1
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
2
|
Ning J, Wang W, Ge G, Chu P, Long F, Yang Y, Peng Y, Feng L, Ma X, James TD. Target Enzyme-Activated Two-Photon Fluorescent Probes: A Case Study of CYP3A4 Using a Two-Dimensional Design Strategy. Angew Chem Int Ed Engl 2019; 58:9959-9963. [PMID: 31099941 DOI: 10.1002/anie.201903683] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The rapid development of fluorescent probes for monitoring target enzymes is still a great challenge owing to the lack of efficient ways to optimize a specific fluorophore. Herein, a practical two-dimensional strategy was designed for the development of an isoform-specific probe for CYP3A4, a key cytochrome P450 isoform responsible for the oxidation of most clinical drugs. In first dimension of the design strategy, a potential two-photon fluorescent substrate (NN) for CYP3A4 was effectively selected using ensemble-based virtual screening. In the second dimension, various substituent groups were introduced into NN to optimize the isoform-selectivity and reactivity. Finally, with ideal selectivity and sensitivity, NEN was successfully applied to the real-time detection of CYP3A4 in living cells and zebrafish. These findings suggested that our strategy is practical for developing an isoform-specific probe for a target enzyme.
Collapse
Affiliation(s)
- Jing Ning
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Peng Chu
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.,Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Feida Long
- Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yulin Peng
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lei Feng
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.,Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Xiaochi Ma
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
3
|
Ning J, Wang W, Ge G, Chu P, Long F, Yang Y, Peng Y, Feng L, Ma X, James TD. Target Enzyme‐Activated Two‐Photon Fluorescent Probes: A Case Study of CYP3A4 Using a Two‐Dimensional Design Strategy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jing Ning
- College of Integrative MedicineThe National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative DiseaseCollege of PharmacyDalian Medical University Dalian 116044 China
| | - Wei Wang
- School of PharmacyHunan University of Chinese Medicine Changsha 410208 China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Peng Chu
- College of Integrative MedicineThe National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative DiseaseCollege of PharmacyDalian Medical University Dalian 116044 China
- Center for Molecular Medicine, School of Life Science and BiotechnologyState Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 China
| | - Feida Long
- Center for Molecular Medicine, School of Life Science and BiotechnologyState Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and BiotechnologyState Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 China
| | - Yulin Peng
- College of Integrative MedicineThe National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative DiseaseCollege of PharmacyDalian Medical University Dalian 116044 China
| | - Lei Feng
- College of Integrative MedicineThe National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative DiseaseCollege of PharmacyDalian Medical University Dalian 116044 China
- Center for Molecular Medicine, School of Life Science and BiotechnologyState Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 China
| | - Xiaochi Ma
- College of Integrative MedicineThe National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative DiseaseCollege of PharmacyDalian Medical University Dalian 116044 China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University Xuzhou 221004 China
| | - Tony D. James
- Department of ChemistryUniversity of Bath Bath BA2 7AY UK
| |
Collapse
|
5
|
Maeda S, Tomoyasu Y, Higuchi H, Ishii-Maruhama M, Egusa M, Miyawaki T. Independent predictors of delay in emergence from general anesthesia. Anesth Prog 2015; 62:8-13. [PMID: 25849468 DOI: 10.2344/0003-3006-62.1.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Some patients with intellectual disabilities spend longer than others in emergence from ambulatory general anesthesia for dental treatment. Although antiepileptic drugs and anesthetics might be involved, an independent predictor for delay of the emergence remains unclear. Thus, a purpose of this study is to identify independent factors affecting the delay of emergence from general anesthesia. This was a retrospective cohort study in dental patients with intellectual disabilities. Patients in need of sedative premedication were removed from participants. The outcome was time until emergence from general anesthesia. Stepwise multivariate regression analysis was used to extract independent factors affecting the outcome. Antiepileptic drugs and anesthetic parameters were included as predictor variables. The study included 102 cases. Clobazam, clonazepam, and phenobarbital were shown to be independent determinants of emergence time. Parameters relating to anesthetics, patients' backgrounds, and dental treatment were not independent factors. Delay in emergence time in ambulatory general anesthesia is likely to be related to the antiepileptic drugs of benzodiazepine or barbiturates in patients with intellectual disability.
Collapse
|
6
|
A semiphysiological population pharmacokinetic model for dynamic inhibition of liver and gut wall cytochrome P450 3A by voriconazole. Clin Pharmacokinet 2014; 52:763-81. [PMID: 23653047 DOI: 10.1007/s40262-013-0070-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Accurate predictions of cytochrome P450 (CYP) 3A-mediated drug-drug interactions (DDIs) account for dynamic changes of CYP3A activity at both major expression sites (liver and gut wall) by considering the full pharmacokinetic profile of the perpetrator and the substrate. Physiological-based in vitro-in vivo extrapolation models have become of increasing interest. However, due to discrepancies between the predicted and observed magnitude of DDIs, the role of models fully based on in vivo data is still essential. OBJECTIVE The primary objective of this study was to develop a coupled dynamic model for the interaction of the CYP3A inhibitor voriconazole and the prototypical CYP3A substrate midazolam. METHODS Raw concentration data were obtained from a DDI study. Ten subjects were given either no pretreatment (control) or voriconazole twice daily orally. Midazolam was given either intravenously or orally after the last voriconazole dose and during control phases. Data analysis was performed by the population pharmacokinetic approach using non-linear mixed effects modelling (NONMEM 7.2.0). Model evaluation was performed using visual predictive checks and bootstrap analysis. RESULTS A semiphysiological model was able to describe the pharmacokinetics of midazolam, its major metabolite and voriconazole simultaneously. By considering the temporal disposition of all three substances in the liver and gut wall, a time-varying CYP3A inhibition process was implemented. Only the incorporation of hypothetical enzyme site compartments resulted in an adequate fit, suggesting a sustained inhibitory effect through accumulation. Novel key features of this analysis are the identification of (1) an apparent sustained inhibitory effect by voriconazole due to a proposed quasi accumulation at the enzyme site, (2) a significantly reduced inhibitory potency of intravenous voriconazole for oral substrates, (3) voriconazole as a likely uridine diphosphate glucuronosyltransferase (UGT) 2B inhibitor and (4) considerable sources of interindividual variability. CONCLUSION The proposed semiphysiological modelling approach generated a mechanistic description of the complex DDI occurring at major CYP3A expression sites and thus may serve as a powerful tool to maximise information acquired from clinical DDI studies. The model has been shown to draw precise and accurate predictions. Therefore, simulations based on this kind of models may be used for various clinical scenarios to improve pharmacotherapy.
Collapse
|
7
|
Platten M, Fätkenheuer G. Lersivirine - a new drug for HIV infection therapy. Expert Opin Investig Drugs 2013; 22:1687-94. [PMID: 24128277 DOI: 10.1517/13543784.2013.846325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lersivirine (UK-453,061) is a novel second-generation non-nucleoside reverse transcriptase inhibitor (NNRTI). It binds reverse transcriptase in a distinct way leading to a unique resistance profile. The development of lersivirine was recently stopped in Phase IIb clinical development. AREAS COVERED This article describes the background of lersivirine, its pharmacodynamic and pharmacokinetic profile and its clinical efficacy in HIV-infected patients. Moreover, the authors review its resistance profile in addition to its possible interactions with coadministered drugs and safety and tolerability. The authors' evaluation is based on the articles retrieved from a Medline in addition to abstracts from major HIV conferences and workshops addressing lersivirine. EXPERT OPINION The authors believe that lersivirine has therapeutic potential for HIV-infected individuals with viral strains resistant against first-line NNRTIs. However, no large, well-powered studies have been conducted so far, which assess noninferiority against established antiretroviral agents. In February 2013, the developing company behind lersivirine halted further development as it was decided that it would not provide an improvement over existing therapies; perhaps this is an opportunity missed.
Collapse
Affiliation(s)
- Martin Platten
- University of Cologne, Department of Internal Medicine I , Kerpener Str. 62, 50937 Köln , Germany +49 221 478 3324 ; +49 221 478 98694 ;
| | | |
Collapse
|