1
|
Constantinides M, Robert N, Multrier C, Coënon L, Campos-Mora M, Jacquard C, Gao F, Zemiti S, Presumey J, Cartron G, Moreaux J, Villalba M. FCGR3A F158V alleles frequency differs in multiple myeloma patients from healthy population. Oncoimmunology 2024; 13:2388306. [PMID: 39175948 PMCID: PMC11340758 DOI: 10.1080/2162402x.2024.2388306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
FCGR3A presents a single nucleotide polymorphism at location 158 (V/F), which affects its binding to the fragment crystallizable (Fc) of antibodies (Abs). FcγRIIIa-158 V allotype has the highest affinity and is associated with a better clinical response to IgG1 monoclonal Abs (mAb) treatment. We compared the allele frequency of FCGR3A-F158V polymorphism in cohorts of patients with B-cell lymphoproliferative disorders, including multiple myeloma (MM), monoclonal gammopathy of undetermined significance (MGUS), non-Hodgkin lymphoma (NHL), and B-cell chronic leukemia (B-CLL). FCGR3A-158F homozygous were enriched and tended to be in MM and MGUS patients, respectively; but neither in B-CLL nor in NHL patients. We identified a significantly lower concentration of CD8 T-cells and resting memory CD4 T-cells in MM patients bone marrow with the F/F genotype, associated with an increase in the macrophage percentage. In contrast, natural killer cells increased in V/V homozygous patients. This suggests a deregulation of the immune microenvironment in FCGR3A-F/F homozygous patients. However, we did not observe difference in response following treatment combining chemotherapy associated or not with daratumumab, an IgG1 mAb direct against CD38. Our findings suggest that FCGR3A F158V polymorphism can regulate the immune environment and affect the development of tumor plasma cells.
Collapse
Affiliation(s)
- Michaël Constantinides
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Caroline Multrier
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Loïs Coënon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | - Carine Jacquard
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Fei Gao
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Sara Zemiti
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Jessy Presumey
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Jérome Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- IRMB, Univ Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Giang KA, Boxaspen T, Diao Y, Nilvebrant J, Kosugi-Kanaya M, Kanaya M, Krokeide SZ, Lehmann F, Svensson Gelius S, Malmberg KJ, Nygren PÅ. Affibody-based hBCMA x CD16 dual engagers for NK cell-mediated killing of multiple myeloma cells. N Biotechnol 2023; 77:139-148. [PMID: 37673373 DOI: 10.1016/j.nbt.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
We describe the development and characterization of the (to date) smallest Natural Killer (NK) cell re-directing human B Cell Maturation Antigen (hBCMA) x CD16 dual engagers for potential treatment of multiple myeloma, based on combinations of small 58 amino acid, non-immunoglobulin, affibody affinity proteins. Affibody molecules to human CD16a were selected from a combinatorial library by phage display resulting in the identification of three unique binders with affinities (KD) for CD16a in the range of 100 nM-3 µM. The affibody exhibiting the highest affinity demonstrated insensitivity towards the CD16a allotype (158F/V) and did not interfere with IgG (Fc) binding to CD16a. For the construction of hBCMA x CD16 dual engagers, different CD16a binding arms, including bi-paratopic affibody combinations, were genetically fused to a high-affinity hBCMA-specific affibody. Such 15-23 kDa dual engager constructs showed simultaneous hBCMA and CD16a binding ability and could efficiently activate resting primary NK cells and trigger specific lysis of a panel of hBCMA-positive multiple myeloma cell lines. Hence, we report a novel class of uniquely small NK cell engagers with specific binding properties and potent functional profiles.
Collapse
Affiliation(s)
- Kim Anh Giang
- Department of Protein Science, Div. Protein Engineering, AlbaNova University Center, KTH Royal Institute of Technology, S-114 21 Stockholm, Sweden
| | - Thorstein Boxaspen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | - Yumei Diao
- Oncopeptides AB, S-171 48 Stockholm, Sweden
| | - Johan Nilvebrant
- Department of Protein Science, Div. Protein Engineering, AlbaNova University Center, KTH Royal Institute of Technology, S-114 21 Stockholm, Sweden
| | - Mizuha Kosugi-Kanaya
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | - Minoru Kanaya
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | - Silje Zandstra Krokeide
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | | | | | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway.
| | - Per-Åke Nygren
- Department of Protein Science, Div. Protein Engineering, AlbaNova University Center, KTH Royal Institute of Technology, S-114 21 Stockholm, Sweden; Science For Life Laboratory, S-171 65 Solna, Sweden.
| |
Collapse
|
3
|
Habets DHJ, Al-Nasiry S, Nagelkerke SQ, Voorter CEM, Spaanderman MEA, Kuijpers TW, Wieten L. Analysis of FCGR3A-p.176Val variants in women with recurrent pregnancy loss and the association with CD16a expression and anti-HLA antibody status. Sci Rep 2023; 13:5232. [PMID: 36997584 PMCID: PMC10063683 DOI: 10.1038/s41598-023-32156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
AbstractNatural Killer (NK) cells have been implicated in recurrent pregnancy loss (RPL). The p.Val176Phe (or Val158Phe) Single Nucleotide Polymorphism (SNP) in the FCGR3A gene encoding the FcγRIIIA or CD16a receptor has been associated with an enhanced affinity for IgG and stronger NK-mediated antibody-dependent cellular cytotoxicity. We hypothesized that the presence of at least one p.176Val variant associates with RPL and increased CD16a expression and alloantibodies e.g., against paternal human leukocyte antigen (HLA). In 50 women with RPL, we studied frequencies of the p.Val176Phe FCGR3A polymorphisms. Additionally, CD16a expression and anti-HLA antibody status were analyzed by flowcytometry and Luminex Single Antigens. In woman with RPL, frequencies were: 20% (VV), 42% (VF) and 38% (FF). This was comparable to frequencies from the European population in the NCBI SNP database and in an independent Dutch cohort of healthy women. NK cells from RPL women with a VV (22,575 [18731-24607]) and VF (24,294 [20157-26637]) polymorphism showed a higher expression of the CD16a receptor than NK cells from RPL women with FF (17,367 [13257-19730]). No difference in frequencies of the FCGR3A-p.176 SNP were detected when comparing women with or without class I and class II anti-HLA antibodies. Our study does not provide strong evidence for an association between the p.Val176Phe FCGR3A SNP and RPL.
Collapse
|
4
|
Novel TLR 7/8 agonists for improving NK cell mediated antibody-dependent cellular cytotoxicity (ADCC). Sci Rep 2021; 11:3346. [PMID: 33558639 PMCID: PMC7870826 DOI: 10.1038/s41598-021-83005-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
There is a significant interest in designing therapeutic agents that can enhance ADCC and thereby improve clinical responses with approved antibodies. We recently reported the combination of an imidazoquinoline-based TLR7/8 agonist (522) with a monoclonal antibody improved ADCC in vitro and in vivo. In the present study, we tested several new small molecule TLR7/8 agonists that induce significantly higher cytokines compared to both the FDA-approved TLR7 agonist, imiquimod, and 522. We evaluated these agonists in combination with monoclonal antibody therapy, with the main goal of enhancing ADCC. Our studies show these TLR7/8 agonists induce robust pro-inflammatory cytokine secretion and activate NK cells. Specifically, we found the agonists 574 and 558 significantly enhanced NK cell-mediated ADCC in vitro as well as enhanced the anti-cancer efficacy of monoclonal antibodies in two different in vivo mouse models. Additionally, we found the agonists were able to stimulate CD8 T cells, likely indicative of an early adaptive immune response.
Collapse
|
5
|
Khanna V, Panyam J, Griffith TS. Exploiting antibody biology for the treatment of cancer. Immunotherapy 2020; 12:255-267. [DOI: 10.2217/imt-2019-0118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the last decade, antibodies have become an important component in the arsenal of cancer therapeutics. High-specificity, low off-target effects, desirable pharmacokinetics and high success rate are a few of the many attributes that make antibodies amenable for development as drugs. To design antibodies for successful clinical applications, however, it is critical to have an understanding of their structure, functions, mechanisms of action and pharmacokinetic/pharmacodynamic properties. This review highlights some of these key aspects, as well as certain limitations encountered, with monoclonal antibody therapy. Further, we discuss rational combination therapies for clinical applications, some of which could help overcome the limitations.
Collapse
Affiliation(s)
- Vidhi Khanna
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jayanth Panyam
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | - Thomas S Griffith
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Urology, Universityof Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, Universityof Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, & Cancer Biology Graduate Program, University of Minnesota,Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Talathi SP, Shaikh NN, Pandey SS, Saxena VA, Mamulwar MS, Thakar MR. FcγRIIIa receptor polymorphism influences NK cell mediated ADCC activity against HIV. BMC Infect Dis 2019; 19:1053. [PMID: 31842762 PMCID: PMC6916223 DOI: 10.1186/s12879-019-4674-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-specific Antibody Dependent Cell Cytotoxicity (ADCC) has shown to be important in HIV control and resistance. The ADCC is mediated primarily by natural killer cell activated through the binding of FcγRIIIa receptor to the Fc portion of antibody bound to the antigen expressed on the infected cells. However, no data is available on the influence of the polymorphism in FcγRIIIa receptor on HIV-specific ADCC response. METHODS The Sanger's method of sequencing was used to sequence the exon of FcγRIIIa receptor while the ADCC activity was determined using NK cell activation assay. The polymorphism in FcγRIIIa receptor was assessed in HIV-infected Indian individuals with or without HIV-specific ADCC antibodies and its influence on the magnitude of HIV-specific ADCC responses was analyzed. RESULTS Two polymorphisms: V176F (rs396991) and Y158H (rs396716) were observed. The Y158H polymorphism is reported for the first time in Indian population. Both, V176F (V/V genotype) (p = 0.004) and Y158H (Y/H genotype) (p = 0.032) were found to be significantly associated with higher magnitude of HIV-specific ADCC response. CONCLUSION The study underscores the role of polymorphism in the FcγRIIIa receptor on HIV-specific ADCC response and suggests that the screening of the individuals for FcγRIIIa-V176F and Y158H polymorphisms could be useful for prediction of efficient treatment in monoclonal antibody-based therapies aimed at ADCC in HIV infection.
Collapse
Affiliation(s)
- Sneha Pramod Talathi
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Nawaj Najir Shaikh
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Sudhanshu Shekhar Pandey
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Vandana Ashish Saxena
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Megha Sunil Mamulwar
- Department of Epidemiology, National AIDS Research Institute, Pune, 411026, India
| | - Madhuri Rajeev Thakar
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India.
| |
Collapse
|
7
|
A comprehensive overview of FCGR3A gene variability by full-length gene sequencing including the identification of V158F polymorphism. Sci Rep 2018; 8:15983. [PMID: 30374078 PMCID: PMC6206037 DOI: 10.1038/s41598-018-34258-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/12/2018] [Indexed: 02/02/2023] Open
Abstract
The FCGR3A gene encodes for the receptor important for antibody-dependent natural killer cell-mediated cytotoxicity. FCGR3A gene polymorphisms could affect the success of monoclonal antibody therapy. Although polymorphisms, such as the FcγRIIIA-V158F and -48L/R/H, have been studied extensively, an overview of other polymorphisms within this gene is lacking. To provide an overview of FCGR3A polymorphisms, we analysed the 1000 Genomes project database and found a total of 234 polymorphisms within the FCGR3A gene, of which 69%, 16%, and 15% occur in the intron, UTR, and exon regions respectively. Additionally, only 16% of all polymorphisms had a minor allele frequency (MAF) > 0.01. To facilitate (full-length) analysis of FCGR3A gene polymorphism, we developed a FCGR3A gene-specific amplification and sequencing protocol for Sanger sequencing and MinION (Nanopore Technologies). First, we used the Sanger sequencing protocol to study the presence of the V158F polymorphism in 76 individuals resulting in frequencies of 38% homozygous T/T, 7% homozygous G/G and 55% heterozygous. Next, we performed a pilot with both Sanger sequencing and MinION based sequencing of 14 DNA samples which showed a good concordance between Sanger- and MinION sequencing. Additionally, we detected 13 SNPs listed in the 1000 Genome Project, from which 11 had MAF > 0.01, and 10 SNPs were not listed in 1000 Genome Project. In summary, we demonstrated that FCGR3A gene is more polymorphic than previously described. As most novel polymorphisms are located in non-coding regions, their functional relevance needs to be studied in future functional studies.
Collapse
|
8
|
Stimulation of natural killer cells with rhCD137 ligand enhances tumor-targeting antibody efficacy in gastric cancer. PLoS One 2018; 13:e0204880. [PMID: 30321186 PMCID: PMC6188629 DOI: 10.1371/journal.pone.0204880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/14/2018] [Indexed: 01/23/2023] Open
Abstract
Although many anticancer agents for gastric cancer have been developed, the prognosis for many patients remains poor. Recently, costimulatory immune molecules that reactivate antitumor immune responses by utilizing the host immune system have attracted attention as new therapeutic strategies. CD137 is a costimulatory molecule that reportedly potentiates the antitumor activity of tumor-targeting monoclonal antibodies (mAbs) by enhancing antibody-dependent cellular cytotoxicity. However, it remains unclear whether CD137 stimulates tumor-regulatory activity in gastric cancer. In this study, we investigated the antitumor effects of CD137 stimulation on gastric cancer cells administered tumor-targeting mAbs. Our results showed that human natural killer (NK) cells were activated by expressing CD137 after encountering trastuzumab-coated gastric cancer cells, and that stimulation of activated NK cells in the presence of trastuzumab and recombinant human CD137 ligand (rhCD137L) enhanced cytotoxicity and release of cytokines (IFN-γ, TNF, granzyme A, or granzyme B) as compared with activated NK cells with trastuzumab alone (p < 0.05). By combination treatment with rhCD137L, similar effects were obtained regarding cancer cell cytotoxicity in the presence of cetuximab (p < 0.01). Moreover, we revealed that CD137 expression was dependent upon the affinity between the Fc portion of the antibodies and FcγRIIIa of NK cells based on results indicating that human IgG1 and IgG3 subclasses enhanced CD137 expression (p < 0.001). These results confirmed that FcγRIIIA polymorphisms (158 V/V) enhanced CD137 expression to a greater degree than 158 F polymorphisms (p = 0.014). Our results suggested that CD137 stimulation could promote the effects of tumor-targeting mAbs in gastric cancer, and that further investigation of antibody binding affinity and in vivo activities might improve therapeutic strategies related to the treatment of gastric cancer patients.
Collapse
|