1
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
2
|
Feng D, Zhong G, Zuo Q, Wan Y, Xu W, He C, Lin C, Huang D, Chen F, Huang L. Knockout of ABC transporters by CRISPR/Cas9 contributes to reliable and accurate transporter substrate identification for drug discovery. Front Pharmacol 2022; 13:1015940. [PMID: 36386127 PMCID: PMC9649518 DOI: 10.3389/fphar.2022.1015940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 04/21/2024] Open
Abstract
It is essential to explore the relationship between drugs and transporters in the process of drug development. Strong background signals in nonhuman MDCK or LLC-PK1 cells and overlapping interference of inhibitors or RNAi in human Caco-2 cells mean that an ideal alternative could be to knock out specific transporter genes in Caco-2 cells. However, the application of gene knockout (KO) to Caco-2 cells is challenging because it is still inefficient to obtain rapidly growing Caco-2 subclones with double-allele KO through long-term monoclonal cultivation. Herein, CRISPR/Cas9, a low cost but more efficient and precise gene editing technology, was utilized to singly or doubly knockout the P-gp, BCRP, and MRP2 genes in Caco-2 cells. By combining this with single cell expansion, rapidly growing transporter-deficient subclones were successfully screened and established. Bidirectional transport assays with probe substrates and three protease inhibitors indicated that more reliable and detailed data could be drawn easily with these KO Caco-2 models. The six robust KO Caco-2 subclones could contribute to efficient in vitro drug transport research.
Collapse
Affiliation(s)
- Dongyan Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Guorui Zhong
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Qingxia Zuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yanbin Wan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wanqing Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changsheng He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cailing Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dongchao Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Feng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Carserides C, Smith K, Zinicola M, Kumar A, Swedrowska M, Scala C, Cameron G, Riches Z, Iannelli F, Pozzi G, Hold GL, Forbes B, Kelly C, Hijazi K. Comprehensive Study of Antiretroviral Drug Permeability at the Cervicovaginal Mucosa via an In Vitro Model. Pharmaceutics 2022; 14:pharmaceutics14091938. [PMID: 36145684 PMCID: PMC9504208 DOI: 10.3390/pharmaceutics14091938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Modulation of drug transporter activity at mucosal sites of HIV-1 transmission may be exploited to optimize retention of therapeutic antiretroviral drug concentrations at target submucosal CD4+ T cells. Previously, we showed that darunavir was a substrate for the P-glycoprotein efflux drug transporter in colorectal mucosa. Equivalent studies in the cervicovaginal epithelium have not been reported. Here, we describe the development of a physiologically relevant model to investigate the permeability of antiretroviral drugs across the vaginal epithelium. Barrier properties of the HEC-1A human endometrial epithelial cell line were determined, in a dual chamber model, by measurement of transepithelial electrical resistance, immunofluorescent staining of tight junctions and bi-directional paracellular permeability of mannitol. We then applied this model to investigate the permeability of tenofovir, darunavir and dapivirine. Efflux ratios indicated that the permeability of each drug was transporter-independent in this model. Reduction of pH to physiological levels in the apical compartment increased absorptive transfer of darunavir, an effect that was reversed by inhibition of MRP efflux transport via MK571. Thus, low pH may increase the transfer of darunavir across the epithelial barrier via increased MRP transporter activity. In a previous in vivo study in the macaque model, we demonstrated increased MRP2 expression following intravaginal stimulation with darunavir which may further increase drug uptake. Stimulation with inflammatory modulators had no effect on drug permeability across HEC-1A barrier epithelium but, in the VK2/E6E7 vaginal cell line, increased expression of both efflux and uptake drug transporters which may influence darunavir disposition.
Collapse
Affiliation(s)
- Constandinos Carserides
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Kieron Smith
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Marta Zinicola
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
| | - Abhinav Kumar
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Magda Swedrowska
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Carlo Scala
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
| | - Gary Cameron
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Zoe Riches
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Georgina L. Hold
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Charles Kelly
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
| | - Karolin Hijazi
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
- Correspondence: ; Tel.: +44-(0)-1224-555153
| |
Collapse
|
4
|
Modiwala M, Jadav T, Sahu AK, Tekade RK, Sengupta P. A Critical Review on Advancement in Analytical Strategies for the Quantification of Clinically Relevant Biological Transporters. Crit Rev Anal Chem 2021; 52:1557-1571. [PMID: 33691566 DOI: 10.1080/10408347.2021.1891859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Success of a drug discovery program is highly dependent on rapid scientific advancement and periodic inclusion of sensitive and specific analytical techniques. Biological membrane transporters can significantly alter the bioavailability of a molecule in its actual site of action. Expression of transporter proteins responsible for drug transport is extremely low in the biological system. Therefore, proper scientific planning in selection of their quantitative analytical technique is essential. This article discusses critical advancement in the analytical strategies for quantification of clinically relevant biological transporters for the drugs. Article cross-talked key planning and execution strategies concerning analytical quantification of the transporters during drug discovery programs.
Collapse
Affiliation(s)
- Mustafa Modiwala
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Taneva E, Sinclair S, Mesquita PM, Weinrick B, Cameron SA, Cheshenko N, Reagle K, Frank B, Srinivasan S, Fredricks D, Keller MJ, Herold BC. Vaginal microbiome modulates topical antiretroviral drug pharmacokinetics. JCI Insight 2018; 3:99545. [PMID: 29997295 PMCID: PMC6124523 DOI: 10.1172/jci.insight.99545] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/31/2018] [Indexed: 01/04/2023] Open
Abstract
Tenofovir gel and dapivirine ring provided variable HIV protection in clinical trials, reflecting poor adherence and possibly biological factors. We hypothesized that vaginal microbiota modulates pharmacokinetics and tested the effects of pH, individual bacteria, and vaginal swabs from women on pharmacokinetics and antiviral activity. Tenofovir, but not dapivirine, uptake by human cells was reduced as pH increased. Lactobacillus crispatus actively transported tenofovir leading to a loss in drug bioavailability and culture supernatants from Gardnerella vaginalis, but not Atopobium vaginae, blocked tenofovir endocytosis. The inhibition of endocytosis mapped to adenine. Adenine increased from 65.5 μM in broth to 246 μM in Gardnerella, but decreased to 9.5 μM in Atopobium supernatants. This translated into a decrease in anti-HIV activity when Gardnerella supernatants or adenine were added to cultures. Dapivirine was also impacted by microbiota, as drug bound irreversibly to bacteria, resulting in decreased antiviral activity. When drugs were incubated with vaginal swabs, 30.7% ± 5.7% of dapivirine and 63.9% ± 8.8% of tenofovir were recovered in supernatants after centrifugation of the bacterial cell pellet. In contrast, no impact of microbiota on the pharmacokinetics of the prodrugs, tenofovir disoproxil fumarate or tenofovir alafenamide, was observed. Together, these results demonstrate that microbiota may impact pharmacokinetics and contribute to inconsistent efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Scott A. Cameron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Kerry Reagle
- Particle Sciences, Inc., Bethlehem, Pennsylvania, USA
| | - Bruce Frank
- Particle Sciences, Inc., Bethlehem, Pennsylvania, USA
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - David Fredricks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Marla J. Keller
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Betsy C. Herold
- Department of Microbiology & Immunology
- Department of Pediatrics, and
| |
Collapse
|
6
|
Li MS, Xin M, Guo CL, Lin GM, Li J, Wu XG. Differential expression of breast cancer-resistance protein, lung resistance protein, and multidrug resistance protein 1 in retinas of streptozotocin-induced diabetic mice. Int J Ophthalmol 2017; 10:515-523. [PMID: 28503421 DOI: 10.18240/ijo.2017.04.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/13/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the altering expression profiles of efflux transporters such as breast cancer-resistance protein (BCRP), lung resistance protein (LRP), and multidrug resistance protein 1 (MDR1) at the inner blood-retinal barrier (BRB) during the development of early diabetic retinopathy (DR) and/or aging in mice. METHODS Relative mRNA and protein expression profiles of these three efflux transporters in the retina during the development of early DR and/or aging in mice were examined. The differing expression profiles of Zonula occludens 1 (ZO-1) and vascular endothelial growth factor-A (VEGFA) in the retina as well as the perfusion characterization of fluorescein isothiocyanate (FITC)-dextran and Evans blue were examined to evaluate the integrity of the inner BRB. RESULTS There were significant alterations in these three efflux transporters' expression profiles in the mRNA and protein levels of the retina during the development of diabetes mellitus and/or aging. The development of early DR was confirmed by the expression profiles of ZO-1 and VEGFA in the retina as well as the compromised integrity of the inner BRB. CONCLUSION The expression profiles of some efflux transporters such as BCRP, LRP, and MDR1 in mice retina during diabetic and/or aging conditions are tested, and the attenuated expression of BCRP, LRP, and MDR1 along with the breakdown of the inner BRB is found, which may be linked to the pathogenesis of early DR.
Collapse
Affiliation(s)
- Meng-Shuang Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250022, Shandong Province, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong Province, China
| | - Meng Xin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong Province, China.,Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Chuan-Long Guo
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Gui-Ming Lin
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250022, Shandong Province, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Jun Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Xiang-Gen Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250022, Shandong Province, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong Province, China
| |
Collapse
|
7
|
Differential Mechanisms of Tenofovir and Tenofovir Disoproxil Fumarate Cellular Transport and Implications for Topical Preexposure Prophylaxis. Antimicrob Agents Chemother 2015; 60:1667-75. [PMID: 26711762 DOI: 10.1128/aac.02793-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022] Open
Abstract
Intravaginal rings releasing tenofovir (TFV) or its prodrug, tenofovir disoproxil fumarate (TDF), are being evaluated for HIV and herpes simplex virus (HSV) prevention. The current studies were designed to determine the mechanisms of drug accumulation in human vaginal and immune cells. The exposure of vaginal epithelial or T cells to equimolar concentrations of radiolabeled TDF resulted in over 10-fold higher intracellular drug levels than exposure to TFV. Permeability studies demonstrated that TDF, but not TFV, entered cells by passive diffusion. TDF uptake was energy independent but its accumulation followed nonlinear kinetics, and excess unlabeled TDF inhibited radiolabeled TDF uptake in competition studies. The carboxylesterase inhibitor bis-nitrophenyl phosphate reduced TDF uptake, suggesting saturability of intracellular carboxylesterases. In contrast, although TFV uptake was energy dependent, no competition between unlabeled and radiolabeled TFV was observed, and the previously identified transporters, organic anion transporters (OATs) 1 and 3, were not expressed in human vaginal or T cells. The intracellular accumulation of TFV was reduced by the addition of endocytosis inhibitors, and this resulted in the loss of TFV antiviral activity. Kinetics of drug transport and metabolism were monitored by quantifying the parent drugs and their metabolites by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Results were consistent with the identified mechanisms of transport, and the exposure of vaginal epithelial cells to equimolar concentrations of TDF compared to TFV resulted in ∼40-fold higher levels of the active metabolite, tenofovir diphosphate. Together, these findings indicate that substantially lower concentrations of TDF than TFV are needed to protect cells from HIV and HSV-2.
Collapse
|
8
|
Moss DM, Liptrott NJ, Siccardi M, Owen A. Interactions of antiretroviral drugs with the SLC22A1 (OCT1) drug transporter. Front Pharmacol 2015; 6:78. [PMID: 25914645 PMCID: PMC4392609 DOI: 10.3389/fphar.2015.00078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/27/2015] [Indexed: 11/16/2022] Open
Abstract
The SLC22A1 influx transporter is expressed on the basolateral membrane of hepatocytes and is involved in the excretion of numerous cations. Inhibition of SLC22A1 by several antiretrovirals, such as the protease inhibitor darunavir, has not previously been determined. In order to better understand and predict drug-SLC22A1 interactions, a range of antiretrovirals were screened for SLC22A1-associated inhibition and transport. Stable SLC22A1-expressing KCL22 cells were produced previously by nucleofection. Control KCL22 cells were transfected with the empty vector pcDNA3.1. Accumulation of tetraethylammonium (5.5 μM, 30 min) was determined in SLC22A1-expressing and mock-transfected cells with and without 50 μM of SLC22A1 inhibitor prazosin, or 50 μM of each antiretroviral drug. SLC22A1 IC50 values for efavirenz, darunavir, and prazosin were determined. Cellular accumulation of efavirenz and darunavir was also assessed in SLC22A1-expressing KCL22 cells and reversibility of this accumulation was assessed using prazosin. Tetraethylammonium accumulation was higher in SLC22A1-expressing cells compared to mock-transfected cells (10.6 ± 0.8 μM vs. 0.3 ± 0.004 μM, p = 0.009) and was significantly reduced in SLC22A1-expressing cells when co-incubated with all antiretrovirals tested except atazanavir, lamivudine, tenofovir, zidovudine, and raltegravir. Particularly noticeable was the predominance of SLC22A1 inhibitors in the protease inhibitor and non-nucleoside reverse transcriptase inhibitor classes. Absolute SLC22A1 IC50 values for efavirenz, darunavir, and prazosin were 21.8, 46.2, and 2.8 μM, respectively. Efavirenz accumulation was higher in SLC22A1-expressing cells compared to mock-transfected cells (17% higher, p = 0.009) which was reversed using prazosin, whereas no difference was observed for darunavir (p = 0.86). These data inform the mechanistic basis for disposition, drug-drug interactions and pharmacogenetic candidate gene selection for antiretroviral drugs.
Collapse
Affiliation(s)
- Darren M Moss
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| | - Neill J Liptrott
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| |
Collapse
|
9
|
Könnyű B, Sadiq SK, Turányi T, Hírmondó R, Müller B, Kräusslich HG, Coveney PV, Müller V. Gag-Pol processing during HIV-1 virion maturation: a systems biology approach. PLoS Comput Biol 2013; 9:e1003103. [PMID: 23754941 PMCID: PMC3675044 DOI: 10.1371/journal.pcbi.1003103] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/01/2013] [Indexed: 12/19/2022] Open
Abstract
Proteolytic processing of Gag and Gag-Pol polyproteins by the viral protease (PR) is crucial for the production of infectious HIV-1, and inhibitors of the viral PR are an integral part of current antiretroviral therapy. The process has several layers of complexity (multiple cleavage sites and substrates; multiple enzyme forms; PR auto-processing), which calls for a systems level approach to identify key vulnerabilities and optimal treatment strategies. Here we present the first full reaction kinetics model of proteolytic processing by HIV-1 PR, taking into account all canonical cleavage sites within Gag and Gag-Pol, intermediate products and enzyme forms, enzyme dimerization, the initial auto-cleavage of full-length Gag-Pol as well as self-cleavage of PR. The model allows us to identify the rate limiting step of virion maturation and the parameters with the strongest effect on maturation kinetics. Using the modelling framework, we predict interactions and compensatory potential between individual cleavage rates and drugs, characterize the time course of the process, explain the steep dose response curves associated with PR inhibitors and gain new insights into drug action. While the results of the model are subject to limitations arising from the simplifying assumptions used and from the uncertainties in the parameter estimates, the developed framework provides an extendable open-access platform to incorporate new data and hypotheses in the future.
Collapse
Affiliation(s)
- Balázs Könnyű
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - S. Kashif Sadiq
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Tamás Turányi
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Rita Hírmondó
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Peter V. Coveney
- Centre for Computational Science, Christopher Ingold Laboratories, University College London, London, United Kingdom
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Research Group of Theoretical Biology and Evolutionary Ecology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
10
|
Michaud V, Bar-Magen T, Turgeon J, Flockhart D, Desta Z, Wainberg MA. The Dual Role of Pharmacogenetics in HIV Treatment: Mutations and Polymorphisms Regulating Antiretroviral Drug Resistance and Disposition. Pharmacol Rev 2012; 64:803-33. [DOI: 10.1124/pr.111.005553] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Cattaneo D, Gervasoni C, Cozzi V, Baldelli S, Fucile S, Meraviglia P, Landonio S, Boreggio G, Rizzardini G, Clementi E. Co-administration of raltegravir reduces daily darunavir exposure in HIV-1 infected patients. Pharmacol Res 2011; 65:198-203. [PMID: 21958880 DOI: 10.1016/j.phrs.2011.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022]
Abstract
The potential drug-to-drug interaction between darunavir and raltegravir in the setting of HIV infection is a highly debated issue still unresolved. In the present study we have evaluated the pharmacokinetics of darunavir and ritonavir in 53 HIV-1 infected patients with or without concomitant raltegravir administration. The assessment of trough plasma drug concentrations was carried out in all subjects and the potential influence of raltegravir on darunavir and ritonavir disposition, assessed by specific pharmacokinetic evaluations in a subgroup of 25 patients. No significant differences on darunavir and ritonavir plasma trough levels were observed between patients receiving or not raltegravir. Co-administration of raltegravir was, however, associated with a 40% reduction in darunavir C(max) and estimated AUC(0-24), as well a 60% increase in the estimated darunavir clearance compared with values measured in patients not given raltegravir. Notably, this interaction was independent of the dosage of darunavir and not due to effects of raltegravir on the pharmacokinetics of ritonavir. These results should be taken into account when darunavir-based regimens are implemented in the setting of HIV, especially considering that this drug is usually administered at fixed daily dose and no therapeutic drug monitoring is performed in most centres.
Collapse
Affiliation(s)
- Dario Cattaneo
- Unit of Clinical Pharmacology, Consiglio Nazionale delle Ricerche Institute of Neuroscience, Dept. of Clinical Sciences L. Sacco, University Hospital Luigi Sacco, Università di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
König SK, Herzog M, Theile D, Zembruski N, Haefeli WE, Weiss J. Impact of drug transporters on cellular resistance towards saquinavir and darunavir. J Antimicrob Chemother 2010; 65:2319-28. [PMID: 20817741 DOI: 10.1093/jac/dkq324] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Highly active antiretroviral therapy is complicated by drug-drug interactions and the development of viral resistance. Drug interactions involve transporters that may critically affect the pharmacokinetics of many antiretroviral drugs and contribute to the formation of functional sanctuary sites. We therefore investigated the effect of saquinavir and darunavir on drug transporter expression and functional consequences for cellular resistance towards these compounds. METHODS Induction of transporters was investigated in LS180 cells over a period of 4 weeks by means of RT-PCR, and for some transporters also at the protein and functional levels. Cellular resistance was measured by growth inhibition assays. RESULTS Incubation with 10 µM darunavir for 1 week significantly increased mRNA expression of P-glycoprotein (P-gp/MDR1/ABCB1) 3.8-fold and of organic anion-transporting polypeptide 2B1 (SLCO2B1) 1.9-fold. In contrast, 10 µM saquinavir significantly increased mRNA expression of P-gp 5.7-fold, multidrug resistance-associated protein 1 (MRP1/ABCC1) 2.3-fold, MRP2/ABCC2 4.5-fold, MRP3/ABCC3 2.0-fold, MRP4/ABCC4 1.8-fold, MRP5/ABCC5 3.8-fold, breast cancer resistance protein (BCRP/ABCG2) 4.1-fold, SLCO1B1 4.6-fold, SLCO2B1 1.8-fold and SLCO3A1 1.8-fold. P-gp induction was also confirmed at the protein and functional levels. Induction by darunavir caused an increase in cellular resistance towards this compound, as measured in growth inhibition assays; however, saquinavir treatment did not cause reduced sensitivity of cells, indicating unchanged intracellular concentration. Hence, induction by darunavir increased drug efflux and might therefore lead to a suboptimal intracellular concentration of darunavir. CONCLUSIONS The study revealed substantial induction of several drug transporters by saquinavir and darunavir, possibly leading to decreased efficacy of antiretrovirals and drugs used to treat co-morbidity.
Collapse
Affiliation(s)
- Sonja Katharina König
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Weiss J, Haefeli WE. Impact of ATP-binding cassette transporters on human immunodeficiency virus therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:219-79. [PMID: 20797684 DOI: 10.1016/s1937-6448(10)80005-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though potent antiretrovirals are available against human immunodeficiency virus (HIV)-1 infection, therapy fails in a significant fraction of patients. Among the most relevant reasons for treatment failure are drug toxicity and side effects, but also the development of viral resistance towards the drugs applied. Efflux by ATP-binding cassette (ABC-) transporters represents one major mechanism influencing the pharmacokinetics of antiretroviral drugs and particularly their distribution, thus modifiying the concentration within the infected cells, that is, at the site of action. Moreover, drug-drug interactions may occur at the level of these transporters and modulate their activity or expression thus influencing the efficacy and toxicity of the substrate drugs. This review summarizes current knowledge on the interaction of antiretrovirals used for HIV-1 therapy with ABC-transporters and highlights the impact of ABC-transporters for cellular resistance and therapeutic success. Moreover, the suitability of different cell models for studying the interaction of antiretrovirals with ABC-transporters is discussed.
Collapse
Affiliation(s)
- Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
14
|
Janneh O, Bray PG, Jones E, Wyen C, Chiba P, Back DJ, Khoo SH. Concentration-dependent effects and intracellular accumulation of HIV protease inhibitors in cultured CD4 T cells and primary human lymphocytes. J Antimicrob Chemother 2010; 65:906-16. [PMID: 20237075 DOI: 10.1093/jac/dkq082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The intracellular and plasma concentrations of HIV protease inhibitors (HPIs) vary widely in vivo. It is unclear whether there is a concentration-dependent effect of HPIs such that at increasing concentration they may either block their own efflux (leading to 'autoboosting') or influx (leading to saturability/decreased intracellular accumulation). METHOD The effects of various concentrations (0-30 microM) of lopinavir, saquinavir, ritonavir and atazanavir on the accumulation of [(14)C]lopinavir, [(3)H]saquinavir, [(3)H]ritonavir and [(3)H]atazanavir, respectively, were investigated in CEM(parental), CEM(VBL) [P-glycoprotein (ABCB1) overexpressing], CEM(E1000) (MRP1 overexpressing) and in peripheral blood mononuclear cells (PBMCs). We also investigated the effects of inhibitors of ABCB1/ABCG2 (tariquidar), ABCC (MK571) and ABCC1/2 (frusemide), singly and in combination with HPIs, on cellular accumulation. RESULTS In all the cell lines, with increasing concentration of lopinavir, saquinavir and ritonavir, there was a significant increase in the cellular accumulation of [(14)C]lopinavir, [(3)H]saquinavir and [(3)H]ritonavir. Tariquidar, MK571 and frusemide (alone and in combination with lopinavir, saquinavir and ritonavir) significantly increased the accumulation of [(14)C]lopinavir, [(3)H]saquinavir and [(3)H]ritonavir. Ritonavir (alone or in combination with tariquidar) decreased the intracellular accumulation of [(3)H]ritonavir in PBMCs. Atazanavir decreased the accumulation of [(3)H]atazanavir in a concentration-dependent manner in all of the cells tested. CONCLUSIONS There are complex and variable drug-specific rather than class-specific effects of the HPIs on their own accumulation.
Collapse
Affiliation(s)
- Omar Janneh
- Department of Biomolecular and Sport Sciences, James Starley Building, Priory Street, Coventry University, Coventry CV1 5FB, UK
| | | | | | | | | | | | | |
Collapse
|