1
|
Li T, Zhang W, Xu Q, Li S, Tong X, Ding J, Li H, Hou S, Xu Z, Jablons DM, You L. Transfer of multiple loci of donor's genes to induce recipient tolerance in organ transplantation. Exp Ther Med 2018; 15:4961-4971. [PMID: 29844800 DOI: 10.3892/etm.2018.6058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 02/02/2018] [Indexed: 11/05/2022] Open
Abstract
Donor organ rejection remains a significant problem. The present study aimed to assess whether transferring a donor's major histocompatibility complex (MHC) genes to the recipient could mitigate rejection in organ transplantation. Seven loci of MHC genes from donor mice were amplified and ligated into vectors; the vectors either contained one K locus, seven loci or were empty (control). The vectors were subsequently injected into the thymus of recipients (in heterotransplants, recipient rats received the vector containing one K locus), following which donor mouse hearts were transplanted. Following the transplantation of allograft and heterograft, electrocardiosignals were viable for a significantly longer duration in recipient mice and rats receiving the donor histocompatibility-2 complex (H-2)d genes compared with those in controls, and in mice that received seven vectors compared with those receiving one vector. Mixed lymphocyte cultures containing cells from these recipients proliferated significantly less compared with mixed lymphocyte cultures containing controls. Also, hearts from H-2d genes-treated recipients demonstrated less lymphocyte infiltration and necrosis compared with the control recipient. The present study concluded that allograft and heterograft rejection may be mitigated by introducing the donor's MHC into the recipient; transferring seven loci has been demonstrated to be more effective than transferring one locus.
Collapse
Affiliation(s)
- Tong Li
- Thoracic Surgery Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China.,Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-1724, USA
| | - Wenqian Zhang
- Thoracic Surgery Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Qing Xu
- Medical Experiment and Test Center, Capital Medical University, Beijing 100054, P.R. China
| | - Shentao Li
- Department of Molecular Biology, Capital Medical University, Beijing 100054, P.R. China
| | - Xuehong Tong
- Medical Experiment and Test Center, Capital Medical University, Beijing 100054, P.R. China
| | - Jie Ding
- Experimental Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Hui Li
- Thoracic Surgery Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Shengcai Hou
- Thoracic Surgery Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-1724, USA
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-1724, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-1724, USA
| |
Collapse
|