1
|
Qu Y, Li D, Liu W, Shi D. Molecular consideration relevant to the mechanism of the comorbidity between psoriasis and systemic lupus erythematosus (Review). Exp Ther Med 2023; 26:482. [PMID: 37745036 PMCID: PMC10515117 DOI: 10.3892/etm.2023.12181] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Systemic lupus erythematosus (SLE), a common autoimmune disease with a global incidence and newly diagnosed population estimated at 5.14 (range, 1.4-15.13) per 100,000 person-years and 0.40 million people annually, respectively, affects multiple tissues and organs; for example, skin, blood system, heart and kidneys. Accumulating data has also demonstrated that psoriasis (PS) can be a systemic inflammatory disease, which can affect organs other than the skin and occur alongside other autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis and SLE. The current explanations for the possible comorbidity of PS and SLE include: i) The two diseases share susceptible gene loci; ii) they share a common IL-23/T helper 17 (Th17) axis inflammatory pathway; and iii) the immunopathogenesis of the two conditions is a consequence of the interactions between IL-17 cytokines with effector Th17 cells, T regulatory cells, as well as B cells. In addition, the therapeutic efficacy of IL-17 or TNF-α inhibitors has been demonstrated in PS, and has also become evident in SLE. However, the mechanisms have not been investigated. To the best of our knowledge, there remains a lack of substantial studies on the correlation between PS and SLE. In the present review, the literature, with regards to the epidemiology, genetic predisposition, inflammatory mechanisms and treatment of the patients with both PS and SLE, has been reviewed. Further investigations into the molecular pathogenic mechanism may provide drug targets that could benefit the patients with concomitant PS and SLE.
Collapse
Affiliation(s)
- Yuying Qu
- Department of Dermatology, College of Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Weida Liu
- Department of Medical Mycology, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, Jiangsu 272002, P.R. China
| | - Dongmei Shi
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
2
|
Žak R, Navasardyan L, Hunák J, Martinů J, Heneberg P. PTPN22 intron polymorphism rs1310182 (c.2054-852T>C) is associated with type 1 diabetes mellitus in patients of Armenian descent. PLoS One 2023; 18:e0286743. [PMID: 37315092 DOI: 10.1371/journal.pone.0286743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023] Open
Abstract
Protein tyrosine phosphatase, nonreceptor type 22 (PTPN22), is an archetypal non-HLA autoimmunity gene. It is one of the most prominent genetic contributors to type 1 diabetes mellitus outside the HLA region, and prevalence of its risk variants is subject to enormous geographic variability. Here, we address the genetic background of patients with type 1 diabetes mellitus of Armenian descent. Armenia has a population that has been genetically isolated for 3000 years. We hypothesized that two PTPN22 polymorphisms, rs2476601 and rs1310182, are associated with type 1 diabetes mellitus in persons of Armenian descent. In this association study, we genotyped the allelic frequencies of two risk-associated PTPN22 variants in 96 patients with type 1 diabetes mellitus and 100 controls of Armenian descent. We subsequently examined the associations of PTPN22 variants with the manifestation of type 1 diabetes mellitus and its clinical characteristics. We found that the rs2476601 minor allele (c.1858T) frequency in the control population was very low (q = 0.015), and the trend toward increased frequency of c.1858CT heterozygotes among patients with type 1 diabetes mellitus was not significant (OR 3.34, 95% CI 0.88-12.75; χ2 test p > 0.05). The control population had a high frequency of the minor allele of rs1310182 (q = 0.375). The frequency of c.2054-852TC heterozygotes was significantly higher among the patients with type 1 diabetes mellitus (OR 2.39, 95% CI 1.35-4.24; χ2 test p < 0.001), as was the frequency of the T allele (OR 4.82, 95% CI 2.38-9.76; χ2 test p < 0.001). The rs2476601 c.1858CT genotype and the T allele correlated negatively with the insulin dose needed three to six months after diagnosis. The rs1310182 c.2054-852CC genotype was positively associated with higher HbA1c at diagnosis and 12 months after diagnosis. We have provided the first information on diabetes-associated polymorphisms in PTPN22 in a genetically isolated Armenian population. We found only a limited contribution of the prototypic gain-of-function PTPN22 polymorphism rs2476601. In contrast, we found an unexpectedly close association of type 1 diabetes mellitus with rs1310182.
Collapse
Affiliation(s)
- Robert Žak
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lusine Navasardyan
- Department of Endocrinology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Ján Hunák
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiřina Martinů
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Zhang L, Zhou L, Feng Q, Li Q, Ge M. Mutation of Hashimoto’s Thyroiditis and Papillary Thyroid Carcinoma Related Genes and the Screening of Candidate Genes. Front Oncol 2021; 11:813802. [PMID: 34993154 PMCID: PMC8724914 DOI: 10.3389/fonc.2021.813802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Clinical studies have shown similarities in the genetic background and biological functional characteristics between Hashimoto’s thyroiditis (HT) and papillary thyroid carcinoma (PTC), and that HT may increase risks of PTC. Here, we set to determine the gene expression specificity of HT and PTC by screening related genes or co-expressed genes and exploring their genetic correlation. Referencing the Oncomine database, HT-related genes were discovered to be expressed in many different types of thyroid cancer, such as TSHR that is highly expressed in thyroid cancer. An in-depth genetic analysis and verification of 35 cancer and paracancerous tissue pairs from patients with thyroid cancer, and 35 tissues and blood cells pairs from patients with Hashimoto’s thyroiditis was conducted. Gene chip technology research showed that TSHR, BACH2, FOXE1, RNASET2, CTLA4, PTPN22, IL2RA and other HT-related genes were all expressed in PTC, in which TSHR was significantly over-expressed in PTC patients sensitive to radioactive iodine therapy, while BACH2 was significantly under-expressed in these patients. The biologically significant candidate Tag SNP highlighted from HT-related genes was screened by the high-throughput detection method. Somatic mutations in patients with HT and PTC were detected by target region capture technique, and 75 mutations were found in patients with HT and PTC. The upstream regulatory factors of the different genes shared by HT and PTC were analyzed based on Ingenuity Pathway Analysis (IPA), and it was found that HIF-1α and PD-L1 could be used as important upstream regulatory signal molecules. These results provide a basis for screening key diagnostic genes of PTC by highlighting the relationship between some HT-related genes and their polymorphisms in the pathogenesis of PTC.
Collapse
Affiliation(s)
- Lizhuo Zhang
- Department of Head and Neck Surgery, Center of Otolaryngology-Head and Neck Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyan Zhou
- Department of Radiology (Ultrasound), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qingqing Feng
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety & Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Qinglin Li
- Scientific Research Department, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: MingHua Ge, ; Qinglin Li,
| | - Minghua Ge
- Department of Head and Neck Surgery, Center of Otolaryngology-Head and Neck Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: MingHua Ge, ; Qinglin Li,
| |
Collapse
|
4
|
Bufalo NE, Dos Santos RB, Rocha AG, Teodoro L, Romaldini JH, Ward LS. Polymorphisms of the genes CTLA4, PTPN22, CD40, and PPARG and their roles in Graves' disease: susceptibility and clinical features. Endocrine 2021; 71:104-112. [PMID: 32419081 DOI: 10.1007/s12020-020-02337-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE CTLA4, PTPN22, and CD40 are immune-regulatory genes strongly associated with GD, as well as PPARG, but their clinical significance in different populations is still uncertain. METHODS We genotyped 282 Brazilian GD patients (234 women and 48 men, 39.80 ± 11.69 years old), including 144 patients with GO, and 308 healthy control individuals (246 women and 62 men, 36.86 ± 12.95 years old). RESULTS A multivariate analysis demonstrated that the inheritance of the GG genotype rs3087243 of CTLA4 (OR = 2.593; 95% CI = 1.630-4.123; p < 0.0001) and the CC genotype of rs3789607 of PTPN22 (OR = 2.668; 95% CI = 1.399-5.086; p = 0.0029) consisted in factors independent of the susceptibility to GD. The inheritance of polymorphic genotypes of rs5742909 of CTLA4 was associated with older age at the time of diagnosis (42.90 ± 10.83 versus 38.84 ± 11.81 years old; p = 0.0105), with higher TRAb levels (148.17 ± 188.90 U/L versus 112.14 ± 208.54 U/L; p = 0.0229) and the need for higher therapeutic doses of radioiodine (64.23 ± 17.16 versus 50.22 ± 16.86; p = 0.0237). The inheritance of the CC genotype of rs1883832 CD40 gene was more frequent among women (69.65%) than men (52.00%; p = 0.0186). The polymorphic genotype of PPARG gene (rs1801282) was associated with TPOAb positivity (p = 0.0391), and the GG genotype of rs2476601 of PTPN22 gene was associated with positivity for both TgAb (p = 0.0360) and TPOAb (p < 0.0001). Both polymorphic genotypes rs2476601 and rs3789607 of the PTPN22 gene were more frequent among nonsmoking patients (p = 0.0102 and p = 0.0124, respectively). CONCLUSIONS Our data confirm the important role of CTLA4 polymorphisms in GD susceptibility; demonstrate the role of PTPN22 polymorphisms in patients' clinical features; and suggest these genes may influence the severity of the disease.
Collapse
Affiliation(s)
- Natássia Elena Bufalo
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Roberto Bernardo Dos Santos
- Division of Endocrinology, Pontifical Catholic University of Campinas (PUCCAMP), Campinas, São Paulo, Brazil
| | - Angélica Gomes Rocha
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Teodoro
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Hamilton Romaldini
- Division of Endocrinology, Pontifical Catholic University of Campinas (PUCCAMP), Campinas, São Paulo, Brazil
- Endocrinology Service, São Paulo State Public Servant's Hospital, Institute of Medical Assistance of the State Public Servant (HSPE-IAMSPE), São Paulo, SP, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Bahrami T, Valilou SF, Sadr M, Soltani S, Salmaninejad A, Soltaninejad E, Yekaninejad MS, Ziaee V, Rezaei N. PTPN22 Gene Polymorphisms in Pediatric Systemic Lupus Erythematosus. Fetal Pediatr Pathol 2020; 39:13-20. [PMID: 31232672 DOI: 10.1080/15513815.2019.1630873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Pediatric systemic lupus erythematosus (PSLE) is a heterogeneous autoimmune disorder of unknown origin. PTPN22 gene polymorphisms have been associated with SLE in different populations. We investigated the associations of the rs2476601, rs1217414, rs33996649, rs1276457, and rs1310182 SNPs in the PTPN22 gene with PSLE. Materials and methods: 55 PSLE patients and 93 healthy controls were recruited. SNPs were genotyped by the real-time PCR allelic discrimination method. Results: We found that the PTPN22 polymorphisms rs1310182 A allele (p = 0.01, OR = 1.92 95% CI = 1.16-3.18), and rs1310182 AA genotype with (p < 0.001) and rs12760457 TT (p = 0.046) were associated with PSLE. No significant associations were found between other SNPs and PSLE. Conclusions: The PTPN22 rs1310182 A allele and rs1310182 AA genotype were associated with PSLE and may be a possible genetic marker for susceptibility to PSLE. However, further investigation would be required to elucidate the mechanistic role of this association.
Collapse
Affiliation(s)
- Tayyeb Bahrami
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran (the Islamic Republic of)
| | - Saeed Farajzadeh Valilou
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran (the Islamic Republic of).,Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadr
- Molecular Immunology Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Samaneh Soltani
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran (the Islamic Republic of)
| | - Arash Salmaninejad
- Mashhad University of Medical Sciences, Mashhad, Iran (the Islamic Republic of)
| | - Ehsan Soltaninejad
- Birjand University of Medical Sciences, Birjand, Iran (the Islamic Republic of)
| | | | - Vahid Ziaee
- Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- School of Medicine, Department of Immunology, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of).,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran (the Islamic Republic of)
| |
Collapse
|
6
|
Lobo-Alves SC, de Oliveira LA, Petzl-Erler ML. Region 1p13.2 including the RSBN1, PTPN22, AP4B1 and long non-coding RNA genes does not bear risk factors for endemic pemphigus foliaceus (fogo selvagem). Int J Immunogenet 2019; 46:139-145. [PMID: 30884100 DOI: 10.1111/iji.12423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022]
Abstract
Pemphigus foliaceus (PF) is an autoimmune skin disease characterized by autoantibodies directed mainly against desmoglein-1. The purpose of this study was to determine whether differential susceptibility to endemic PF in Brazil (fogo selvagem) is associated with polymorphisms at the cytogenetic location 1p13.2. Four single nucleotide polymorphisms that together tag 28 SNPs on a segment of approximately 312,000 bp encompassing the protein-coding genes MAGI3, PHTF1, RSBN1, PTPN22, BCL2L15, AP4B1, DCLRE1B, the pseudogenes MTND5P20, RPS2P14 (AL133517.1) and the long non-coding RNA genes AL137856.1, and AP4B1-AS1 were used as markers for association analysis in a case-control study. Allele, genotype and haplotype frequencies of rs33996649, rs2476601, rs3789604 and rs3195954 were compared between patient and control samples. No significant association was found. Lack of association with rs2476601 of the PTPN22 gene agrees with previous results for pemphigus vulgaris and the Tunisian form of endemic pemphigus foliaceus. The other three SNPs had never been analysed before in any form of pemphigus. We conclude that variants in structural and regulatory sites of region 1p13.2 are not susceptibility factors for fogo selvagem. We suggest careful investigation of this genomic region in diseases that had been previously associated with PTPN22, since there are several other genes relevant for immune-mediated diseases located in 1p13.2.
Collapse
Affiliation(s)
- Sara Cristina Lobo-Alves
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Liana Alves de Oliveira
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid Signaling in the Skin: Therapeutic Potential of the "C(ut)annabinoid" System. Molecules 2019; 24:E918. [PMID: 30845666 PMCID: PMC6429381 DOI: 10.3390/molecules24050918] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) has lately been proven to be an important, multifaceted homeostatic regulator, which influences a wide-variety of physiological processes all over the body. Its members, the endocannabinoids (eCBs; e.g., anandamide), the eCB-responsive receptors (e.g., CB₁, CB₂), as well as the complex enzyme and transporter apparatus involved in the metabolism of the ligands were shown to be expressed in several tissues, including the skin. Although the best studied functions over the ECS are related to the central nervous system and to immune processes, experimental efforts over the last two decades have unambiguously confirmed that cutaneous cannabinoid ("c[ut]annabinoid") signaling is deeply involved in the maintenance of skin homeostasis, barrier formation and regeneration, and its dysregulation was implicated to contribute to several highly prevalent diseases and disorders, e.g., atopic dermatitis, psoriasis, scleroderma, acne, hair growth and pigmentation disorders, keratin diseases, various tumors, and itch. The current review aims to give an overview of the available skin-relevant endo- and phytocannabinoid literature with a special emphasis on the putative translational potential, and to highlight promising future research directions as well as existing challenges.
Collapse
Affiliation(s)
- Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- HCEMM Nonprofit Ltd., 6720 Szeged, Hungary.
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
8
|
Chandra A, Senapati S, Roy S, Chatterjee G, Chatterjee R. Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clin Epigenetics 2018; 10:108. [PMID: 30092825 PMCID: PMC6085681 DOI: 10.1186/s13148-018-0541-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/29/2018] [Indexed: 02/05/2023] Open
Abstract
Background Psoriasis is a chronic inflammatory autoimmune skin disorder. Several studies suggested psoriasis to be a complex multifactorial disease, but the exact triggering factor is yet to be determined. Evidences suggest that in addition to genetic factors, epigenetic reprogramming is also involved in psoriasis development. Major histopathological features, like increased proliferation and abnormal differentiation of keratinocytes, and immune cell infiltrations are characteristic marks of psoriatic skin lesions. Following therapy, histopathological features as well as aberrant DNA methylation reversed to normal levels. To understand the role of DNA methylation in regulating these crucial histopathologic features, we investigated the genome-wide DNA methylation profile of psoriasis patients with different histopathological features. Results Genome-wide DNA methylation profiling of psoriatic and adjacent normal skin tissues identified several novel differentially methylated regions associated with psoriasis. Differentially methylated CpGs were significantly enriched in several psoriasis susceptibility (PSORS) regions and epigenetically regulated the expression of key pathogenic genes, even with low-CpG promoters. Top differentially methylated genes overlapped with PSORS regions including S100A9, SELENBP1, CARD14, KAZN and PTPN22 showed inverse correlation between methylation and gene expression. We identified differentially methylated genes associated with characteristic histopathological features in psoriasis. Psoriatic skin with Munro’s microabscess, a distinctive feature in psoriasis including parakeratosis and neutrophil accumulation at the stratum corneum, was enriched with differentially methylated genes involved in neutrophil chemotaxis. Rete peg elongation and focal hypergranulosis were also associated with epigenetically regulated genes, supporting the reversible nature of these characteristic features during remission and relapse of the lesions. Conclusion Our study, for the first time, indicated the possible involvement of DNA methylation in regulating the cardinal pathophysiological features in psoriasis. Common genes involved in regulation of these pathologies may be used to develop drugs for better clinical management of psoriasis. Electronic supplementary material The online version of this article (10.1186/s13148-018-0541-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aditi Chandra
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal, 700108, India
| | | | - Sudipta Roy
- MDDC, Lansdowne Place, Kolkata, West Bengal, India
| | - Gobinda Chatterjee
- Department of Dermatology, IPGMER/SSKM Hospital, Kolkata, West Bengal, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal, 700108, India.
| |
Collapse
|
9
|
Bin Huraib G, Al Harthi F, Arfin M, Rizvi S, Al-Asmari A. The Protein Tyrosine Phosphatase Nonreceptor 22 ( PTPN22) R620W Functional Polymorphism in Psoriasis. CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2018; 11:1179544117751434. [PMID: 29348710 PMCID: PMC5768248 DOI: 10.1177/1179544117751434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022]
Abstract
Background: Psoriasis is a complex autoimmune disease caused by the interaction of genetic and environmental factors. PTPN22 gene polymorphism has been reported to affect psoriasis susceptibility; however, no data are available for Middle Eastern populations. Objective: The aim of this study was to investigate the association of PTPN22 (1858C/T) R620W polymorphism with psoriasis in a Saudi cohort. Methods: Saudi subjects (n = 306) including patients with psoriasis (n = 106) and matched controls (n = 200) were studied for PTPN22 variants using tetra-primer amplification refractory mutation system-polymerase chain reaction method. The frequencies of alleles and genotypes of PTPN22 (1858C/T) polymorphism were compared between patients and controls. Results: The frequency of CT genotype of PTPN22 (1858C/T) polymorphism was significantly higher, whereas that of CC genotype was lower in patients with psoriasis than in controls (P < .001, relative risk [RR] = 7.151). The homozygous genotype TT was absent in both the patients and healthy controls. The frequency of allele T encoding tryptophan (W) was significantly increased (P < .001, RR = 5.76), whereas that of allele C encoding arginine (R) decreased in psoriasis cases as compared with controls (P < .001, RR = 0.173) indicating that individuals carrying allele T are more susceptible to psoriasis than noncarriers. Conclusions: PTPN22 (1858C/T) polymorphism is positively associated with susceptibility of psoriasis in Saudis and can be developed as biomarker for evaluating psoriasis risk. However, further studies on PTPN22 polymorphism in larger samples from different geographical areas and ethnicity are warranted.
Collapse
Affiliation(s)
- Ghaleb Bin Huraib
- Department of Dermatology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Fahad Al Harthi
- Department of Dermatology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Misbahul Arfin
- Scientific Research Center, Medical Services Department for Armed Forces, Riyadh, Saudi Arabia
| | - Sadaf Rizvi
- Scientific Research Center, Medical Services Department for Armed Forces, Riyadh, Saudi Arabia
| | - Abdulrahaman Al-Asmari
- Scientific Research Center, Medical Services Department for Armed Forces, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Wang H, Wang Z, Rani PL, Fu X, Yu W, Bao F, Yu G, Li J, Li L, Sun L, Yue Z, Zhao Q, Pan Q, Cao J, Wang C, Chi X, Wang Y, Yang Q, Mi Z, Liu H, Zhang F. Identification of PTPN22
,ST6GAL1
and JAZF1
as psoriasis risk genes demonstrates shared pathogenesis between psoriasis and diabetes. Exp Dermatol 2017; 26:1112-1117. [DOI: 10.1111/exd.13393] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 01/02/2023]
|
11
|
Aflatounian M, Rezaei A, Sadr M, Saghazadeh A, Elhamian N, Sadeghi H, Motevasselian F, Farahmand F, Fallahi G, Motamed F, Najafi M, Rezaei N. Association of PTPN22 Single Nucleotide Polymorphisms with Celiac Disease. Fetal Pediatr Pathol 2017; 36:195-202. [PMID: 28481156 DOI: 10.1080/15513815.2017.1290725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Celiac disease is a chronic autoimmune disease in which gene-environment interactions cause the immune system to unfavorably react to naturally gluten-containing foods. PTPN22 plays a crucial role in regulating the function of various cells of the immune system, particularly T cells. Polymorphisms of the PTPN22 gene have been associated with many autoimmune diseases. The present genetic association study was conducted to investigate the possible associations between PTPNTT single nucleotide polymorphisms (SNPs) and celiac disease in an Iranian population. MATERIALS AND METHODS The study population consisted of 45 patients with celiac disease and 93 healthy controls. The study genotyped five SNPs of the PTPN22 gene: rs12760457, rs1310182, rs1217414, rs33996649, and rs2476601. RESULTS AND CONCLUSIONS Control and patient groups did not differ on the genotype distribution of four of five investigated SNPs in the PTPN22 gene, for example, rs12760457, rs2476601, rs1217414, and rs33996649. The only investigated PTPN22 variant, which could be associated with CD, was rs1310182. A significant increase in the carriage of the T allele of rs1310182 in CD patients was observed (OR (95% CI) = 11.42 (5.41, 24.1), p value < 0.0001). The TT genotype of this SNP was significantly associated with celiac disease. Our study suggests that the rs1310182 SNP of PTPN22 gene may be a predisposing factor of celiac disease in the Iranian population. Further studies are required to investigate the issue in other racial and ethnic subgroups.
Collapse
Affiliation(s)
- Majid Aflatounian
- a Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Arezou Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Maryam Sadr
- c Molecular Immunology Research Center, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Amene Saghazadeh
- a Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Nazanin Elhamian
- b Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Hengameh Sadeghi
- c Molecular Immunology Research Center, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | | | - Fatemeh Farahmand
- a Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | | | - Farzaneh Motamed
- a Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Mehri Najafi
- a Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- a Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,d Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
12
|
Abbasi F, Soltani S, Saghazadeh A, Soltaninejad E, Rezaei A, Zare Bidoki A, Bahrami T, Amirzargar AA, Rezaei N. PTPN22 Single-Nucleotide Polymorphisms in Iranian Patients with Type 1 Diabetes Mellitus. Immunol Invest 2017; 46:409-418. [DOI: 10.1080/08820139.2017.1288239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Tang L, Wang Y, Zheng S, Bao M, Zhang Q, Li J. PTPN22 polymorphisms, but not R620W, were associated with the genetic susceptibility of systemic lupus erythematosus and rheumatoid arthritis in a Chinese Han population. Hum Immunol 2016; 77:692-698. [PMID: 27166176 DOI: 10.1016/j.humimm.2016.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/18/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The present study aimed to detect a possible association between PTPN22 gene polymorphisms and rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) in a Chinese Han population. METHODS 7 PTPN22 SNPs were genotyped in 358 patients with RA and 713 patients with SLE, as well as 564 RA controls and 672 SLE controls by Restriction Fragment Length Polymorphism (RFLP). Association analyses were conducted on the whole data set. Significant relationships were also examined between clinical features and SNPs for both RA and SLE. RESULTS Rs2476601 was lack of polymorphism with a ⩽0.1% frequency in both SLE and RA patients and healthy controls in our study. The two SNPs rs1217414 and rs3811021 of PTPN22 shown strong association with both SLE (rs1217414T: padj = 6.07e-004, OR=0.57; rs3811021C: padj = 4.68e-005, OR=0.65) and RA (rs1217414T: padj = 2.01e-008, OR=0.26; rs3811021C: padj = 0.028, OR=0.70). And the rs3765598 revealed a strong risk factor for SLE (p=9.38e-009, padj = 6.57e-008, OR=1.93), but not for RA (p=0.48, OR=1.12). Moreover, protective haplotype ACTTC in RA (p=7.73e-016, padj = 5.51-015, OR[95%CI]=0.02[0.002-0.10]) and SLE (p=8.29e-018, padj = 5.80e-017, OR[95%CI]=0.11[0.06-0.21]) were observed. In addition, the distribution of risk haplotypes ACGTC and GCTTT in RA (ACGTC: p=0.0006, padj = 0.004, OR[95%CI]=1.85[1.29-2.63]; GCTTT: p=2.62e-005, padj = 1.85e-004, OR[95%CI]=2.40[1.57-3.65]) and SLE (ACGTC: p=0.0006, padj = 0.004, OR[95%CI]=1.85[1.29-2.63]; ACGTC: p=7.74e-011, padj = 6.81e-010, OR[95%CI]=2.21[1.12-3.34]; GCTTT: p=2.40[1.57-3.65], padj = 2.26e-006, OR[95%CI]=2.64[1.79-3.87]) were significant different from that in controls. Furthermore, significant association was observed between the PTPN22 rs3765598 and antinuclear antibodies 1 (ANA1) in SLE. CONCLUSIONS Our data provide strong evidence that the rs1217414 and rs3811021 in PTPN22 gene might be common protective factors contributed to SLE and RA susceptibility in the Chinese Han population. While, the rs3765598 might increase the genetic susceptibility of SLE, but not RA.
Collapse
Affiliation(s)
- Liang Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China; School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Yan Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China; School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Shui Zheng
- Key Laboratory for Fertility Regulation and Birth Health of Minority Nationalities of Yunnan Province, Judicial Expertise Center, Yunnan Population and Family Planning Research Institute, Kunming, PR China
| | - Meihua Bao
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China; School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Qingsong Zhang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China; School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Jianming Li
- Xiangya Hospital, Central South University, Changsha, PR China; Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China.
| |
Collapse
|
14
|
Association between a gain-of-function variant of PTPN22 and rejection in liver transplantation. Transplantation 2015; 99:431-7. [PMID: 25073032 DOI: 10.1097/tp.0000000000000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The protein tyrosine phosphatase nonreceptor 22 gene (PTPN22) encodes a strong T-cell regulator called lymphoid protein tyrosine phosphatase. Previously, PTPN22 was described as a susceptibility gene for autoimmunity because it contains single nucleotide polymorphisms (SNPs) associated with several autoimmune diseases. One SNP (rs2476601; 1858G>A) has emerged as a particularly potent risk factor for autoimmunity. We address the question whether PTPN22 polymorphisms are also associated with acute rejection after liver transplantation. METHODS We investigated the influence of six PTPN22 SNPs on the susceptibility to acute liver allograft rejection. Consequently, we carried out a retrospective study genotyping 345 German liver recipients at six SNP loci, which include rs2488457 (-1123G>C), rs33996649 (788C>T), rs2476601 (1858G>A), rs1310182 (-852A>G), rs1217388 (-2200G>A), rs3789604 (64434T>G). Our study enrolled 165 recipients who did not develop rejection, 123 who showed one rejection episode, and 57 patients who suffered from multiple acute rejections after transplantation. RESULTS The 1858A allele containing genotypes (GA+AA) and the 1858A allele had a significantly higher frequency in the group of patients with multiple rejection episodes (35.1% and 18.4%) compared to rejection-free patients (15.8% and 7.9%; P=0.022 and 0.023). In contrast, we could not detect any association between rejection and the other tested SNPs. Additionally, we identified one haplotype contributing to risk of multiple rejections, however, exhibiting no stronger impact than the 1858A allele alone. CONCLUSION We conclude that the 1858G>A SNP may confer susceptibility to multiple acute liver transplant rejections in the German population.
Collapse
|
15
|
Bowes J, Loehr S, Budu-Aggrey A, Uebe S, Bruce IN, Feletar M, Marzo-Ortega H, Helliwell P, Ryan AW, Kane D, Korendowych E, Alenius GM, Giardina E, Packham J, McManus R, FitzGerald O, Brown MA, Behrens F, Burkhardt H, McHugh N, Huffmeier U, Ho P, Reis A, Barton A. PTPN22 is associated with susceptibility to psoriatic arthritis but not psoriasis: evidence for a further PsA-specific risk locus. Ann Rheum Dis 2015; 74:1882-5. [PMID: 25923216 PMCID: PMC4602265 DOI: 10.1136/annrheumdis-2014-207187] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/05/2015] [Indexed: 01/06/2023]
Abstract
Objectives Psoriatic arthritis (PsA) is a chronic inflammatory arthritis associated with psoriasis; it has a higher estimated genetic component than psoriasis alone, however most genetic susceptibility loci identified for PsA to date are also shared with psoriasis. Here we attempt to validate novel single nucleotide polymorphisms selected from our recent PsA Immunochip study and determine specificity to PsA. Methods A total of 15 single nucleotide polymorphisms were selected (PImmunochip <1×10−4) for validation genotyping in 1177 cases and 2155 controls using TaqMan. Meta-analysis of Immunochip and validation data sets consisted of 3139 PsA cases and 11 078 controls. Novel PsA susceptibility loci were compared with data from two large psoriasis studies (WTCCC2 and Immunochip) to determine PsA specificity. Results We found genome-wide significant association to rs2476601, mapping to PTPN22 (p=1.49×10−9, OR=1.32), but no evidence for association in the psoriasis cohort (p=0.34) and the effect estimates were significantly different between PsA and psoriasis (p=3.2×10−4). Additionally, we found genome-wide significant association to the previously reported psoriasis risk loci; NOS2 (rs4795067, p=5.27×10−9). Conclusions For the first time, we report genome-wide significant association of PTPN22 (rs2476601) to PsA susceptibility, but no evidence for association to psoriasis.
Collapse
Affiliation(s)
- John Bowes
- Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, Institute for Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Sabine Loehr
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ashley Budu-Aggrey
- Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, Institute for Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Steffen Uebe
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ian N Bruce
- Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, Institute for Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK The Kellgren Centre for Rheumatology, Central Manchester Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester, UK
| | | | - Helena Marzo-Ortega
- NIHR-Leeds Musculoskeletal Biomedical Research Unit, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | - Philip Helliwell
- NIHR-Leeds Musculoskeletal Biomedical Research Unit, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | - Anthony W Ryan
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - David Kane
- Adelaide and Meath Hospital and Trinity College Dublin, Dublin, Ireland
| | - Eleanor Korendowych
- Royal National Hospital for Rheumatic Diseases and Department Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Gerd-Marie Alenius
- Department of Public Health and Clinical Medicine, Rheumatology, University Hospital, Umeå, Sweden
| | - Emiliano Giardina
- Department of Biopathology, Centre of Excellence for Genomic Risk Assessment in Multifactorial and Complex Diseases, School of Medicine, University of Rome 'Tor Vergata' and Fondazione PTV 'Policlinico Tor Vergata', Rome, Italy
| | - Jonathan Packham
- Rheumatology Department, Haywood Hospital, Health Services Research Unit, Institute of Science and Technology in Medicine, Keele University
| | - Ross McManus
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Oliver FitzGerald
- Department of Rheumatology, St. Vincent's University Hospital, UCD School of Medicine and Medical Sciences and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Matthew A Brown
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Brisbane, Queensland, Australia
| | - Frank Behrens
- Division of Rheumatology and Fraunhofer IME-Project-Group Translational Medicine and Pharmacology, Goethe University, Frankfurt, Germany
| | - Harald Burkhardt
- Division of Rheumatology and Fraunhofer IME-Project-Group Translational Medicine and Pharmacology, Goethe University, Frankfurt, Germany
| | - Neil McHugh
- Royal National Hospital for Rheumatic Diseases and Department Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Ulrike Huffmeier
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Pauline Ho
- Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, Institute for Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK The Kellgren Centre for Rheumatology, Central Manchester Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - Andre Reis
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anne Barton
- Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, Institute for Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK The Kellgren Centre for Rheumatology, Central Manchester Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
16
|
Chandra A, Ray A, Senapati S, Chatterjee R. Genetic and epigenetic basis of psoriasis pathogenesis. Mol Immunol 2015; 64:313-23. [PMID: 25594889 DOI: 10.1016/j.molimm.2014.12.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/20/2014] [Accepted: 12/26/2014] [Indexed: 01/06/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease whose prevalence varies among different populations worldwide. It is a complex multi-factorial disease and the exact etiology is largely unknown. Family based studies have indicated a genetic predisposition; however they cannot fully explain the disease pathogenesis. In addition to genetic susceptibility, environmental as well as gender and age related factors were also been found to be associated. Recently, imbalances in epigenetic networks are indicated to be causative elements in psoriasis. The present knowledge of epigenetic involvement, mainly the DNA methylation, chromatin modifications and miRNA deregulation is surveyed here. An integrated approach considering genetic and epigenetic anomalies in the light of immunological network may explore the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Aditi Chandra
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Aditi Ray
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | | | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.
| |
Collapse
|
17
|
Meng Q, Zhang X, Liu X, Wang W, Yu P, Shan Q, Mao Z, Zhao T. Association of PTPN22 polymorphsims and ankylosing spondylitis susceptibility. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:933-937. [PMID: 25755798 PMCID: PMC4348882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND As a susceptibility gene for AS, the polymorphsims of PTPN22 associated with disease susceptibility. METHODS We selected two SNPs of rs1217406 and rs1217414 within PTPN22 with Haploview software and investigated the relationship between the SNPs of PTPN22 gene and AS susceptibility. 120 AS patients and 100 healthy people were enrolled from Qilu Hospital of Shandong University. And we genotyped the SNPs of PTPN22 with PCR-RFLP method. RESULTS The results showed that C allele (rs1217406) and T allele (rs1217414) both were risk factors for AS (OR: 3.12, 2.13). The persons with A-T, C-C or C-T haplotypes were more likely to suffer AS (OR: 3.17, 3.66, 4.011). CONCLUSIONS Due to the close relationship of PTPN22 and AS, the study may be helpful for the early diagnosis and differential diagnosis.
Collapse
Affiliation(s)
- Qingxi Meng
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Xiaojun Zhang
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Xin Liu
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Weiguo Wang
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Peng Yu
- The First Veteran Institute of Jinan Military RegionJinan, Shandong, China
| | - Qunqun Shan
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Zhaohu Mao
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| | - Tingbao Zhao
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area CommandJinan, Shandong, China
| |
Collapse
|
18
|
Tang L, Wang Y, Chen BF. A variant within intron 1 of the PTPN22 gene decreases the genetic susceptibility of ankylosing spondylitis in a central south Chinese Han population. Scand J Rheumatol 2014; 43:380-4. [DOI: 10.3109/03009742.2014.899390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- L Tang
- School of Basic Medical Science, Changsha Medical University,
Changsha, China
| | - Y Wang
- School of Basic Medical Science, Changsha Medical University,
Changsha, China
| | - BF Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong,
Shatin, NT, Hong Kong SAR, China
| |
Collapse
|
19
|
Li Y, Cheng H, Zuo XB, Sheng YJ, Zhou FS, Tang XF, Tang HY, Gao JP, Zhang Z, He SM, Lv YM, Zhu KJ, Hu DY, Liang B, Zhu J, Zheng XD, Sun LD, Yang S, Cui Y, Liu JJ, Zhang XJ. Association analyses identifying two common susceptibility loci shared by psoriasis and systemic lupus erythematosus in the Chinese Han population. J Med Genet 2013; 50:812-8. [PMID: 24070858 DOI: 10.1136/jmedgenet-2013-101787] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genome-wide association studies (GWASs) have revealed a large number of genetic risk loci for many autoimmune diseases. One clear finding emerging from the published genetic studies of autoimmunity is that different autoimmune diseases, such as psoriasis and systemic lupus erythematosus (SLE), share susceptibility loci. Our study explores additional susceptibility loci shared by psoriasis and SLE in the Chinese Han population. METHODS In total, 20 single nucleotide polymorphisms (SNPs) in 17 previously reported psoriasis susceptibility loci and 34 SNPs from 24 previously reported SLE susceptibility loci were investigated in our initial psoriasis and SLE GWAS dataset. Among these SNPs, we selected two SNPs (rs8016947 and rs4649203) with association values of p<5×10(-2) for both diseases in the GWAS data for further investigation in psoriasis (7260 cases and 9842 controls) and SLE (2207 cases and 9842 controls) using a Sequenom MassARRAY system. RESULTS We found that these two SNPs (rs8016947 and rs4649203) in two loci (NFKBIA and IL28RA) were associated with psoriasis and SLE with genome-wide significance (Pcombined<5×10(-8) in psoriasis and Pcombined<5×10(-8) in SLE): rs8016947 at NFKBIA (Pcombined-psoriasis=3.90×10(-10), Pcombined-SLE=1.08×10(-13)) and rs4649203 at IL28RA (Pcombined-psoriasis=3.91×10(-12), Pcombined-SLE=9.90×10(-9)). CONCLUSIONS These results showed that two common susceptibility loci (NFKBIA and IL28RA) are shared by psoriasis and SLE in the Chinese Han population.
Collapse
Affiliation(s)
- Yang Li
- Department of Dermatology, Institute of Dermatology No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Namjou B, Kim-Howard X, Sun C, Adler A, Chung SA, Kaufman KM, Kelly JA, Glenn SB, Guthridge JM, Scofield RH, Kimberly RP, Brown EE, Alarcón GS, Edberg JC, Kim JH, Choi J, Ramsey-Goldman R, Petri MA, Reveille JD, Vilá LM, Boackle SA, Freedman BI, Tsao BP, Langefeld CD, Vyse TJ, Jacob CO, Pons-Estel B, Niewold TB, Moser Sivils KL, Merrill JT, Anaya JM, Gilkeson GS, Gaffney PM, Bae SC, Alarcón-Riquelme ME, Harley JB, Criswell LA, James JA, Nath SK. PTPN22 association in systemic lupus erythematosus (SLE) with respect to individual ancestry and clinical sub-phenotypes. PLoS One 2013; 8:e69404. [PMID: 23950893 PMCID: PMC3737240 DOI: 10.1371/journal.pone.0069404] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/09/2013] [Indexed: 12/20/2022] Open
Abstract
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical sub-phenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.7 × 10(-9), OR = 1.40 (95% CI = 1.25-1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67-0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG >20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.7 × 10(-5), OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.
Collapse
Affiliation(s)
- Bahram Namjou
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xana Kim-Howard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Sharon A. Chung
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Kenneth M. Kaufman
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Stuart B. Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Robert H. Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Robert P. Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth E. Brown
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Graciela S. Alarcón
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey C. Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jae-Hoon Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Jiyoung Choi
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michelle A. Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John D. Reveille
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Luis M. Vilá
- Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Susan A. Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Barry I. Freedman
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, North Carolina, United States of America
| | - Betty P. Tsao
- Division of Rheumatology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, North Carolina, United States of America
| | - Timothy J. Vyse
- Divisions of Genetics and Molecular Medicine and Immunology, King's College London, London, United Kingdom
| | - Chaim O. Jacob
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | | | | | - Timothy B. Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kathy L. Moser Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Joan T. Merrill
- Clinical Pharmacology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research, Universidad del Rosario, Bogota, Colombia
| | - Gary S. Gilkeson
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Patrick M. Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Marta E. Alarcón-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Centro de Genómica e Investigación Oncológica (GENYO) Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain
| | | | - John B. Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Lindsey A. Criswell
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Judith A. James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
21
|
Ali FR, Warren RB. Psoriasis and susceptibility to other autoimmune diseases: an outline for the clinician. Expert Rev Clin Immunol 2013; 9:99-101. [PMID: 23390938 DOI: 10.1586/eci.12.94] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Faisal R Ali
- Dermatology Centre, University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M6 8HD, UK
| | | |
Collapse
|
22
|
Meta-analysis reveals an association of PTPN22 C1858T with autoimmune diseases, which depends on the localization of the affected tissue. Genes Immun 2012; 13:641-52. [DOI: 10.1038/gene.2012.46] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Chen YF, Chang JS. PTPN22 C1858T and the risk of psoriasis: a meta-analysis. Mol Biol Rep 2012; 39:7861-70. [DOI: 10.1007/s11033-012-1630-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 04/16/2012] [Indexed: 11/24/2022]
|
24
|
Cohen SN, Baron SE, Archer CB. Guidance on the diagnosis and clinical management of psoriasis. Clin Exp Dermatol 2012; 37 Suppl 1:13-8. [DOI: 10.1111/j.1365-2230.2012.04337.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Rodríguez E, Eyerich K, Weidinger S. Genetik häufiger chronisch-entzündlicher Hauterkrankungen. Hautarzt 2011; 62:107-18. [DOI: 10.1007/s00105-010-2053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Orozco G, Eyre S, Hinks A, Bowes J, Morgan AW, Wilson AG, Wordsworth P, Steer S, Hocking L, Thomson W, Worthington J, Barton A. Study of the common genetic background for rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis 2010; 70:463-8. [PMID: 21068098 PMCID: PMC3033530 DOI: 10.1136/ard.2010.137174] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Evidence is beginning to emerge that there may be susceptibility loci for rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) that are common to both diseases. Objective To investigate single nucleotide polymorphisms that have been reported to be associated with SLE in a UK cohort of patients with RA and controls. Methods 3962 patients with RA and 9275 controls were included in the study. Eleven SNPs mapping to confirmed SLE loci were investigated. These mapped to the TNFSF4, BANK1, TNIP1, PTTG1, UHRF1BP1, ATG5, JAZF1, BLK, KIAA1542, ITGAM and UBE2L3 loci. Genotype frequencies were compared between patients with RA and controls using the trend test. Results The SNPs mapping to the BLK and UBE2L3 loci showed significant evidence for association with RA. Two other SNPs, mapping to ATG5 and KIAA1542, showed nominal evidence for association with RA (p=0.02 and p=0.02, respectively) but these were not significant after applying a Bonferroni correction. Additionally, a significant global enrichment in carriage of SLE alleles in patients with RA compared with controls (p=9.1×10−7) was found. Meta-analysis of this and previous studies confirmed the association of the BLK and UBE2L3 gene with RA at genome-wide significance levels (p<5×10−8). Together, the authors estimate that the SLE and RA overlapping loci, excluding HLA-DRB1 alleles, identified so far explain ∼5.8% of the genetic susceptibility to RA as a whole. Conclusion The findings confirm the association of the BLK and UBE2L3 loci with RA, thus adding to the list of loci showing overlap between RA and SLE.
Collapse
Affiliation(s)
- Gisela Orozco
- Arthritis Research UK Epidemiology Unit, Manchester Academic Health Science Centre, The University of Manchester, Stopford Building, Manchester M13 9PT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zervou MI, Castro-Giner F, Sidiropoulos P, Boumpas DT, Tosca AD, Krueger-Krasagakis S. The protein tyrosine phosphatase, non-receptor type 22 R620W polymorphism does not confer susceptibility to psoriasis in the genetic homogeneous population of Crete. Genet Test Mol Biomarkers 2010; 14:107-11. [PMID: 20039785 DOI: 10.1089/gtmb.2009.0130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent whole-genome and candidate-gene association studies in patients with psoriasis (PS) have identified a number of single-nucleotide polymorphisms (SNPs) that predispose to disease with moderate risk. Predisposition to PS is known to be affected by genetic variation in human leukocyte antigen-C as well as other non-human leukocyte antigen genes. We recently reported for the first time as a PS-associated SNP the signal transducer and activator of transcription-4 (STAT4) rs7574865 polymorphism, which is also associated with several autoimmune diseases. The aim of this study was to assess whether the functional R620W polymorphism of protein tyrosine phosphatase, non-receptor type 22 (PTPN22) gene encoding the lymphoid-specific tyrosine phosphatase, which is known to be associated with various autoimmune diseases, also confers increased risk for PS in the genetic homogeneous population of Crete. A case-control study was performed with 173 PS patients consecutively recruited and 348 healthy controls, all of them from the island of Crete. We found that the mutated T allele of the PTPN22 1858T SNP was more common in control individuals than in patients with PS (odds ratio = 0.39, 95% confidence interval = 0.11-1.04, p = 0.09). No considerable difference was observed in terms of sex, age of onset, or clinical presentation of psoriatic arthritis. Our results provide evidence that the PTPN22 1858T allele is not a susceptibility factor for PS in the Cretan population.
Collapse
Affiliation(s)
- Maria I Zervou
- Laboratory of Dermatology, Department of Medicine, University of Crete, Heraklion, Greece
| | | | | | | | | | | |
Collapse
|
28
|
Stanford SM, Mustelin TM, Bottini N. Lymphoid tyrosine phosphatase and autoimmunity: human genetics rediscovers tyrosine phosphatases. Semin Immunopathol 2010; 32:127-36. [PMID: 20204370 DOI: 10.1007/s00281-010-0201-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 01/28/2010] [Indexed: 01/22/2023]
Abstract
A relatively large number of protein tyrosine phosphatases (PTPs) are known to regulate signaling through the T cell receptor (TCR). Recent human genetics studies have shown that several of these PTPs are encoded by major autoimmunity genes. Here, we will focus on the lymphoid tyrosine phosphatase (LYP), a critical negative modulator of TCR signaling encoded by the PTPN22 gene. The functional analysis of autoimmune-associated PTPN22 genetic variants suggests that genetic variability of TCR signal transduction contributes to the pathogenesis of autoimmunity in humans.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
29
|
|
30
|
Alexandroff A, Graham-Brown R. Report from the 67th Annual Meeting of the American Academy of Dermatology. Br J Dermatol 2009; 162:12-21. [DOI: 10.1111/j.1365-2133.2009.09395.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Affiliation(s)
- Frank O Nestle
- St. John's Institute of Dermatology, Federation of Clinical Immunology Societies Centre of Excellence at King's College London and Guy's and St. Thomas' Foundation Trust, London, United Kingdom.
| | | | | |
Collapse
|
32
|
Smith RL, Warren RB, Griffiths CE, Worthington J. Genetic susceptibility to psoriasis: an emerging picture. Genome Med 2009; 1:72. [PMID: 19638187 PMCID: PMC2717398 DOI: 10.1186/gm72] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is recognized as a complex disease for which multiple genetic and non-genetic factors influence susceptibility. The major susceptibility locus resides in the MHC class I region and, until relatively recently, evidence for non-MHC loci was inconsistent. Like many common diseases, knowledge of the genetic basis of this condition has been advanced dramatically in recent times with the advent of genome-wide association studies using single nucleotide polymorphisms. Here, we give an overview of current knowledge of genetic risk factors for psoriasis and consider emerging studies that may further add to our understanding of the genetic basis of the disease.
Collapse
Affiliation(s)
- Rhodri Ll Smith
- ARC Epidemiology Unit, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
33
|
Li Y, Begovich AB. Unraveling the genetics of complex diseases: susceptibility genes for rheumatoid arthritis and psoriasis. Semin Immunol 2009; 21:318-27. [PMID: 19446472 DOI: 10.1016/j.smim.2009.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/09/2009] [Indexed: 12/29/2022]
Abstract
Talk of numerous genetic risk factors for rheumatoid arthritis (RA) and psoriasis has been percolating for years, but with the exception of the human leukocyte antigen (HLA) region, none have been definitively identified. Recently the results of multiple, well powered, genetic case-control studies have begun to appear providing convincing statistical evidence for at least ten non-HLA related risk genes or loci (C5/TRAF1, CD40, CTLA4, KIF5A/PIP4K2C, MMEL1/TNFRSF14, PADI4, PRKCQ, PTPN22, STAT4, and TNFAIP3/OLIG3) for RA and six (IL12B, IL13, IL23R, STAT2/IL23A, TNFAIP3, and TNIP1) for psoriasis. These initial, novel findings are beginning to shed light on the molecular pathways pertinent to the individual diseases and highlight the pleiotropic effects of several risk factors as well as the allelic heterogeneity underlying susceptibility to these and other autoimmune diseases.
Collapse
Affiliation(s)
- Yonghong Li
- Celera, 1401 Harbor Bay Parkway, Alameda, CA 94502, USA
| | | |
Collapse
|
34
|
Li Y, Liao W, Chang M, Schrodi SJ, Bui N, Catanese JJ, Poon A, Matsunami N, Callis-Duffin KP, Leppert MF, Bowcock AM, Kwok PY, Krueger GG, Begovich AB. Further genetic evidence for three psoriasis-risk genes: ADAM33, CDKAL1, and PTPN22. J Invest Dermatol 2009; 129:629-34. [PMID: 18923449 PMCID: PMC4130997 DOI: 10.1038/jid.2008.297] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Predisposition to psoriasis is known to be affected by genetic variation in HLA-C, IL12B, and IL23R, and although other psoriasis-associated variants have been identified, incontrovertible statistical evidence for these markers has not yet been obtained. To help resolve this issue, we tested 15 single-nucleotide polymorphisms (SNPs) from 7 putative psoriasis-risk genes in 1,448 psoriasis patients and 1,385 control subjects; 3 SNPs, rs597980 in ADAM33, rs6908425 in CDKAL1 and rs3789604 in PTPN22, were significant with the same risk allele as in prior reports (one-sided P<0.05, false discovery rate<0.15). These three markers were tested in a fourth sample set (599 cases and 299 controls); one marker, rs597980, replicated (one-sided P<0.05) and the other two had odds ratios with the same directionality as in the original sample sets. Mantel-Haenszel meta-analyses of all available case-control data, including those published by other groups, showed that these three markers were highly significant (rs597980: P=0.0057 (2,025 cases and 1,597 controls), rs6908425: P=1.57 x 10(-5) (3,206 cases and 4,529 controls), and rs3789604: P=3.45 x 10(-5) (2,823 cases and 4,066 controls)). These data increase the likelihood that ADAM33, CDKAL1, and PTPN22 are true psoriasis-risk genes.
Collapse
|