1
|
Schrecker C, Behrens S, Schönherr R, Ackermann A, Pauli D, Plotz G, Zeuzem S, Brieger A. SPTAN1 Expression Predicts Treatment and Survival Outcomes in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13143638. [PMID: 34298848 PMCID: PMC8305611 DOI: 10.3390/cancers13143638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a common and deadly form of cancer. Non-erythroid spectrin αII (SPTAN1), a protein of the cytoskeleton, is thought to be involved in CRC development and progression. In this study, we explore whether measuring SPTAN1 levels in resected CRC specimens might help to predict patient survival outcomes and response to chemotherapy. Indeed, we find that higher SPTAN1 protein and mRNA levels in CRC specimens associate with longer patient survival times. Using cell culture experiments, we then show that cells with lower SPTAN1 levels are less susceptible to FOLFOX chemotherapy, a standard treatment regimen for patients with CRC. Overall, our study underscores the importance of cytoskeletal proteins in shaping tumour biology and treatment responses and nominates SPTAN1 as a biomarker to improve patient stratification and refine therapeutic decisions in CRC. Abstract Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality. In a cohort of 189 patients with CRC, we recently showed that expression of the cytoskeletal scaffolding protein non-erythroid spectrin αII (SPTAN1) was lower in advanced metastatic tumours. The aim of the present study was to clarify the association of intratumoural SPTAN1 expression levels with treatment and survival outcomes in patients with CRC. The analysis was based on histologic assessment of SPTAN1 protein levels in our own CRC cohort, and transcriptome data of 573 CRC cases from The Cancer Genome Atlas (TCGA). We first establish that high intratumoural levels of SPTAN1 protein and mRNA associate with favourable survival outcomes in patients with CRC. Next, a response prediction signature applied to the TCGA data reveals a possible link between high SPTAN1 transcript levels and improved patient responses to FOLFOX chemotherapy. Complementary in vitro experiments confirm that SPTAN1 knockdown strains of the colon cancer cell lines HT-29, HCT116 mlh1-2 and Caco-2 are less responsive to FOLFOX chemotherapy compared with SPTAN1-proficient control strains. Taken together, we identify SPTAN1 as a novel prognostic biomarker in CRC and show that SPTAN1 expression levels may predict patient responses to chemotherapy. These investigations illustrate how an affordable, histology-based diagnostic test could directly impact therapeutic decision-making at the bedside.
Collapse
Affiliation(s)
- Christopher Schrecker
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Correspondence: (C.S.); (A.B.); Tel.: +49-69-6301-6218 (A.B.)
| | - Sophia Behrens
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Rebecca Schönherr
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Faculty of Medicine, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Anne Ackermann
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Daniel Pauli
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Guido Plotz
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Stefan Zeuzem
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Angela Brieger
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Correspondence: (C.S.); (A.B.); Tel.: +49-69-6301-6218 (A.B.)
| |
Collapse
|
2
|
Abstract
Fodrin and its erythroid cell-specific isoform spectrin are actin-associated fibrous proteins that play crucial roles in the maintenance of structural integrity in mammalian cells, which is necessary for proper cell function. Normal cell morphology is altered in diseases such as various cancers and certain neuronal disorders. Fodrin and spectrin are two-chain (αβ) molecules that are encoded by paralogous genes and share many features but also demonstrate certain differences. Fodrin (in humans, typically a heterodimer of the products of the SPTAN1 and SPTBN1 genes) is expressed in nearly all cell types and is especially abundant in neuronal tissues, whereas spectrin (in humans, a heterodimer of the products of the SPTA1 and SPTB1 genes) is expressed almost exclusively in erythrocytes. To fulfill a role in such a variety of different cell types, it was anticipated that fodrin would need to be a more versatile scaffold than spectrin. Indeed, as summarized here, domains unique to fodrin and its regulation by Ca2+, calmodulin, and a variety of posttranslational modifications (PTMs) endow fodrin with additional specific functions. However, how fodrin structural variations and misregulated PTMs may contribute to the etiology of various cancers and neurodegenerative diseases needs to be further investigated.
Collapse
|
3
|
HPV16 E7-impaired keratinocyte differentiation leads to tumorigenesis via cell cycle/pRb/involucrin/spectrin/adducin cascade. Appl Microbiol Biotechnol 2020; 104:4417-4433. [PMID: 32215704 DOI: 10.1007/s00253-020-10492-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022]
Abstract
Here, we used codon usage technology to generate two codon-modified human papillomavirus (HPV)16 E7 genes and, together with wild-type E7, to construct three HPV16 E7 gene plasmids: Wt-E7, HB1-E7, and HB2-E7. The three HPV 16 E7 plasmids were used to investigate how HPV16 E7 protein was expressed in different cells and how this oncoprotein deregulated cellular and molecular events in human keratinocytes to induce carcinogenesis. We discovered that codon usage of HPV16 E7 gene played a key role in determining expression of E7 oncoprotein in all tested cells. HPV16 E7 inhibited significantly expression of pRb to impair keratinocyte differentiation and disrupted development of skin epidermis in mice. HPV16 E7 increased substantially the number of G0/G1 cells associated with upregulation of cyclin D2 and downregulation of cyclin B1 in keratinocytes. HPV16 E7 not only inhibited expression of involucrin and α-spectrin but also disrupted the organization of involucrin filaments and spectrin cytoskeleton. Furthermore, HPV16 E7 inhibited expression of β-adducin, destroyed its cytoskeletal structure and induced phosphorylation of β-adducin(Ser662) in keratinocytes. Importantly, HPV16 E7 induced carcinogenesis in mice associated with expression of phosphorylated β-adducin(Ser662) and its nucleus-translocation. In conclusion, we provided evidence that HPV16 E7 oncoprotein inhibited keratinocyte differentiation in vitro and in vivo leading to carcinogenesis through cell cycle arrest and disruption of pRb/involucrin/spectrin/adducin cascade.
Collapse
|
4
|
The Role of Nonerythroid Spectrin αII in Cancer. JOURNAL OF ONCOLOGY 2019; 2019:7079604. [PMID: 31186638 PMCID: PMC6521328 DOI: 10.1155/2019/7079604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Nonerythroid spectrin αII (SPTAN1) is an important cytoskeletal protein that ensures vital cellular properties including polarity and cell stabilization. In addition, it is involved in cell adhesion, cell-cell contact, and apoptosis. The detection of altered expression of SPTAN1 in tumors indicates that SPTAN1 might be involved in the development and progression of cancer. SPTAN1 has been described in cancer and therapy response and proposed as a potential marker protein for neoplasia, tumor aggressiveness, and therapeutic efficiency. On one hand, the existing data suggest that overexpression of SPTAN1 in tumor cells reflects neoplastic and tumor promoting activity. On the other hand, nuclear SPTAN1 can have tumor suppressing effects by enabling DNA repair through interaction with DNA repair proteins. Moreover, SPTAN1 cleavage products occur during apoptosis and could serve as markers for the efficacy of cancer therapy. Due to SPTAN1's multifaceted functions and its role in adhesion and migration, SPTAN1 can influence tumor growth and progression in both positive and negative directions depending on its specific regulation. This review summarizes the current knowledge on SPTAN1 in cancer and depicts several mechanisms by which SPTAN1 could impact tumor development and aggressiveness.
Collapse
|
5
|
Downregulation of SPTAN1 is related to MLH1 deficiency and metastasis in colorectal cancer. PLoS One 2019; 14:e0213411. [PMID: 30856214 PMCID: PMC6411122 DOI: 10.1371/journal.pone.0213411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/20/2019] [Indexed: 01/02/2023] Open
Abstract
Introduction Colorectal cancers (CRCs) deficient in the DNA mismatch repair protein MutL homolog 1 (MLH1) display distinct clinicopathological features and require a different therapeutic approach compared to CRCs with MLH1 proficiency. However, the molecular basis of this fundamental difference remains elusive. Here, we report that MLH1-deficient CRCs exhibit reduced levels of the cytoskeletal scaffolding protein non-erythroid spectrin αII (SPTAN1), and that tumor progression and metastasis of CRCs correlate with SPTAN1 levels. Methods and results To investigate the link between MLH1 and SPTAN1 in cancer progression, a cohort of 189 patients with CRC was analyzed by immunohistochemistry. Compared with the surrounding normal mucosa, SPTAN1 expression was reduced in MLH1-deficient CRCs, whereas MLH1-proficient CRCs showed a significant upregulation of SPTAN1. Overall, we identified a strong correlation between MLH1 status and SPTAN1 expression. When comparing TNM classification and SPTAN1 levels, we found higher SPTAN1 levels in stage I CRCs, while stages II to IV showed a gradual reduction of SPTAN1 expression. In addition, SPTAN1 expression was lower in metastatic compared with non-metastatic CRCs. Knockdown of SPTAN1 in CRC cell lines demonstrated decreased cell viability, impaired cellular mobility and reduced cell-cell contact formation, indicating that SPTAN1 plays an important role in cell growth and cell attachment. The observed weakened cell-cell contact of SPTAN1 knockdown cells might indicate that tumor cells expressing low levels of SPTAN1 detach from their primary tumor and metastasize more easily. Conclusion Taken together, we demonstrate that MLH1 deficiency, low SPTAN1 expression, and tumor progression and metastasis are in close relation. We conclude that SPTAN1 is a candidate molecule explaining the tumor progression and metastasis of MLH1-deficient CRCs. The detailed analysis of SPTAN1 is now mandatory to substantiate its relevance and its potential value as a candidate protein for targeted therapy, and as a predictive marker of cancer aggressiveness.
Collapse
|
6
|
Majerska J, Feretzaki M, Glousker G, Lingner J. Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1. Life Sci Alliance 2018; 1:e201800121. [PMID: 30456372 PMCID: PMC6238619 DOI: 10.26508/lsa.201800121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
The authors apply telomeric chromatin analysis to identify factors that accumulate at telomeres during cellular transformation, promoting telomere replication and repair and counteracting oncogene-borne telomere replication stress. Telomeres play crucial roles during tumorigenesis, inducing cellular senescence upon telomere shortening and extensive chromosome instability during telomere crisis. However, it has not been investigated if and how cellular transformation and oncogenic stress alter telomeric chromatin composition and function. Here, we transform human fibroblasts by consecutive transduction with vectors expressing hTERT, the SV40 early region, and activated H-RasV12. Pairwise comparisons of the telomeric proteome during different stages of transformation reveal up-regulation of proteins involved in chromatin remodeling, DNA repair, and replication at chromosome ends. Depletion of several of these proteins induces telomere fragility, indicating their roles in replication of telomeric DNA. Depletion of SAMHD1, which has reported roles in DNA resection and homology-directed repair, leads to telomere breakage events in cells deprived of the shelterin component TRF1. Thus, our analysis identifies factors, which accumulate at telomeres during cellular transformation to promote telomere replication and repair, resisting oncogene-borne telomere replication stress.
Collapse
Affiliation(s)
- Jana Majerska
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marianna Feretzaki
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Glousker
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joachim Lingner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Palaniappan A, Ramar K, Ramalingam S. Computational Identification of Novel Stage-Specific Biomarkers in Colorectal Cancer Progression. PLoS One 2016; 11:e0156665. [PMID: 27243824 PMCID: PMC4887059 DOI: 10.1371/journal.pone.0156665] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
It is well-known that the conversion of normal colon epithelium to adenoma and then to carcinoma stems from acquired molecular changes in the genome. The genetic basis of colorectal cancer has been elucidated to a certain extent, and much remains to be known about the identity of specific cancer genes that are associated with the advancement of colorectal cancer from one stage to the next. Here in this study we attempted to identify novel cancer genes that could underlie the stage-specific progression and metastasis of colorectal cancer. We conducted a stage-based meta-analysis of the voluminous tumor genome-sequencing data and mined using multiple approaches for novel genes driving the progression to stage-II, stage-III and stage-IV colorectal cancer. The consensus of these driver genes seeded the construction of stage-specific networks, which were then analyzed for the centrality of genes, clustering of subnetworks, and enrichment of gene-ontology processes. Our study identified three novel driver genes as hubs for stage-II progression: DYNC1H1, GRIN2A, GRM1. Four novel driver genes were identified as hubs for stage-III progression: IGF1R, CPS1, SPTA1, DSP. Three novel driver genes were identified as hubs for stage-IV progression: GSK3B, GGT1, EIF2B5. We also identified several non-driver genes that appeared to underscore the progression of colorectal cancer. Our study yielded potential diagnostic biomarkers for colorectal cancer as well as novel stage-specific drug targets for rational intervention. Our methodology is extendable to the analysis of other types of cancer to fill the gaps in our knowledge.
Collapse
Affiliation(s)
- Ashok Palaniappan
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
- * E-mail:
| | - Karthick Ramar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Satish Ramalingam
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| |
Collapse
|
8
|
Hinrichsen I, Ernst BP, Nuber F, Passmann S, Schäfer D, Steinke V, Friedrichs N, Plotz G, Zeuzem S, Brieger A. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1. Mol Cancer 2014; 13:11. [PMID: 24456667 PMCID: PMC3904401 DOI: 10.1186/1476-4598-13-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/17/2014] [Indexed: 01/13/2023] Open
Abstract
Introduction Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Methods Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. Results MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. Conclusions These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be related to SPTAN1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Angela Brieger
- Medical Clinic I, Biomedical Research Laboratory, Goethe-University, Frankfurt a,M, Germany.
| |
Collapse
|
9
|
Zhao KN, Masci PP, Chen J, Lavin MF. Calcium prevents retinoic acid-induced disruption of the spectrin-based cytoskeleton in keratinocytes through the Src/PI3K-p85α/AKT/PKCδ/β-adducin pathways. Cell Calcium 2013; 54:151-62. [DOI: 10.1016/j.ceca.2013.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/06/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Kong-Nan Zhao
- Centre for Kidney Disease--Venomics Research, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD 4102, Australia.
| | | | | | | |
Collapse
|
10
|
Stevenson RP, Veltman D, Machesky LM. Actin-bundling proteins in cancer progression at a glance. J Cell Sci 2012; 125:1073-9. [PMID: 22492983 DOI: 10.1242/jcs.093799] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Richard P Stevenson
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
11
|
Zhao KN, Masci PP, Lavin MF. Disruption of spectrin-like cytoskeleton in differentiating keratinocytes by PKCδ activation is associated with phosphorylated adducin. PLoS One 2011; 6:e28267. [PMID: 22163289 PMCID: PMC3233558 DOI: 10.1371/journal.pone.0028267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 11/04/2011] [Indexed: 02/01/2023] Open
Abstract
Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
12
|
Bowen SL, Bloor BK, Leigh IM, Waseem A. Adducin expression in cutaneous and oral lesions: alpha- and beta-adducin transcripts down-regulate with keratinocyte differentiation in stratified epithelia. J Pathol 2003; 201:119-26. [PMID: 12950024 DOI: 10.1002/path.1389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adducin is a heterodimer of alpha- with beta- or gamma-subunits that regulates the assembly of the spectrin-based membrane skeleton in erythrocytes. Although adducin has been identified in various non-erythroid cells and tissues, it has been localized at intercellular junctions only in keratinocytes and epidermis. However, no data are available yet on the regulation of individual adducin genes in differentiating versus hyperproliferating keratinocytes. Due to the unavailability of mono-specific antibodies for individual adducins, this study has used RT-PCR and in situ hybridization to investigate the expression of alpha- and beta-adducins in cultured cells and in stratified epithelia including cutaneous and oral lesions. Using RT-PCR, the alpha-transcripts were consistently expressed in all cell lines tested, as well as in normal interfollicular epidermis, whereas the beta-transcripts were more variable and were strongly expressed in K562, A431, and primary keratinocytes. However, in normal skin, oral mucosa, and attached gingivae, the levels of alpha-transcripts closely paralleled those for the beta-subunit. In most normal tissues, adducin expression was observed primarily in the proliferating compartments including the basal layer and lower suprabasal layers. Expression of both genes was also up-regulated in skin diseases characterized by increased cell proliferation and keratinocyte activation, such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and psoriasis. It was observed that, in most cases, the expression of both alpha- and beta-adducin was accompanied by increased expression of the proliferation marker Ki-67 and keratins K6 and K16. Differentiating keratinocytes in normal epithelia as well as in tumours appear to suppress the expression of adducin transcripts. The data suggest that the expression of adducin genes may be linked to cell proliferation and starts to down-regulate at the onset of differentiation.
Collapse
Affiliation(s)
- Sharn L Bowen
- Head and Neck Cancer Research Programme, GKT Dental Institute, King's College London, London, UK
| | | | | | | |
Collapse
|
13
|
Peters B, Kaiser HW, Magin TM. Skin-specific expression of ank-3(93), a novel ankyrin-3 splice variant. J Invest Dermatol 2001; 116:216-23. [PMID: 11179996 DOI: 10.1046/j.1523-1747.2001.01210.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ankyrins represent a protein family whose members are associated with membrane proteins and the actin cytoskeleton. The principal ankyrin domain structure comprises an amino-terminal membrane-binding, a spectrin-binding, and a regulatory domain, and can be modulated by alternative splicing. In order to investigate the role of ankyrin-3 in skin, we have isolated three complete ankyrin-3 cDNA clones of 5.8 kb, 5.2 kb, and 2.5 kb by reverse transcription-polymerase chain reaction of mouse skin RNA. DNA sequencing confirmed the isolated clones to be splice variants of ankyrin-3. Of these, the smallest cDNA represents a novel ankyrin named ankyrin-3(93). Surprisingly, this novel ankyrin subtype lacks not only all ankyrin repeats, but also the first 75 amino acids of the spectrin-binding domain. Immuno-fluorescence analysis of mouse skin showed that ankyrin-3 is expressed in all living layers of mouse epidermis. Here, it predominates along the basal and lateral membranes of the basal layer in addition to an even cytoplasmic distribution. In primary mouse keratinocytes grown at elevated Ca2+ levels, ankyrin-3(93) was localized along the plasma membrane and throughout the cell in a Golgi-like fashion. Depending on fixation conditions, nuclear staining became apparent in many cells. In agreement with previous data, northern blotting revealed a widespread distribution of the two larger ankyrin splice variants. In contrast, the mRNA coding for ankyrin-3(93)was restricted to mouse skin. Reverse transcription-polymerase chain reaction of mouse skin RNA strongly suggested additional ankyrin isoforms in skin. Our data on ankyrin-3(93), which lacks a part of the spectrin-binding domain that regulates the affinity to spectrin, suggests a new function for this member of the ankyrin family.
Collapse
Affiliation(s)
- B Peters
- Institute of Genetics and Bonner Forum Biomedizin, University of Bonn, Römerstr. 164, 53117 Bonn, Germany
| | | | | |
Collapse
|
14
|
Sormunen RT, Leong AS, Vääräniemi JP, Fernando SS, Eskelinen SM. Immunolocalization of the fodrin, E-cadherin, and beta-catenin adhesion complex in infiltrating ductal carcinoma of the breast-comparison with an in vitro model. J Pathol 1999; 187:416-23. [PMID: 10398100 DOI: 10.1002/(sici)1096-9896(199903)187:4<416::aid-path255>3.0.co;2-d] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fodrin, E-cadherin, and beta-catenin immunolocalization was studied in 54 cases of infiltrating ductal carcinoma of the breast and compared with an in vitro model in order to study the dynamic relationship between these components of an adhesion complex. In low-grade tumours, the staining patterns were similar for both fodrin and E-cadherin, with localization of these proteins to the cell membranes. beta-Catenin showed reduced membrane staining compared with non-neoplastic epithelium. High-grade tumours displayed strong membranous as well as cytoplasmic immunolocalization of fodrin, while E-cadherin staining was fragmented or lost from the membranes, with only occasional weak intracellular staining. beta-Catenin showed fragmented membrane staining and cytoplasmic accumulation. In addition, nuclear staining of beta-catenin was occasionally observed. In a v-src-transformed MDCK cell line, following 15min of src activation, beta-catenin began to detach from the cell membrane and localize to the cytoplasm, while fodrin and E-cadherin remained unchanged. After 30-45min of src activation, the cells lost their cuboidal shape and began to lose cell-to-cell contact. Fodrin staining remained mostly membranous while that of E-cadherin and beta-catenin was fragmented and spiky. After 60min of src activation, fodrin localized completely in the cell cytoplasm, while E-cadherin and beta-catenin were partly cytoplasmic with fragmented and spiky membranous staining. Occasionally, beta-catenin was seen in the nucleus. Both in vivo and in vitro findings clearly demonstrated a disruption of the E-cadherin/beta-catenin/fodrin/cytoskeleton linkage concomitant with the loss of cell-to-cell adhesion and change in cell shape, from epithelioid to a fibroblastoid phenotype. Membranous localization of E-cadherin showed a positive correlation with oestrogen and progesterone expression, whereas loss of membranous E-cadherin and cytoplasmic accumulation of fodrin was more often observed in high-grade carcinomas and showed a positive correlation with p53 expression.
Collapse
Affiliation(s)
- R T Sormunen
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
15
|
|