1
|
MacLean A, Chappell AS, Kranzler J, Evrard A, Monchal H, Roucard C. BAER-101, a selective potentiator of α2- and α3-containing GABA A receptors, fully suppresses spontaneous cortical spike-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Drug Dev Res 2024; 85:e22160. [PMID: 38380694 DOI: 10.1002/ddr.22160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
BAER-101 (formerly AZD7325) is a selective partial potentiator of α2/3-containing γ-amino-butyric acid A receptors (GABAARs) and produces minimal sedation and dizziness. Antiseizure effects in models of Dravet and Fragile X Syndromes have been published. BAER-101 has been administered to over 700 healthy human volunteers and patients where it was found to be safe and well tolerated. To test the extent of the antiseizure activity of BAER-1010, we tested BAER-101 in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model, a widely used and translationally relevant model. GAERS rats with recording electrodes bilaterally located over the frontal and parietal cortices were used. Electroencepholographic (EEG) signals in freely moving awake rats were analyzed for spike-wave discharges (SWDs). BAER-101 was administered orally at doses of 0.3-100 mg/kg and diazepam was used as a positive control using a cross-over protocol with a wash-out period between treatments. The number of SWDs was dose-dependently reduced by BAER-101 with 0.3 mg/kg being the minimally effective dose (MED). The duration of and total time in SWDs were also reduced by BAER-101. Concentrations of drug in plasma achieved an MED of 10.1 nM, exceeding the Ki for α2 or α3, but 23 times lower than the Ki for α5-GABAARs. No adverse events were observed up to a dose 300× MED. The data support the possibility of antiseizure efficacy without the side effects associated with other GABAAR subtypes. This is the first report of an α2/3-selective GABA PAM suppressing seizures in the GAERS model. The data encourage proceeding to test BAER-101 in patients with epilepsy.
Collapse
|
2
|
Grañana-Castillo S, Williams A, Pham T, Khoo S, Hodge D, Akpan A, Bearon R, Siccardi M. General Framework to Quantitatively Predict Pharmacokinetic Induction Drug-Drug Interactions Using In Vitro Data. Clin Pharmacokinet 2023; 62:737-748. [PMID: 36991285 DOI: 10.1007/s40262-023-01229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Metabolic inducers can expose people with polypharmacy to adverse health outcomes. A limited fraction of potential drug-drug interactions (DDIs) have been or can ethically be studied in clinical trials, leaving the vast majority unexplored. In the present study, an algorithm has been developed to predict the induction DDI magnitude, integrating data related to drug-metabolising enzymes. METHODS The area under the curve ratio (AUCratio) resulting from the DDI with a victim drug in the presence and absence of an inducer (rifampicin, rifabutin, efavirenz, or carbamazepine) was predicted from various in vitro parameters and then correlated with the clinical AUCratio (N = 319). In vitro data including fraction unbound in plasma, substrate specificity and induction potential for cytochrome P450s, phase II enzymes and uptake, and efflux transporters were integrated. To represent the interaction potential, the in vitro metabolic metric (IVMM) was generated by combining the fraction of substrate metabolised by each hepatic enzyme of interest with the corresponding in vitro fold increase in enzyme activity (E) value for the inducer. RESULTS Two independent variables were deemed significant and included in the algorithm: IVMM and fraction unbound in plasma. The observed and predicted magnitudes of the DDIs were categorised accordingly: no induction, mild, moderate, and strong induction. DDIs were assumed to be well classified if the predictions were in the same category as the observations, or if the ratio between these two was < 1.5-fold. This algorithm correctly classified 70.5% of the DDIs. CONCLUSION This research presents a rapid screening tool to identify the magnitude of potential DDIs utilising in vitro data which can be highly advantageous in early drug development.
Collapse
Affiliation(s)
| | - Angharad Williams
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Thao Pham
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Saye Khoo
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Daryl Hodge
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Asangaedem Akpan
- Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospitals NHS FT, Liverpool, UK
- NIHR Clinical Research Network, Northwest Coast, Liverpool, UK
| | - Rachel Bearon
- Mathematical Sciences, University of Liverpool, Liverpool, UK
| | - Marco Siccardi
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK.
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 3rd Floor, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
3
|
Zhao Y, Chen P, Dou L, Li F, Li M, Xu L, Chen J, Jia M, Huang S, Wang N, Luan S, Yang J, Bai N, Liu D. Co-Administration with Voriconazole Doubles the Exposure of Ruxolitinib in Patients with Hematological Malignancies. Drug Des Devel Ther 2022; 16:817-825. [PMID: 35370398 PMCID: PMC8964335 DOI: 10.2147/dddt.s354270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Ruxolitinib is newly approved for glucocorticoid-refractory acute graft-versus-host disease (GVHD) in patients undergoing allo-geneic hematopoietic stem-cell transplantation (allo-HSCT), and voriconazole is commonly used in allo-HSCT recipients for the prophylaxis or treatment of invasive fungal infections (IFIs). Drug–drug interaction (DDI) may occur between them because their metabolic pathways overlap and can be inhibited by voriconazole, including cytochrome P450 (CYP) isozymes 3A4 and 2C9. Objective In the present study, we aimed to investigate the DDI between ruxolitinib and voriconazole in patients with hematological malignancies. Methods A total of 12 patients with hematologic malignancies were enrolled in this single-arm, single-center, Phase I/II, fixed sequence self-control study. All subjects received 5 mg ruxolitinib alone, followed by the co-administration of ruxolitinib and voriconazole. The plasma concentrations of the two drugs were determined by two well-validated high-performance liquid chromatography-tandem mass spectrometry methods. Phoenix WinNonlin software was used to compare the differences in maximum plasma concentration (Cmax), time to Cmax (Tmax), terminal elimination half-life (T1/2), and apparent plasma clearance (CL/F), as well as area under the curve from time zero to last (AUClast) and AUC from time zero to infinity (AUCinf) between the two periods. Results After pre-treatment with voriconazole, no significant change existed in Tmax, while Cmax, T1/2, AUClast, and AUCinf of ruxolitinib were significantly increased by 50.4%, 81.3%, 110.1%, and 118.3%, respectively, and CL/F was significantly decreased to 43.6% compared with patients receiving ruxolitinib alone. Conclusion Our findings confirmed a moderate inhibitory DDI between ruxolitinib and voriconazole as voriconazole decreased the elimination and increased the exposure of ruxolitinib in patients with hematologic malignancies. We recommended a dose reduction regimen when voriconazole and ruxolitinib were coadministered. Drug monitoring might help determine the ruxolitinib treatment concentration for aGVHD patients, improve efficacy, and reduce toxicity.
Collapse
Affiliation(s)
- Yingxin Zhao
- Medical School of Chinese PLA, Beijing, People’s Republic of China
| | - Peng Chen
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Liping Dou
- Medical School of Chinese PLA, Beijing, People’s Republic of China
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Fei Li
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Meng Li
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Lingmin Xu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jing Chen
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Mingyu Jia
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Sai Huang
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Nan Wang
- Medical School of Chinese PLA, Beijing, People’s Republic of China
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Songhua Luan
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jinling Yang
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Nan Bai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
- Nan Bai, Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People’s Republic of China, Email
| | - Daihong Liu
- Medical School of Chinese PLA, Beijing, People’s Republic of China
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
- Correspondence: Daihong Liu, Medical School of Chinese PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People’s Republic of China, Email
| |
Collapse
|
4
|
Hall A, Chanteux H, Ménochet K, Ledecq M, Schulze MSED. Designing Out PXR Activity on Drug Discovery Projects: A Review of Structure-Based Methods, Empirical and Computational Approaches. J Med Chem 2021; 64:6413-6522. [PMID: 34003642 DOI: 10.1021/acs.jmedchem.0c02245] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This perspective discusses the role of pregnane xenobiotic receptor (PXR) in drug discovery and the impact of its activation on CYP3A4 induction. The use of structural biology to reduce PXR activity on drug discovery projects has become more common in recent years. Analysis of this work highlights several important molecular interactions, and the resultant structural modifications to reduce PXR activity are summarized. The computational approaches undertaken to support the design of new drugs devoid of PXR activation potential are also discussed. Finally, the SAR of empirical design strategies to reduce PXR activity is reviewed, and the key SAR transformations are discussed and summarized. In conclusion, this perspective demonstrates that PXR activity can be greatly diminished or negated on active drug discovery projects with the knowledge now available. This perspective should be useful to anyone who seeks to reduce PXR activity on a drug discovery project.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | | | | - Marie Ledecq
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | |
Collapse
|
5
|
Maramai S, Benchekroun M, Ward SE, Atack JR. Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABAAR) Modulators Acting at the Benzodiazepine Binding Site: An Update. J Med Chem 2019; 63:3425-3446. [DOI: 10.1021/acs.jmedchem.9b01312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samuele Maramai
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
| | - Mohamed Benchekroun
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
- Équipe de Chimie Moléculaire, Laboratoire de Génomique Bioinformatique et Chimie Moléculaire, GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - John R. Atack
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
6
|
Nomura T, Hawkins NA, Kearney JA, George AL, Contractor A. Potentiating α 2 subunit containing perisomatic GABA A receptors protects against seizures in a mouse model of Dravet syndrome. J Physiol 2019; 597:4293-4307. [PMID: 31045243 DOI: 10.1113/jp277651] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/15/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Dravet syndrome mice (Scn1a+/- ) demonstrate a marked strain dependence for the severity of seizures which is correlated with GABAA receptor α2 subunit expression. The α2 /α3 subunit selective positive allosteric modulator (PAM) AZD7325 potentiates inhibitory postsynaptic currents (IPSCs) specifically in perisomatic synapses. AZD7325 demonstrates stronger effects on IPSCs in the seizure resistant mouse strain, consistent with higher α2 subunit expression. AZD7325 demonstrates seizure protective effects in Scn1a+/- mice without apparent sedative effects in vivo. ABSTRACT GABAA receptor potentiators are commonly used for the treatment of epilepsy, but it is not clear whether targeting distinct GABAA receptor subtypes will have disproportionate benefits over adverse effects. Here we demonstrate that the α2 /α3 selective positive allosteric modulator (PAM) AZD7325 preferentially potentiates hippocampal inhibitory responses at synapses proximal to the soma of CA1 neurons. The effect of AZD7325 on synaptic responses was more prominent in mice on the 129S6/SvEvTac background strain, which have been demonstrated to be seizure resistant in the model of Dravet syndrome (Scn1a+/- ), and in which the α2 GABAA receptor subunits are expressed at higher levels relative to in the seizure prone C57BL/6J background strain. Consistent with this, treatment of Scn1a+/- mice with AZD7325 elevated the temperature threshold for hyperthermia-induced seizures without apparent sedative effects. Our results in a model system indicate that selectively targeting α2 is a potential therapeutic option for Dravet syndrome.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Physiology, Northwestern University, Chicago, IL, 60611, USA
| | - Nicole A Hawkins
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer A Kearney
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Alfred L George
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Anis Contractor
- Department of Physiology, Northwestern University, Chicago, IL, 60611, USA.,Department of Neurobiology Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
7
|
Artelsmair M, Gu C, Lewis RJ, Elmore CS. Synthesis of C-14 labeled GABA A α2/α3 selective partial agonists and the investigation of late-occurring and long-circulating metabolites of GABA A receptor modulator AZD7325. J Labelled Comp Radiopharm 2018; 61:415-426. [PMID: 29314165 PMCID: PMC5969218 DOI: 10.1002/jlcr.3602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022]
Abstract
Anxiolytic activity has been associated with GABAA α2 and α3 subunits. Several target compounds were identified and required in C-14 labeled form to enable a better understanding of their drug metabolism and pharmacokinetic properties. AZD7325 is a selective GABAA α2 and α3 receptor modulator intended for the treatment of anxiety through oral administration. A great number of AZD7325 metabolites were observed across species in vivo, whose identification was aided by [14 C]AZD7325. An interesting metabolic cyclization and aromatization pathway leading to the tricyclic core of M9 and the oxidative pathways to M10 and M42 are presented.
Collapse
Affiliation(s)
- Markus Artelsmair
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech UnitAstraZenecaGothenburgSweden
| | - Chungang Gu
- DMPK, Oncology, IMED Biotech UnitAstraZenecaBostonMAUSA
| | - Richard J. Lewis
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmunity, IMED Biotech UnitAstraZenecaGothenburgSweden
| | - Charles S. Elmore
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech UnitAstraZenecaGothenburgSweden
| |
Collapse
|
8
|
Chen X, Jacobs G, de Kam M, Jaeger J, Lappalainen J, Maruff P, Smith MA, Cross AJ, Cohen A, van Gerven J. The central nervous system effects of the partial GABA-Aα2,3 -selective receptor modulator AZD7325 in comparison with lorazepam in healthy males. Br J Clin Pharmacol 2015; 78:1298-314. [PMID: 24802722 DOI: 10.1111/bcp.12413] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/25/2014] [Indexed: 11/29/2022] Open
Abstract
AIMS AZD7325 is a novel α2,3 -subtype-selective partial GABA-A-receptor modulator. This study investigated the pharmacodynamics of single oral doses of AZD7325 2 mg and 10 mg on the central nervous system (CNS) compared with placebo and lorazepam 2 mg. METHODS This double-blind, randomized, four way crossover study enrolled 16 healthy males and administered two validated CNS test batteries to measure drug effects on cognitive, neurophysiologic and psychomotor function and subjective feelings. The pharmacological selectivity of AZD7325 was compared with lorazepam by plotting saccadic peak velocity change from baseline (ΔSPV) against body sway (ΔSway) and visual analogue scale for alertness(ΔVASalertness ). This analysis has previously been used to identify α2,3 -subtype-selectivity. RESULTS In contrast with the robust impairment caused by lorazepam (all P < 0.05 vs. placebo), neither dose of AZD7325 induced statistically significant effects on any pharmacodynamic measurements. Lorazepam-induced SPV-reduction was linearly related to changes in other neurophysiologic biomarkers. In contrast, the slopes of the regression lines were flatter for AZD7325, particularly for the Δlog(Sway) -ΔSPV relation (estimate slope, AZD7325 10 mg vs. lorazepam, difference [95% confidence interval], P value -0.00036 vs. -0.00206, 0.001704 [0.000639, 0.002768], P = 0.0018) and the ΔVASalertness -ΔSPV relationship (0.01855 vs. 0.08216, -0.06360 [-0.1046, -0.02257], P = 0.0024). AZD7325 10 mg and lorazepam induced different response patterns on VAS 'feeling high' and electro-encephalography. CONCLUSION The characteristic ΔSPV-relative effect profiles of AZD7325 vs. lorazepam suggest anxio-selectivity related to α2,3 -selective GABAA agonism. However, exploration of higher doses may be warranted. The paucity of effects on most CNS-PD parameters also indicates a mitigated side effect pattern, with potentially lower cognitive and neurophysiological side effect burden than non-selective benzodiazepines.
Collapse
Affiliation(s)
- Xia Chen
- Phase I Unit, Clinical Pharmacology Research Center (CPRC), Peking Union Medical College Hospital, Beijing, China; Centre for Human Drug Research, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
te Beek ET, Chen X, Jacobs GE, Nahon KJ, de Kam ML, Lappalainen J, Cross AJ, van Gerven JMA, Hay JL. The effects of the nonselective benzodiazepine lorazepam and the α2/α3subunit-selective GABAAreceptor modulators AZD7325 and AZD6280 on plasma prolactin levels. Clin Pharmacol Drug Dev 2014; 4:149-54. [DOI: 10.1002/cpdd.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/09/2014] [Indexed: 01/14/2023]
Affiliation(s)
| | - Xia Chen
- Centre for Human Drug Research; Leiden the Netherlands
- Clinical Pharmacological Research Center (CPRC); Peking Union Medical College Hospital; Beijing China
| | - Gabriël E. Jacobs
- Centre for Human Drug Research; Leiden the Netherlands
- Department of General Hospital Psychiatry; Free University Medical Centre; Amsterdam the Netherlands
| | | | | | | | | | | | - Justin L. Hay
- Centre for Human Drug Research; Leiden the Netherlands
| |
Collapse
|
10
|
Zhou D, Lu Z, Sunzel M, Xu H, Al-Huniti N. Population pharmacokinetic modelling to assess clinical drug-drug interaction between AZD7325 and midazolam. J Clin Pharm Ther 2014; 39:404-10. [PMID: 24689515 DOI: 10.1111/jcpt.12152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/18/2014] [Indexed: 01/07/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE AZD7325 is a selective gamma-amino-butyric acid (GABAA )α2, 3 receptor modulator. The aims of this analysis were to develop population pharmacokinetic (PPK) models of AZD7325 and midazolam and to assess the induction effect of AZD7325 on CYP3A4 with midazolam as a substrate. METHODS Drug-drug interaction data of AZD7325 and midazolam from 24 healthy subjects were available for model development. PPK models were developed in a sequential manner using NONMEM. Both AZD7325 and midazolam pharmacokinetics were described by two-compartment models, and a transit compartment absorption model and a first-order absorption model were applied for the absorption of AZD7325 and midazolam, respectively. The induction of CYP3A by AZD7325 was described by a transit enzyme model, where the elimination of midazolam was proportionally linked to the enzyme amount. Simulations were performed to predict dosing regimens to account for the induction of CYP3A4. RESULTS AND DISCUSSION The population estimates for AZD7325 clearance, intercompartmental clearance, central and peripheral volume were 36, 29·2 L/h, 169 and 392 L, respectively, with interindividual variability (IIV) of 35% and 24% for clearance and central volume. Midazolam clearance, intercompartmental clearance, central and peripheral volume were estimated to be 62·7, 34·7 L/h, 133 and 146 L, respectively, with 43% IIV for clearance. The estimated mean transit time for induction of the CYP3A4 enzyme was 197 h, with 57% IIV. WHAT IS NEW AND CONCLUSION The PPK models developed adequately described the clinical observation of AZD7325-mediated CYP3A4 enzyme induction with midazolam as a probe. The model could provide basis for the rational dosing of AZD7325 in clinical practice.
Collapse
Affiliation(s)
- D Zhou
- Quantitative Clinical Pharmacology, AstraZeneca LP, Wilmington, DE, USA
| | | | | | | | | |
Collapse
|