1
|
Zhao F, Zhao J, Wei K, Jiang P, Shi Y, Chang C, Zheng Y, Shan Y, Li Y, He B, Zhou M, Liu J, Li L, Guo S, He D. Targeted siRNA Therapy for Psoriasis: Translating Preclinical Potential into Clinical Treatments. Immunotargets Ther 2024; 13:259-271. [PMID: 38770264 PMCID: PMC11104385 DOI: 10.2147/itt.s458800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the excessive proliferation of keratinocytes and heightened immune activation. Targeting pathogenic genes through small interfering RNA (siRNA) therapy represents a promising strategy for the treatment of psoriasis. This mini-review provides a comprehensive summary of siRNA research targeting the pathogenesis of psoriasis, covering aspects such as keratinocyte function, inflammatory cell roles, preclinical animal studies, and siRNA delivery mechanisms. It details recent advancements in RNA interference that modulate key factors including keratinocyte proliferation (Fibroblast Growth Factor Receptor 2, FGFR2), apoptosis (Interferon Alpha Inducible Protein 6, G1P3), differentiation (Grainyhead Like Transcription Factor 2, GRHL2), and angiogenesis (Vascular Endothelial Growth Factor, VEGF); immune cell infiltration and inflammation (Tumor Necrosis Factor-Alpha, TNF-α; Interleukin-17, IL-17); and signaling pathways (JAK-STAT, Nuclear Factor Kappa B, NF-κB) that govern immunopathology. Despite significant advances in siRNA-targeted treatments for psoriasis, several challenges persist. Continued scientific developments promise the creation of more effective and safer siRNA medications, potentially enhancing the quality of life for psoriasis patients and revolutionizing treatments for other diseases. This article focuses on the most recent research advancements in targeting the pathogenesis of psoriasis with siRNA and explores its future therapeutic prospects.
Collapse
Affiliation(s)
- Fuyu Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yunshen Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Bingheng He
- Department of Rehabilitation, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia Liu
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Masalha M, Gur-Wahnon D, Meningher T, Ben-Dov IZ, Kassem R, Sidi Y, Avni D. IL6R is a target of miR-197 in human keratinocytes. Exp Dermatol 2020; 30:1177-1186. [PMID: 32780449 DOI: 10.1111/exd.14169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022]
Abstract
Psoriasis is a chronic inflammatory disorder with cutaneous and systemic manifestations and substantial negative effects on patients' quality of life. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play a role in the pathogenesis of psoriasis. Previously studies, from others and by us, highlighted specific miRNAs that are dysregulated in psoriatic lesions. MicroRNA-197-3p (miR-197) expression is downregulated in psoriatic lesions compared to normal or uninvolved skin in patients with psoriasis. We have previously reported that miR-197 could modulate IL-22 and IL-17 signalling in psoriasis. Herein, we identify additional biochemical targets of miR-197 in psoriasis. We applied a transcriptome-wide biochemical approach, Protein argonaute-2 photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (Ago2 PAR-CLIP), to search for new targets of miR-197 in live keratinocytes, and validated its results using reporter assay and analysing by Western blot protein levels in cells overexpressing miR-197. Ago2 PAR-CLIP identified biochemical targets of miR-197, including the alpha subunit of the IL-6 receptor (IL6R). This work provides evidence that IL6R in bona-fide biochemical target of miR-197. IL6R is known to be up-regulated in psoriasis and even was considered as a possible therapeutic target. From the present data and our previous studies, it appears that miR-197 is a major regulator of the interaction between immune system cells and keratinocytes.
Collapse
Affiliation(s)
- Moamen Masalha
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel.,Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Devorah Gur-Wahnon
- Laboratory of Medical Transcriptomics, Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tal Meningher
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - Iddo Z Ben-Dov
- Laboratory of Medical Transcriptomics, Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Riad Kassem
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
| | - Yechezkel Sidi
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel.,Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror Avni
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
4
|
Borska L, Andrys C, Chmelarova M, Kovarikova H, Krejsek J, Hamakova K, Beranek M, Palicka V, Kremlacek J, Borsky P, Fiala Z. Roles of miR-31 and endothelin-1 in psoriasis vulgaris: pathophysiological functions and potential biomarkers. Physiol Res 2017; 66:987-992. [PMID: 28937251 DOI: 10.33549/physiolres.933615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Psoriatic lesions are characterized by hyperproliferation, aberrant differentiation of keratinocytes resistant to apoptosis and inflammation. miR-31 plays pro-proliferative, pro-differentiative and pro-inflammatory roles and modulates apoptosis in psoriatic keratinocytes. Endothelin-1 (ET-1) is produced by psoriatic keratinocytes and suppresses apoptosis. Inflammation increases the production of ET-1, which in turn leads to the chronic stimulation of keratinocyte proliferation. The aim of this study was to identify the putative link between two potential biomarkers (miR-31 and ET-1) in patients with psoriasis. The study design included experimental group (29 patients with psoriasis), and the control group (22 blood donors). The PASI score evaluated the state of the disease (median: 18.6; interquartile range 14.5-20.9). Both, the serum level of ET-1 and the whole blood level of miR-31 were significantly increased (p<0.001 and p<0.05, respectively) in patients compared to the controls. However, a significant negative relationship between ET-1 and miR-31 was observed (Spearman's rho=-037, p=0.05). It is possible that a negative feedback loop will be present between miR-31 and ET-1. Our results indicate that miR-31 and ET-1, potential biomarkers of the disease, play significant roles in the pathophysiology of psoriasis.
Collapse
Affiliation(s)
- L Borska
- Institute of Pathological Physiology, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lerman G, Sharon M, Leibowitz-Amit R, Sidi Y, Avni D. The crosstalk between IL-22 signaling and miR-197 in human keratinocytes. PLoS One 2014; 9:e107467. [PMID: 25208211 PMCID: PMC4160297 DOI: 10.1371/journal.pone.0107467] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/16/2014] [Indexed: 12/13/2022] Open
Abstract
The interaction between the immune system and epithelial cells is tightly regulated. Aberrations of this balance may result in inflammatory diseases such as psoriasis, inflammatory bowel disease and rheumatoid arthritis. IL-22 is produced by Th17, Th22 and Th1 cells. Putative targets for IL-22 are cells in the skin, kidney, digestive and respiratory systems. The highest expression of IL-22 receptor is found in the skin. IL-22 plays an important role in the pathogenesis of T cell-mediated inflammatory diseases such as psoriasis, inflammatory bowel disease and rheumatoid arthritis. Recently, we found that miR-197 is down regulated in psoriatic lesions. In the present work we show that miR-197 over expression inhibits keratinocytes proliferation induced by IL-22 and keratinocytes migration. In addition, we found that IL-22 activates miR-197 expression through the binding of phosphorylated STAT3 to sequences in the putative promoter of miR-197. Finally we found that IL-22 receptor subunit IL22RA1 is a direct target of miR-197. Hence, we identified a novel feedback loop controlling IL-22 signaling, in which IL-22 induces miR-197, which in turn, negatively regulates IL-22 receptor and attenuates the biological outcome of such signaling. Regulation of this pathway may be important in inflammatory skin disorders such a psoriasis and in wound healing.
Collapse
Affiliation(s)
- Galya Lerman
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - Moran Sharon
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raya Leibowitz-Amit
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Yechezkel Sidi
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror Avni
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|