1
|
Schoretsanitis G, Deligiannidis KM, Paulzen M, Spina E, de Leon J. Drug-drug interactions between psychotropic medications and oral contraceptives. Expert Opin Drug Metab Toxicol 2022; 18:395-411. [DOI: 10.1080/17425255.2022.2106214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York. USA
- Department of Psychiatry at the Donald and Barbara Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | - Kristina M. Deligiannidis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York. USA
- Department of Psychiatry at the Donald and Barbara Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
- The Departments of Obstetrics & Gynecology and Molecular Medicine at the Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Michael Paulzen
- Alexianer Hospital Aachen, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, and JARA– Translational Brain Medicine, Aachen, Germany
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Jose de Leon
- Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
- Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apostol Hospital, University of the Basque Country, Vitoria, Spain
| |
Collapse
|
2
|
Horton LG, Folger SG, Berry-Bibee E, Jatlaoui TC, Tepper NK, Curtis KM. Research gaps from evidence-based contraception guidance: the US Medical Eligibility Criteria for Contraceptive Use, 2016, and the US Selected Practice Recommendations for Contraceptive Use, 2016. Contraception 2016; 94:582-589. [DOI: 10.1016/j.contraception.2016.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 11/27/2022]
|
3
|
Berry-Bibee EN, Kim MJ, Simmons KB, Tepper NK, Riley HEM, Pagano HP, Curtis KM. Drug interactions between hormonal contraceptives and psychotropic drugs: a systematic review. Contraception 2016; 94:650-667. [PMID: 27444984 PMCID: PMC11283812 DOI: 10.1016/j.contraception.2016.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To examine whether the co-administration of hormonal contraceptives (HC) and psychotropic drugs commonly used to treat anxiety and/or depression results in safety or efficacy concerns for either drug. METHODS We searched PubMed and Cochrane libraries for clinical or pharmacokinetic (PK) studies that examined co-administration of any HC with psychotropic drugs [selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), oral benzodiazepines, bupropion, mirtazapine, trazadone, buspirone, hydroxyzine, monoamine oxidase inhibitors (MAOIs), or atypical antipsychotics] in reproductive aged women. RESULTS Of 555 articles identified, 22 articles (18 studies) met inclusion criteria. We identified 5 studies on SSRIs, four on TCAs, one on bupropion, three on atypical antipsychotics and five on oral benzodiazepines. No articles met inclusion criteria for SNRIs, mirtazapine, trazadone, buspirone, hydroxyzine or MAOIs. Overall, clinical studies did not demonstrate differences in unintended pregnancy rates when HCs were administered with and without psychotropic drugs or in psychotropic drug treatment outcomes when psychotropic drugs were administered with and without HCs. PK studies did not demonstrate changes in drug exposure related to contraceptive safety, contraceptive effectiveness or psychotropic drug effectiveness for most classes of psychotropic drugs. However, limited PK data raise concern for HCs increasing systemic exposure of amitriptyline and imipramine (both TCAs), theoretically posing safety concerns. CONCLUSION Limited quality and quantity evidence on use of psychotropic drugs and HCs suggests low concern for clinically significant interactions, though no data exist specifically for non-oral formulations of HC. Given the high frequency of use for both HCs and psychotropic drugs among reproductive-age women in the US, this review highlights a need for further research in this area.
Collapse
Affiliation(s)
- Erin N Berry-Bibee
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Myong-Jin Kim
- Office of Clinical Pharmacology, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Katharine B Simmons
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Naomi K Tepper
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Halley E M Riley
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - H Pamela Pagano
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kathryn M Curtis
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
4
|
Spina E, Hiemke C, de Leon J. Assessing drug-drug interactions through therapeutic drug monitoring when administering oral second-generation antipsychotics. Expert Opin Drug Metab Toxicol 2016; 12:407-22. [DOI: 10.1517/17425255.2016.1154043] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
CYP1A2*1D and *1F Polymorphisms Have a Significant Impact on Olanzapine Serum Concentrations. Ther Drug Monit 2015; 37:152-60. [DOI: 10.1097/ftd.0000000000000119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Bořek-Dohalská L, Valášková P, Černá V, Stiborová M. Role of rat cytochromes P450 in the oxidation of 17α-ethinylestradiol. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:852-860. [PMID: 25461545 DOI: 10.1016/j.etap.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/04/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
17α-Ethinylestradiol (EE2) is an endocrine disruptor (ED) used as an ingredient of oral contraceptives. Rat hepatic microsomes metabolize EE2 to three products; two of them are hydroxylated EE2 derivatives. Of the hydroxylation reactions, 2-hydroxylation, is the major reaction. Cytochrome P450 (CYP) plays a major role in EE2 hydroxylation. To resolve which rat CYPs are responsible for EE2 oxidation, three approaches were used: induction of specific CYPs, selective inhibition of CYPs, and recombinant rat CYPs. The results demonstrate that EE2 is hydroxylated by several rat CYPs, among them CYP2C6 and 2C11 are most efficient in 2-hydroxy-EE2 formation, while CYP2A and 3A catalyze EE2 hydroxylation to the second product. EE2 is also an inhibitor of CYP2C- and CYP3A-catalyzed hydroxylation of endogenous EDs progesterone and testosterone. EE2 acts as a reversible inhibitor of CYP3A-mediated progesterone 6β-hydroxylation and inactivates CYP3A- and CYP2C-catalyzed testosterone 6β-hydroxylation and progesterone 21- or 16α-hydroxylation, respectively, in a mechanism-based manner.
Collapse
Affiliation(s)
- Lucie Bořek-Dohalská
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Petra Valášková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
7
|
Tsuda Y, Saruwatari J, Yasui-Furukori N. Meta-analysis: the effects of smoking on the disposition of two commonly used antipsychotic agents, olanzapine and clozapine. BMJ Open 2014; 4:e004216. [PMID: 24595134 PMCID: PMC3948577 DOI: 10.1136/bmjopen-2013-004216] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To clarify the effects of smoking on the disposition of two commonly used antipsychotics, olanzapine and clozapine, and to create standards to adjust the doses of these drugs in clinical practice based on the smoking status. DESIGN A meta-analysis was conducted by searching MEDLINE, Scopus and the Cochrane Library for relevant prospective and retrospective studies. INCLUDED STUDIES We included the studies that investigated the effects of smoking on the concentration to dose (C/D) ratio of olanzapine or clozapine. PRIMARY OUTCOME MEASURE The weighted mean difference was calculated using a DerSimonian-Laird random effects model, along with 95% CI. RESULTS Seven association studies, comprising 1094 patients (652 smokers and 442 non-smokers) with schizophrenia or other psychiatric disorders, were included in the meta-analysis of olanzapine. The C/D ratio was significantly lower in smokers than in non-smokers (p<0.00001), and the mean difference was -0.75 (ng/mL)/(mg/day) (95% CI -0.89 to -0.61). Therefore, it was estimated that if 10 and 20 mg/day of olanzapine would be administered to smokers, about 7 and 14 mg/day, respectively, should be administered to non-smokers in order to obtain the equivalent olanzapine concentration. Four association studies of clozapine were included in the meta-analysis of clozapine, comprising 196 patients (120 smokers and 76 non-smokers) with schizophrenia or other psychiatric disorders. The C/D ratio was significantly lower in smokers than in non-smokers (p<0.00001), and the mean difference was -1.11 (ng/mL)/(mg/day) (95% CI -1.53 to -0.70). Therefore, it was estimated that if 200 and 400 mg/day of clozapine would be administered to smokers, about 100 and 200 mg/day, respectively, should be administered to non-smokers. CONCLUSIONS We suggest that the doses of olanzapine and clozapine should be reduced by 30% and 50%, respectively, in non-smokers compared with smokers in order to obtain an equivalent olanzapine or clozapine concentration.
Collapse
Affiliation(s)
- Yoshiyuki Tsuda
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Norio Yasui-Furukori
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| |
Collapse
|
8
|
Perera V, Gross AS, Polasek TM, Qin Y, Rao G, Forrest A, Xu J, McLachlan AJ. Considering CYP1A2 phenotype and genotype for optimizing the dose of olanzapine in the management of schizophrenia. Expert Opin Drug Metab Toxicol 2013; 9:1115-37. [PMID: 23641727 DOI: 10.1517/17425255.2013.795540] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Schizophrenia, a mental disorder, is a debilitating condition which typically strikes young people in their early 20's. Antipsychotic medications are widely prescribed for the treatment of schizophrenia however a balancing act is necessary to provide the correct dose to each patient. It is suggested that a large number of patients discontinue antipsychotic pharmacotherapy because the treatments provided do not always reduce the positive symptoms of the disease, while many have adverse effects on the patients. This implies that neither the incorrect drug nor the optimal dosage for that patient is achieved. AREAS COVERED The current review investigates variability in response to olanzapine with a specific focus on the common intrinsic and extrinsic factors that influence both olanzapine and CYP1A2 activity. Furthermore, the authors discuss the utilization of phenotyping and genotyping of CYP1A2 and their potential utility in clinical practice for olanzapine dosing regimens. The authors also consider the potential of pharmacometrics compared to pharmacogenomics as a tool to personalize medicine. EXPERT OPINION Careful consideration must be given to the impact of a genetic variant on the disposition of a drug prior to implementing genetic 'tests' to determine response. CYP1A2 phenotypic assessment can yield important information regarding the disposition of olanzapine; however, it relies on the accuracy of the metric and the minimal impact of other metabolic pathways. The application of pharmacometrics provides an effective method to establish covariates that significantly influence olanzapine disposition which can incorporate phenotype and/or genotype.
Collapse
Affiliation(s)
- Vidya Perera
- University at Buffalo, The State University of New York, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Söderberg MM, Haslemo T, Molden E, Dahl ML. Influence of CYP1A1/CYP1A2 and AHR polymorphisms on systemic olanzapine exposure. Pharmacogenet Genomics 2013; 23:279-85. [DOI: 10.1097/fpc.0b013e3283602876] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Talib HJ, Alderman EM. Gynecologic and reproductive health concerns of adolescents using selected psychotropic medications. J Pediatr Adolesc Gynecol 2013; 26:7-15. [PMID: 22929762 DOI: 10.1016/j.jpag.2012.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 11/28/2022]
Abstract
Psychiatric disorders are common in adolescent girls and may require chronic therapies with psychotropic medications. Antipsychotic medications and mood stabilizers have been increasingly prescribed to and widely used by adolescents for a variety of both "on" an "off" label indications. Studies on the safety and monitoring of these medications in adolescent girls have shown important potential for gynecologic and reproductive adverse effects. The objective of this article is to review the mechanisms for and management of menstrual disorders mediated by hyperprolactinemia associated with antipsychotic medications, hypothyroidism associated with lithium and quetiapine, and the independent association of polycystic ovary syndrome (PCOS) in girls using valproic acid. Beyond their susceptibility to these disruptions in the menstrual cycle, adolescent girls with psychiatric illness also have increased sexual risk behaviors. These behaviors makes it all the more important to review teratogenicity and clinically relevant contraceptive drug interactions in adolescent girls using these psychotropic medications.
Collapse
Affiliation(s)
- Hina J Talib
- Department of Pediatrics, Division of Adolescent Medicine, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY 10467, USA.
| | | |
Collapse
|
11
|
Loke YK. Drug-drug interactions - bridging the gulf between the bench and the bedside? Br J Clin Pharmacol 2011; 71:485-6. [DOI: 10.1111/j.1365-2125.2011.03951.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|