval 10.9-28.1%). The frequency of poor metabolisers of proguanil in Khmers was higher than that described for Caucasian populations, but similar to most reported results in Asian populations.
Collapse
Affiliation(s)
- S Wanwimolruk
- School of Pharmacy, University of Otago, New Zealand
| | | | | |
Collapse
|
17
|
Abstract
Genetic polymorphisms of drug metabolizing enzymes are well recognized. This review presents molecular mechanisms, ontogeny and clinical implications of genetically determined intersubject variation in some of these enzymes. Included are the polymorphic enzymes N-acetyl transferase, cytochromes P4502D6 and 2C, which have been well described in humans. Information regarding other Phase I and Phase II polymorphic pathways, such as glutathione and methyl conjugation and alcohol and acetaldehyde oxidation continues to increase and are also discussed. Genetic factors effecting enzyme activity are frequently important determinants of the disposition of drugs and their efficacy and toxicity. In addition, associations between genetic differences in these enzymes and susceptibility to carcinogens and teratogens have been reported. Ultimately, the application of knowledge regarding these genetic factors of enzyme activity may guide medical therapy and minimize xenobiotic-induced disease.
Collapse
Affiliation(s)
- D G May
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit 48201
| |
Collapse
|
18
|
Wanwimolruk S, Denton JR, Ferry DG, Beasley M, Broughton JR. Polymorphism of debrisoquine oxidation in New Zealand Caucasians. Eur J Clin Pharmacol 1992; 42:349-50. [PMID: 1577057 DOI: 10.1007/bf00266364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- S Wanwimolruk
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
19
|
Abstract
It now appears likely that the development of colonic adenomas and carcinomas involves a series of steps in which environmental or endogenous carcinogens induce or promote neoplasia through the accumulation of multiple, specific genetic mutations. Genetic predisposition to this process may take the form of inherited defects in control of cellular proliferation as in familial polyposis coli, or genetically determined polymorphism which affects enzyme activities relevant to the production or detoxication of carcinogens. Genetic effects may also influence levels of hormones and/or their target cell receptors which regulate the metabolic and proliferative activity of colonocytes. This review highlights data suggesting a role for polymorphism associated with xenobiotic acetylation, hydroxylation, and conjugation with glutathione in the metabolism of potential carcinogens, as well as for dehydroepiandrosterone in the metabolic control of cell proliferation. The study of genetically determined polymorphism in colorectal cancer may provide new insights into the epidemiology of cancer and result in new methods for the detection of higher risk groups.
Collapse
Affiliation(s)
- M J Fettman
- Department of Gastroenterology, Queen Elizabeth Hospital, Woodville South, South Australia
| | | | | | | |
Collapse
|