1
|
Xiang Y, Gong M, Deng Y, Wang H, Ye D. T cell effects and mechanisms in immunotherapy of head and neck tumors. Cell Commun Signal 2023; 21:49. [PMID: 36872320 PMCID: PMC9985928 DOI: 10.1186/s12964-023-01070-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/06/2023] [Indexed: 03/07/2023] Open
Abstract
Head and neck tumors (HNCs) are a common tumor in otorhinolaryngology head and neck surgery, accounting for 5% of all malignant tumors in the body and are the sixth most common malignant tumor worldwide. In the body, immune cells can recognize, kill, and remove HNCs. T cell-mediated antitumor immune activity is the most important antitumor response in the body. T cells have different effects on tumor cells, among which cytotoxic T cells and helper T cells play a major killing and regulating role. T cells recognize tumor cells, activate themselves, differentiate into effector cells, and activate other mechanisms to induce antitumor effects. In this review, the immune effects and antitumor mechanisms mediated by T cells are systematically described from the perspective of immunology, and the application of new immunotherapy methods related to T cells are discussed, with the objective of providing a theoretical basis for exploring and forming new antitumor treatment strategies. Video Abstract.
Collapse
Affiliation(s)
- Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Hongli Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated People Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
2
|
Duhen T, Gough MJ, Leidner RS, Stanton SE. Development and therapeutic manipulation of the head and neck cancer tumor environment to improve clinical outcomes. FRONTIERS IN ORAL HEALTH 2022; 3:902160. [PMID: 35937775 PMCID: PMC9354490 DOI: 10.3389/froh.2022.902160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical response to cancer therapies involves the complex interplay between the systemic, tumoral, and stromal immune response as well as the direct impact of treatments on cancer cells. Each individual's immunological and cancer histories are different, and their carcinogen exposures may differ. This means that even though two patients with oral tumors may carry an identical mutation in TP53, they are likely to have different pre-existing immune responses to their tumors. These differences may arise due to their distinct accessory mutations, genetic backgrounds, and may relate to clinical factors including previous chemotherapy exposure and concurrent medical comorbidities. In isolation, their cancer cells may respond similarly to cancer therapy, but due to their baseline variability in pre-existing immune responses, patients can have different responses to identical therapies. In this review we discuss how the immune environment of tumors develops, the critical immune cell populations in advanced cancers, and how immune interventions can manipulate the immune environment of patients with pre-malignancies or advanced cancers to improve therapeutic outcomes.
Collapse
Affiliation(s)
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | | | | |
Collapse
|
3
|
Hirata-Nozaki Y, Ohkuri T, Ohara K, Kumai T, Nagata M, Harabuchi S, Kosaka A, Nagato T, Ishibashi K, Oikawa K, Aoki N, Ohara M, Harabuchi Y, Uno Y, Takei H, Celis E, Kobayashi H. PD-L1-specific helper T-cells exhibit effective antitumor responses: new strategy of cancer immunotherapy targeting PD-L1 in head and neck squamous cell carcinoma. J Transl Med 2019; 17:207. [PMID: 31221178 PMCID: PMC6585001 DOI: 10.1186/s12967-019-1957-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/13/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) originates from squamous epithelium of the upper aerodigestive tract and is the most common malignancy in the head and neck region. Among HNSCCs, oropharynx squamous cell carcinoma (OSCC) has a unique profile and is associated with human papillomavirus infection. Recently, anti-programmed cell death-1 monoclonal antibody has yielded good clinical responses in recurrent and/or metastatic HNSCC patients. Therefore, programmed death-ligand 1 (PD-L1) may be a favorable target molecule for cancer immunotherapy. Although PD-L1-expressing malignant cells could be targeted by PD-L1-specific CD8+ cytotoxic T lymphocytes, it remains unclear whether CD4+ helper T lymphocytes (HTLs) recognize and kill tumor cells in a PD-L1-specific manner. METHODS The expression levels of PD-L1 and HLA-DR were evaluated using immunohistochemical analyses. MHC class II-binding peptides for PD-L1 were designed based on computer algorithm analyses and added into in vitro culture of HTLs with antigen-presenting cells to evaluate their stimulatory activity. RESULTS We found that seven of 24 cases of OSCC showed positive for both PD-L1 and HLA-DR and that PD-L1241-265 peptide efficiently activates HTLs, which showed not only cytokine production but also cytotoxicity against tumor cells in a PD-L1-dependent manner. Also, an adoptive transfer of the PD-L1-specific HTLs significantly inhibited growth of PD-L1-expressing human tumor cell lines in an immunodeficient mouse model. Importantly, T cell responses specific for the PD-L1241-265 peptide were detected in the HNSCC patients. CONCLUSIONS The cancer immunotherapy targeting PD-L1 as a helper T-cell antigen would be a rational strategy for HNSCC patients.
Collapse
Affiliation(s)
- Yui Hirata-Nozaki
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.
| | - Kenzo Ohara
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Takumi Kumai
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Shohei Harabuchi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Kei Ishibashi
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Mizuho Ohara
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Yuji Uno
- Department of Pathology, Asahikawa Medical University Hospital, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Hidehiro Takei
- Department of Pathology, Asahikawa Medical University Hospital, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.
| |
Collapse
|
4
|
Saleiro D, Platanias LC. Interferon signaling in cancer. Non-canonical pathways and control of intracellular immune checkpoints. Semin Immunol 2019; 43:101299. [PMID: 31771762 PMCID: PMC8177745 DOI: 10.1016/j.smim.2019.101299] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 01/01/2023]
Abstract
The interferons (IFNs) are cytokines with important antineoplastic and immune modulatory effects. These cytokines have been conserved through evolution as important elements of the immune surveillance against cancer. Despite this, defining their precise and specific roles in the generation of antitumor responses remains challenging. Emerging evidence suggests the existence of previously unknown roles for IFNs in the control of the immune response against cancer that may redefine our understanding on how these cytokines function. Beyond the engagement of classical JAK-STAT signaling pathways that promote transcription and expression of gene products, the IFNs engage multiple other signaling cascades to generate products that mediate biological responses and outcomes. There is recent emerging evidence indicating that IFNs control the expression of both traditional immune checkpoints like the PD-L1/PD1 axis, but also less well understood "intracellular" immune checkpoints whose targeting may define new approaches for the treatment of malignancies.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA; Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Seliger B, Kloor M, Ferrone S. HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology 2017; 6:e1171447. [PMID: 28344859 DOI: 10.1080/2162402x.2016.1171447] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/21/2023] Open
Abstract
The human leukocyte antigen (HLA) class II antigen-processing machinery (APM) presents to cognate CD4+ T-cells antigenic peptides mainly generated from exogeneous proteins in the endocytic compartment. These CD4+ T cells exert helper function, but may also act as effector cells, thereby recognizing HLA class II antigen-expressing tumor cells. Thus, HLA class II antigen expression by tumor cells influences the tumor antigen (TA)-specific immune responses and, depending on the cancer type, the clinical course of the disease. Many types of human cancers express HLA class II antigens, although with marked differences in their frequency. Some types of cancer lack HLA class II antigen expression, which could be due to structural defects or deregulation affecting different components of the complex HLA class II APM and/or from lack of cytokine(s) in the tumor microenvironment. In this review, we have summarized the information about HLA class II antigen distribution in normal tissues, the structural organization of the HLA class II APM, their expression and regulation in malignant cells, the defects, which have been identified in malignant cells, and their functional and clinical relevance.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin Luther-University Halle-Wittenberg, Institute of Medical Immunology , Halle, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) , Heidelberg, Germany
| | - Soldano Ferrone
- Departments of Surgery and Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
6
|
The rationale for including immune checkpoint inhibition into multimodal primary treatment concepts of head and neck cancer. CANCERS OF THE HEAD & NECK 2016; 1:8. [PMID: 31093338 PMCID: PMC6460729 DOI: 10.1186/s41199-016-0009-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022]
Abstract
Background Treatment of locally advanced squamous cell carcinomas of the head and neck (SCCHN) remains unsatisfactory. Although the addition of concurrent radiochemotherapy (RCT) or the combination of radiotherapy with blockade of the epidermal growth factor receptor (EGFR) have improved outcomes over radiotherapy alone, further optimization is urgently needed. The introduction of immune checkpoint inhibitors is currently revolutionizing cancer treatment. Clinical evidence has recently been provided in melanoma that immune checkpoint blockade may cooperate with radiation. Therefore, we searched in the literature for the evidence of combining immune checkpoint inhibitors with radiotherapy in primary treatment of SCCHN. Discussion A substantial amount of previous studies has dissected the molecular mechanisms of immune evasion in SCCHN. The biological effects of radio- and chemotherapy in tumor cells and the immune cell microenvironment were characterized in detail, revealing significant interference of both types of treatment with anti-tumor immunity. This extensive review of the literature revealed considerable amount of evidence that addition of immune checkpoint inhibitors might boost the immunomodulatory potential of radiotherapy and RCT regimens in SCCHN. Summary Promising activity of immune checkpoint inhibitors has already been reported for metastatic/recurrent SCCHN. Given the immunogenic effect of radiotherapy and its enhancement by chemotherapy, combination of radiotherapy or RCT with this new type of immunotherapy might represent a valuable option for improvement of curative treatment modalities in SCCHN.
Collapse
|
7
|
Abou El Hassan M, Yu T, Song L, Bremner R. Polycomb Repressive Complex 2 Confers BRG1 Dependency on the CIITA Locus. THE JOURNAL OF IMMUNOLOGY 2015; 194:5007-13. [PMID: 25862816 DOI: 10.4049/jimmunol.1403247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/11/2023]
Abstract
CIITA (or MHC2TA) coordinates constitutive and IFN-γ-induced expression of MHC class II genes. IFN-γ responsiveness of CIITA requires BRG1 (SMARCA4), the ATPase engine of the chromatin remodeling SWI/SNF complex (also called BAF). SWI/SNF is defective in many human cancers, providing a mechanism to explain IFN-γ resistance. BRG1 dependency is mediated through remote elements. Short CIITA reporters lacking these elements respond to IFN-γ, even in BRG1-deficient cells, suggesting that BRG1 counters a remote repressive influence. The nature of this distal repressor is unknown, but it would represent a valuable therapeutic target to reactivate IFN-γ responsiveness in cancer. In this article, we show that the polycomb repressive complex 2 (PRC2) components EZH2 and SUZ12, as well as the associated histone mark H3K27me3, are codetected at interenhancer regions across the CIITA locus. IFN-γ caused a BRG1-dependent reduction in H3K27me3, associated with nucleosome displacement. SUZ12 knockdown restored IFN-γ responsiveness in BRG1-null cells, and it mimicked the ability of BRG1 to induce active histone modifications (H3K27ac, H3K4me) at the -50-kb enhancer. Thus, PRC2 confers BRG1 dependency on the CIITA locus. Our data suggest that, in addition to its known roles in promoting stemness and proliferation, PRC2 may inhibit immune surveillance, and it could be targeted to reactivate CIITA expression in SWI/SNF deficient cancers.
Collapse
Affiliation(s)
- Mohamed Abou El Hassan
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - Lan Song
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario M5T 3A9, Canada
| |
Collapse
|
8
|
Sakakura K, Takahashi H, Kaira K, Toyoda M, Oyama T, Chikamatsu K. Immunological significance of the accumulation of autophagy components in oral squamous cell carcinoma. Cancer Sci 2014; 106:1-8. [PMID: 25338734 PMCID: PMC4317780 DOI: 10.1111/cas.12559] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/19/2014] [Accepted: 10/14/2014] [Indexed: 12/24/2022] Open
Abstract
The immunological significance of autophagy in the tumor microenvironment remains unclear. To explore the relationship between autophagy and anti-tumor immune responses, we investigated the expression of autophagy-related proteins and infiltration of immune cells using immunohistochemistry (IHC). The expression of three representative autophagy components, LC3, Beclin-1 and p62/SQSTM1, as well as the number of dendritic cells (DC), T cells and NK cells were examined by IHC in 74 patients with oral squamous cell carcinoma (OSCC). The relationship between the expression of autophagy-associated molecules and various clinicopathological parameters was also evaluated. The expression of both LC3 and p62/SQSTM1 in the peripheral site significantly correlated with an increase in the infiltration of T cells. Furthermore, the expression of p62/SQSTM1 and Beclin-1 correlated with that of HLA class I and class II in tumor cells, respectively. In addition, several unfavorable clinicopathological parameters correlated with an increase in the expression of LC3 in the peripheral site. The correlation observed between LC3 or p62/SQSTM1 and the infiltration of T cells suggests that autophagy may actively mobilize immune cells toward the cancer bed. Meanwhile, the three autophagy-associated proteins examined were linked to malignant potential and an unfavorable prognosis.
Collapse
Affiliation(s)
- Koichi Sakakura
- Department of Otolaryngology - Head and Neck Surgery, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Ascierto PA, Grimaldi AM, Anderson AC, Bifulco C, Cochran A, Garbe C, Eggermont AM, Faries M, Ferrone S, Gershenwald JE, Gajewski TF, Halaban R, Hodi FS, Kefford R, Kirkwood JM, Larkin J, Leachman S, Maio M, Marais R, Masucci G, Melero I, Palmieri G, Puzanov I, Ribas A, Saenger Y, Schilling B, Seliger B, Stroncek D, Sullivan R, Testori A, Wang E, Ciliberto G, Mozzillo N, Marincola FM, Thurin M. Future perspectives in melanoma research: meeting report from the "Melanoma Bridge", Napoli, December 5th-8th 2013. J Transl Med 2014; 12:277. [PMID: 25348889 PMCID: PMC4232645 DOI: 10.1186/s12967-014-0277-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 12/28/2022] Open
Abstract
The fourth "Melanoma Bridge Meeting" took place in Naples, December 5 to 8th, 2013. The four topics discussed at this meeting were: Diagnosis and New Procedures, Molecular Advances and Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers.
Collapse
Affiliation(s)
- Paolo A Ascierto
- />Istituto Nazionale Tumori, Fondazione “G. Pascale”, Napoli, Italy
| | | | | | - Carlo Bifulco
- />Translational Molecular Pathology, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR USA
| | - Alistair Cochran
- />Departments of Pathology and Laboratory Medicine and Surgery, David Geffen School of Medicine at University of California Los Angeles (UCLA), John Wayne Cancer Institute, Santa Monica, CA USA
| | - Claus Garbe
- />Center for Dermato Oncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | | | - Mark Faries
- />Donald L. Morton Melanoma Research Program, John Wayne Cancer Institute, Santa Monica, CA USA
| | - Soldano Ferrone
- />Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Jeffrey E Gershenwald
- />Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Thomas F Gajewski
- />Departments of Medicine and of Pathology, Immunology and Cancer Program, The University of Chicago Medicine, Chicago, IL USA
| | - Ruth Halaban
- />Department of Dermatology, Yale University School of Medicine, New Haven, CT USA
| | - F Stephen Hodi
- />Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Richard Kefford
- />Westmead Institute for Cancer Research, Westmead Millennium Institute and Melanoma Institute Australia, University of Sydney, Sydney, NSW Australia
| | - John M Kirkwood
- />Division of Hematology/Oncology, Departments of Medicine, Dermatology, and Translational Science, University of Pittsburgh School of Medicine and Melanoma Program of the Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - James Larkin
- />Royal Marsden NHS Foundation Trust, London, UK
| | - Sancy Leachman
- />Department of Dermatology, Oregon Health Sciences University, Portland, OR USA
| | - Michele Maio
- />Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Richard Marais
- />Molecular Oncology Group, The Paterson Institute for Cancer Research, Wilmslow Road, Manchester, M20 4BX UK
| | - Giuseppe Masucci
- />Department of Oncology-Pathology, The Karolinska Hospital, Stockholm, Sweden
| | - Ignacio Melero
- />Centro de Investigación Médica Aplicada, Clinica Universidad de Navarra, Pamplona, Navarra Spain
| | - Giuseppe Palmieri
- />Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Igor Puzanov
- />Vanderbilt University Medical Center, Nashville, TN USA
| | - Antoni Ribas
- />Tumor Immunology Program, Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA USA
| | - Yvonne Saenger
- />Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Bastian Schilling
- />Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- />German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Barbara Seliger
- />Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Halle, Germany
| | - David Stroncek
- />Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD USA
| | - Ryan Sullivan
- />Center for Melanoma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA USA
| | | | - Ena Wang
- />Division Chief of Translational Medicine, Sidra Medical and Research Centre, Doha, Qatar
| | | | - Nicola Mozzillo
- />Istituto Nazionale Tumori, Fondazione “G. Pascale”, Napoli, Italy
| | | | - Magdalena Thurin
- />Cancer Diagnosis Program, National Cancer Institute, NIH, Bethesda, MD USA
| |
Collapse
|
10
|
Gujar SA, Lee PWK. Oncolytic virus-mediated reversal of impaired tumor antigen presentation. Front Oncol 2014; 4:77. [PMID: 24782988 PMCID: PMC3989761 DOI: 10.3389/fonc.2014.00077] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/27/2014] [Indexed: 12/03/2022] Open
Abstract
Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T-cell activation requires two signals on antigen presenting cells (APCs): antigen presentation through major histocombatibility complex (MHC) molecules and co-stimulation. In the absence of one or both these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that over-turn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV)-based anti-cancer therapy. Here, we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell–APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic activities with desired anti-tumor immune responses.
Collapse
Affiliation(s)
- Shashi A Gujar
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada ; Strategy and Organizational Performance, IWK Health Centre , Halifax, NS , Canada
| | - Patrick W K Lee
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada ; Department of Pathology, Dalhousie University , Halifax, NS , Canada
| |
Collapse
|
11
|
Sigalotti L, Fratta E, Coral S, Maio M. Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacol Ther 2013; 142:339-50. [PMID: 24384533 DOI: 10.1016/j.pharmthera.2013.12.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 12/14/2022]
Abstract
Continuously improving knowledge of the fine mechanisms regulating cross-talk between immune cells, and of their multi-faceted interactions with cancer cells, has prompted the development of several novel immunotherapeutic strategies for cancer treatment. Among these, modulation of the host's immune system by targeting immunological synapses has shown notable clinical efficacy in different tumor types. Despite this, objective clinical responses and, more importantly, long-term survival are achieved only by a fraction of patients; therefore, identification of the mechanism(s) responsible for the differential effectiveness of immune checkpoint blockade in specific patient populations is an area of intense investigation. Neoplastic cells can activate multiple mechanisms to escape from immune control; among these, epigenetic reprogramming is emerging as a key player. Selected tumor-associated antigens, Human Leukocyte Antigens, and accessory/co-stimulatory molecules required for efficient recognition of neoplastic cells by the immune system have been shown to be epigenetically silenced or down-regulated in cancer. Consistent with the inherent reversibility of epigenetic silencing, "epigenetic" drugs, such as inhibitors of DNA methyltransferases and of histone deacetylases, can restore the functional expression of these down-regulated molecules, thus improving the recognition of cancer cells by both the innate and adaptive immune responses. This review focuses on the immunomodulatory activity of epigenetic drugs and on their proposed clinical use in novel combined chemo-immunotherapeutic regimens for the treatment of solid tumors.
Collapse
Affiliation(s)
- Luca Sigalotti
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico Aviano, National Cancer Institute, Aviano, Italy
| | - Elisabetta Fratta
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico Aviano, National Cancer Institute, Aviano, Italy
| | - Sandra Coral
- Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Michele Maio
- Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.
| |
Collapse
|
12
|
Forbes NE, Abdelbary H, Lupien M, Bell JC, Diallo JS. Exploiting tumor epigenetics to improve oncolytic virotherapy. Front Genet 2013; 4:184. [PMID: 24062768 PMCID: PMC3778850 DOI: 10.3389/fgene.2013.00184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/29/2013] [Indexed: 12/20/2022] Open
Abstract
Oncolytic viruses (OVs) comprise a versatile and multi-mechanistic therapeutic platform in the growing arsenal of anticancer biologics. These replicating therapeutics find favorable conditions in the tumor niche, characterized among others by increased metabolism, reduced anti-tumor/antiviral immunity, and disorganized vasculature. Through a self-amplification that is dependent on multiple cancer-specific defects, these agents exhibit remarkable tumor selectivity. With several OVs completing or entering Phase III clinical evaluation, their therapeutic potential as well as the challenges ahead are increasingly clear. One key hurdle is tumor heterogeneity, which results in variations in the ability of tumors to support productive infection by OVs and to induce adaptive anti-tumor immunity. To this end, mounting evidence suggests tumor epigenetics may play a key role. This review will focus on the epigenetic landscape of tumors and how it relates to OV infection. Therapeutic strategies aiming to exploit the epigenetic identity of tumors in order to improve OV therapy are also discussed.
Collapse
Affiliation(s)
- Nicole E. Forbes
- Center for Innovative Cancer Research, Ottawa Hospital Research InstituteOttawa, ON, Canada
- Faculty of Medicine, University of OttawaOttawa, ON, Canada
| | - Hesham Abdelbary
- Center for Innovative Cancer Research, Ottawa Hospital Research InstituteOttawa, ON, Canada
- Faculty of Medicine, University of OttawaOttawa, ON, Canada
| | - Mathieu Lupien
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health NetworkToronto, ON, Canada
- Ontario Institute for Cancer ResearchToronto, ON, Canada
- Department of Medical Biophysics, University of TorontoToronto, ON, Canada
| | - John C. Bell
- Center for Innovative Cancer Research, Ottawa Hospital Research InstituteOttawa, ON, Canada
- Faculty of Medicine, University of OttawaOttawa, ON, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research InstituteOttawa, ON, Canada
- Faculty of Medicine, University of OttawaOttawa, ON, Canada
| |
Collapse
|
13
|
Turksma AW, Braakhuis BJ, Bloemena E, Meijer CJ, Leemans CR, Hooijberg E. Immunotherapy for head and neck cancer patients: shifting the balance. Immunotherapy 2013; 5:49-61. [PMID: 23256798 DOI: 10.2217/imt.12.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer in the western world. Over the last few decades little improvement has been made to increase the relatively low 5-year survival rate. This calls for novel and improved therapies. Here, we describe opportunities in immunotherapy for head and neck cancer patients and hurdles yet to be overcome. Viruses are involved in a subset of head and neck squamous cell carcinoma cases. The incidence of HPV-related head and neck cancer is increasing and is a distinctly different disease from other head and neck carcinomas. Virus-induced tumors express viral antigens that are good targets for immunotherapeutic treatment options. The type of immunotherapeutic treatment, either active or passive, should be selected depending on the HPV status of the tumor and the immune status of the patient.
Collapse
Affiliation(s)
- Annelies W Turksma
- VU University Medical Center - Cancer Center Amsterdam, Department of Pathology 2.26, de Boelelaan 1117, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
van den Elsen PJ. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol 2011; 2:48. [PMID: 22566838 PMCID: PMC3342053 DOI: 10.3389/fimmu.2011.00048] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/14/2011] [Indexed: 12/26/2022] Open
Abstract
Major histocompatibility complex (MHC)-I and MHC-II molecules play an essential role in the immune response to pathogens by virtue of their ability to present peptides to CD8+ and CD4+ T cells, respectively. Given this critical role, MHC-I and MHC-II genes are regulated in a tight fashion at the transcriptional level by a variety of transcription factors that interact with conserved cis-acting regulatory promoter elements. In addition to the activities of these regulatory factors, modification of chromatin also plays an essential role in the efficient transcription of these genes to meet with local requirement for an effective immune response. The focus of this review is on the transcription factors that interact with conserved cis-acting promoter elements and the epigenetic mechanisms that modulate induced and constitutive expression of these MHC genes.
Collapse
Affiliation(s)
- Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center Leiden, Netherlands.
| |
Collapse
|
15
|
Corso C, Pisapia L, Citro A, Cicatiello V, Barba P, Cigliano L, Abrescia P, Maffei A, Manco G, Del Pozzo G. EBP1 and DRBP76/NF90 binding proteins are included in the major histocompatibility complex class II RNA operon. Nucleic Acids Res 2011; 39:7263-75. [PMID: 21624892 PMCID: PMC3167597 DOI: 10.1093/nar/gkr278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Major histocompatibility complex class II mRNAs encode heterodimeric proteins involved in the presentation of exogenous antigens during an immune response. Their 3'UTRs bind a protein complex in which we identified two factors: EBP1, an ErbB3 receptor-binding protein and DRBP76, a double-stranded RNA binding nuclear protein, also known as nuclear factor 90 (NF90). Both are well-characterized regulatory factors of several mRNA molecules processing. Using either EBP1 or DRBP76/NF90-specific knockdown experiments, we established that the two proteins play a role in regulating the expression of HLA-DRA, HLA-DRB1 and HLA-DQA1 mRNAs levels. Our study represents the first indication of the existence of a functional unit that includes different transcripts involved in the adaptive immune response. We propose that the concept of 'RNA operon' may be suitable for our system in which MHCII mRNAs are modulated via interaction of their 3'UTR with same proteins.
Collapse
Affiliation(s)
- Carmela Corso
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Alessandra Citro
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Valeria Cicatiello
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
- *To whom correspondence should be addressed. Valeria Cicatiello. Tel: +390816132455; Fax: +390816132718;
| | - Pasquale Barba
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luisa Cigliano
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Paolo Abrescia
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Antonella Maffei
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Giuseppe Manco
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
- *To whom correspondence should be addressed. Valeria Cicatiello. Tel: +390816132455; Fax: +390816132718;
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| |
Collapse
|
16
|
Epigenetic Control in Immune Function. EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNE DISEASE 2011; 711:36-49. [DOI: 10.1007/978-1-4419-8216-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Michel S, Linnebacher M, Alcaniz J, Voss M, Wagner R, Dippold W, Becker C, von Knebel Doeberitz M, Ferrone S, Kloor M. Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes. Int J Cancer 2010; 127:889-98. [PMID: 20013806 DOI: 10.1002/ijc.25106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colorectal cancers (CRCs) develop on the basis of a deficient DNA mismatch repair (MMR) system in about 15% of cases. MMR-deficient CRC lesions show high-level microsatellite instability (MSI-H) and accumulate numerous mutations located at coding microsatellite loci that lead to the generation of immunogenic neopeptides. Consequently, the host's antitumoral immune response is of high importance for the course of the disease in MSI-H CRC patients. Accordingly, immune evasion mediated by impairment of HLA class I antigen presentation is frequently observed in these cancers. In this study, we aimed at a systematic analysis of alterations affecting HLA class II antigen expression in MSI-H CRC. HLA class II antigens are expressed by only two-thirds of MSI-H CRCs. The mechanisms underlying the lack of HLA class II antigens in a subset of MSI-H CRCs remain unknown. We here screened HLA class II regulatory genes for the presence of coding microsatellites and identified mutations of the essential regulator genes RFX5 in 9 (26.9%) out of 34 and CIITA in 1 (2.9%) out of 34 MSI-H CRCs. RFX5 mutations were related to lack of or faint HLA class II antigen expression (p = 0.006, Fisher's exact test). Transfection with wild-type RFX5 was sufficient to restore interferon gamma-inducible HLA class II antigen expression in the RFX5-mutant cell line HDC108. We conclude that somatic mutations of the RFX5 gene represent a novel mechanism of loss of HLA class II antigen expression in tumor cells, potentially contributing to immune evasion in MSI-H CRCs.
Collapse
Affiliation(s)
- Sara Michel
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Molecular Medicine Partnership Unit, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Merlo A, Turrini R, Bobisse S, Zamarchi R, Alaggio R, Dolcetti R, Mautner J, Zanovello P, Amadori A, Rosato A. Virus-specific cytotoxic CD4+ T cells for the treatment of EBV-related tumors. THE JOURNAL OF IMMUNOLOGY 2010; 184:5895-902. [PMID: 20385879 DOI: 10.4049/jimmunol.0902850] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although adoptive immunotherapy with CD8(+) CTL is providing clinically relevant results against EBV-driven malignancies, the effector role of CD4(+) T cells has been poorly investigated. We addressed this issue in a lymphoblastoid cell line-induced mouse model of posttransplant lymphoproliferative disease (PTLD) by comparing the therapeutic efficacy of EBV-specific CD4(+) and CD8(+) T cell lines upon adoptive transfer. CD4(+) T cells disclosed a long-lasting and stronger proliferative potential than CD8(+) T cells, had a similar activation and differentiation marker profile, efficiently killed their targets in a MHC class II-restricted manner, and displayed a lytic machinery comparable to that of cognate CD8(+) T cells. A detailed analysis of Ag specificity revealed that CD4(+) T cells potentially target EBV early lytic cycle proteins. Nonetheless, when assessed for the relative therapeutic impact after in vivo transfer, CD4(+) T cells showed a reduced activity compared with the CD8(+) CTL counterpart. This feature was apparently due to a strong and selective downmodulation of MHC class II expression on the tumor cells surface, a phenomenon that could be reverted by the demethylating agent 5-aza-2'-deoxycytidine, thus leading to restoration of lymphoblastoid cell line recognition and killing by CD4(+) T cells, as well as to a more pronounced therapeutic activity. Conversely, immunohistochemical analysis disclosed that HLA-II expression is fully retained in human PTLD samples. Our data indicate that EBV-specific cytotoxic CD4(+) T cells are therapeutic in mice bearing PTLD-like tumors, even in the absence of CD8(+) T cells. These findings pave the way to use cultures of pure CD4(+) T cells in immunotherapeutic approaches for EBV-related malignancies.
Collapse
Affiliation(s)
- Anna Merlo
- Department of Oncology and Surgical Sciences, University of Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Meissner M, König V, Hrgovic I, Valesky E, Kaufmann R. Human leucocyte antigen class I and class II antigen expression in malignant fibrous histiocytoma, fibrosarcoma and dermatofibrosarcoma protuberans is significantly downregulated. J Eur Acad Dermatol Venereol 2010; 24:1326-32. [DOI: 10.1111/j.1468-3083.2010.03644.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Iwamoto T, Yamada A, Yuasa K, Fukumoto E, Nakamura T, Fujiwara T, Fukumoto S. Influences of interferon-gamma on cell proliferation and interleukin-6 production in Down syndrome derived fibroblasts. Arch Oral Biol 2009; 54:963-9. [PMID: 19700144 DOI: 10.1016/j.archoralbio.2009.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Down syndrome, a frequently encountered genetic disorder, is usually associated with medical problems related to infectious disease, such as periodontal diseases and prolonged wound healing. Although affected individuals are considered to have clinical problems related to high interferon (IFN) sensitivity, the molecular mechanisms of IFN activities are not completely understood. DESIGN Down syndrome derived fibroblasts, Detroit 539 (D1) and Hs 52.Sk (D2) cells, were used. To analyse the expressions of interferon (IFN) receptors and downstream of IFN-gamma, western blotting was performed. Cell proliferation was determined by counting cells following trypan blue staining. Media levels of IL-1beta, TNF-alpha, and IL-6 were quantified using ELISA. RESULTS IFN-gamma receptor 2 and IFN-alpha receptor 1, but not IFN-gamma receptor 1, were highly expressed in D1 and D2 cells, as compared to the control fibroblast cells. Cell proliferation by D1 and D2 cells was lower than that by the control fibroblasts, further, IFN-gamma had a greater effect to inhibit cell proliferation by D1 and D2 cells. In addition, IFN-gamma treatment increased the phosphorylation of STAT1 and MAPK in D1 cells as compared to normal fibroblasts. Also, the presence of exogenous IFN-gamma in the growth medium significantly induced IL-6, but not IL-1beta or TNF-alpha, in D1 and D2 cells. CONCLUSION Taken together, our results are consistent with hypersensitive reactions to IFN-gamma seen in patients with Down syndrome and may provide useful information to elucidate the mechanisms of IFN-gamma activities in those individuals.
Collapse
Affiliation(s)
- Tsutomu Iwamoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Current world literature. Curr Opin Otolaryngol Head Neck Surg 2009; 17:132-41. [PMID: 19363348 DOI: 10.1097/moo.0b013e32832ad5ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
CIITA versus IFN-gamma induced MHC class II expression in head and neck cancer cells. Arch Dermatol Res 2008; 301:189-93. [PMID: 19104823 DOI: 10.1007/s00403-008-0922-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 11/07/2008] [Accepted: 12/06/2008] [Indexed: 01/01/2023]
Abstract
A growing body of evidence suggests that optimal induction of systemic anti-tumor immunity requires priming of both the CD4+ and CD8+ T cells that are specific for tumor-associated antigens (TAA). Recently, it was shown that MHC class II positive tumor cells are able to induce tumor-specific CD4+ T cells, and that this event may improve clinical outcome. This has rekindled the interest in modulating MHC class II expression in nonprofessional antigen presenting tumor cells. The class II transactivator (CIITA) is a major regulator of MHC class I and class II expression. We compared, in head and neck cancer cell lines, the effect of stable overexpression of CIITA to treatment with IFN-gamma on the cell surface expression profile of MHC class I and II molecules. Here, we provide evidence that CIITA transfection is more effective than IFN-gamma in inducing MHC class II expression. To more thoroughly explore the mechanisms of MHC class II induction in this context, we used RT-PCR to measure the mRNA expression pattern of HLA-DR, HLA-DM, cathepsin S, and the invariant chain. In contrast to the effect of treatment with IFN-gamma, CIITA transfection did not induce cathepsin S, an important protease responsible for the degradation of the invariant chain, and thus for binding of the peptides to the MHC class II binding groove. These findings may have a significant impact on practical and clinical aspects of tumor immunotherapeutic strategies.
Collapse
|
23
|
Neller MA, López JA, Schmidt CW. Antigens for cancer immunotherapy. Semin Immunol 2008; 20:286-95. [DOI: 10.1016/j.smim.2008.09.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 01/19/2023]
|
24
|
Research Snippets. J Invest Dermatol 2008. [DOI: 10.1038/jid.2008.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|