1
|
Zhang S, Luo W, Zhao F, Huang L, Qin R, Yan X, Tang B, Luo X, Mai B, Yu Y, Zheng J. Melanin-mediated accumulation of polycyclic aromatic hydrocarbons in human hair: Insights from biomonitoring and cell exposure studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134112. [PMID: 38537572 DOI: 10.1016/j.jhazmat.2024.134112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
While human hair is widely used to monitor micro-organic contaminants (MOCs), their incorporation mechanisms are poorly understood. Melanin, known to facilitate the accumulation of drugs in hair, hasn't been studied in the field of MOCs. Here, polycyclic aromatic hydrocarbons (PAHs), a class of priority MOCs, were investigated through hair biomonitoring as well as cell exposure experiments. PAH concentrations and melanin contents were measured in black and white hairs from the same individual. The results showed that five dominant PAHs (phenanthrene, fluoranthene, pyrene, benzo[a]anthracene and chrysene) in black hair (0.66 ng/g - 35.1 ng/g) were significantly higher than those in white hair (0.52 ng/g - 29.6 ng/g). Melanin contents in black hair (14.9 - 48.9 ng/g) were markedly higher than in white hair (0.35 - 2.15 ng/g) and were correlated to PAH concentrations, hinting melanin-mediated accumulation of PAHs in hair. The in vitro experiment using murine melanoma cells demonstrates that PAH levels in cells were affected by melanin, suggesting the affinity of melanin to PAHs. Both biomonitoring and cell exposure experiment implicate the pivotal role of melanin in PAH accumulation in hair. Therefore, to ensure the accuracy of hair biomonitoring for MOCs, attention must be paid to the melanin content uniformity.
Collapse
Affiliation(s)
- Shiyi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Weikeng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Fang Zhao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Lulu Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Ruixin Qin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| |
Collapse
|
2
|
Paus R, Sevilla A, Grichnik JM. Human Hair Graying Revisited: Principles, Misconceptions, and Key Research Frontiers. J Invest Dermatol 2024; 144:474-491. [PMID: 38099887 DOI: 10.1016/j.jid.2023.09.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 02/25/2024]
Abstract
Hair graying holds psychosocial importance and serves as an excellent model for studying human pigmentation and aging in an accessible miniorgan. Current evidence suggests that graying results from an interindividually varying mixture of cumulative oxidative and DNA damage, excessive mTORC1 activity, melanocyte senescence, and inadequate production of pigmentation-promoting factors in the hair matrix. Various regulators modulate this process, including genetic factors (DNA repair defects and IRF4 sequence variation, peripheral clock genes, P-cadherin signaling, neuromediators, HGF, KIT ligand secretion, and autophagic flux. This leads to reduced MITF- and tyrosinase-controlled melanogenesis, defective melanosome transfer to precortical matrix keratinocytes, and eventual depletion of hair follicle (HF) pigmentary unit (HFPU) melanocytes and their local progenitors. Graying becomes irreversible only when bulge melanocyte stem cells are also depleted, occurring later in this process. Distinct pigmentary microenvironments are created as the HF cycles: early anagen is the most conducive phase for melanocytic reintegration and activation, and only during anagen can the phenotype of hair graying and repigmentation manifest, whereas the HFPU disassembles during catagen. The temporary reversibility of graying is highlighted by several drugs and hormones that induce repigmentation, indicating potential target pathways. We advise caution in directly applying mouse model concepts, define major open questions, and discuss future human antigraying strategies.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON - Skin & Hair Innovations, Hamburg, Germany; Monasterium Laboratory, Münster, Germany.
| | - Alec Sevilla
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James M Grichnik
- Department of Dermatology & Cutaneous Surgery, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Ju HJ, Kim SH, Lee SG, Bae JM. Eyelash Dyeing for Poliosis of Eyelashes in Patients With Vitiligo. Ann Dermatol 2024; 36:56-57. [PMID: 38325435 PMCID: PMC10861308 DOI: 10.5021/ad.22.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 02/09/2024] Open
Affiliation(s)
- Hyun Jeong Ju
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo Hyung Kim
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seo Gyeong Lee
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Min Bae
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
4
|
Salvator H, Lamy E, Roquencourt C, Bardin E, Devillier P, Grassin-Delyle S. Therapeutic drug monitoring of corticosteroids/β 2-agonists in the hair of patients with asthma: an open-label feasibility study. Front Pharmacol 2024; 14:1339835. [PMID: 38269282 PMCID: PMC10807032 DOI: 10.3389/fphar.2023.1339835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Background: Although adherence to inhaled medication is critically important for treatment efficiency, around half of patients taking these drugs are non-adherent or make critical errors when using their delivery device. Segmental hair analysis might be a valuable tool for therapeutic monitoring because hair concentrations reflect exposure from month to month. The objective of the present proof-of-concept study was to establish the feasibility of segmental hair analysis of inhaled budesonide and formoterol in asthma patients. Methods: We conducted a prospective, open-label, interventional study of adult patients being treated with budesonide/formoterol for controlled, moderate-to-severe asthma (CorticHair, NCT03691961). Asthma control, lung function, and medication adherence were recorded. Hair samples were taken 4 months after enrolment and cut into four 1 cm segments. Results: Samples were available from 21 patients (20 women; median age: 53; median budesonide dose: 600 μg/d). Budesonide and formoterol were detected in samples from 18 to 13 patients, respectively. The median hair concentrations were 6.25 pg/mg for budesonide and 0.9 pg/mg for formoterol. The intrapatient coefficient of variation between hair segments was 21% for budesonide and 40% for formoterol. Pearson's coefficients for the correlations between the hair concentration and the self-reported drug dose and the prescribed drug dose were respectively 0.42 (p = 0.08) and 0.29 (p = 0.25) for budesonide and 0.24 (p = 0.44) and 0.17 (p = 0.57) for formoterol. Conclusion: Segmental hair analysis of inhaled medications was feasible, with low intrapatient variability. This innovative, non-invasive means of assessing monthly drug exposure might help physicians to personalize drug regimens for patients with difficult-to-treat asthma.
Collapse
Affiliation(s)
- Hélène Salvator
- Exhalomics, Hôpital Foch, Suresnes, France
- Service de Pneumologie, Hôpital Foch, Suresnes, France
- Laboratoire de Recherche en Pharmacologie Respiratoire—VIM Suresnes, UMR 0892, Université Paris-Saclay, Suresnes, France
| | - Elodie Lamy
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation (2I), U1173, Département de Biotechnologie de La Santé, Montigny-le-Bretonneux, France
| | | | - Emmanuelle Bardin
- Exhalomics, Hôpital Foch, Suresnes, France
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation (2I), U1173, Département de Biotechnologie de La Santé, Montigny-le-Bretonneux, France
- Institut Necker Enfants Malades, U1151, Paris, France
| | - Philippe Devillier
- Exhalomics, Hôpital Foch, Suresnes, France
- Laboratoire de Recherche en Pharmacologie Respiratoire—VIM Suresnes, UMR 0892, Université Paris-Saclay, Suresnes, France
| | - Stanislas Grassin-Delyle
- Exhalomics, Hôpital Foch, Suresnes, France
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation (2I), U1173, Département de Biotechnologie de La Santé, Montigny-le-Bretonneux, France
| |
Collapse
|
5
|
Wang S, Kang Y, Qi F, Jin H. Genetics of hair graying with age. Ageing Res Rev 2023; 89:101977. [PMID: 37276979 DOI: 10.1016/j.arr.2023.101977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Hair graying is an early and obvious phenotypic and physiological trait with age in humans. Several recent advances in molecular biology and genetics have increased our understanding of the mechanisms of hair graying, which elucidate genes related to the synthesis, transport, and distribution of melanin in hair follicles, as well as genes regulating these processes above. Therefore, we review these advances and examine the trends in the genetic aspects of hair graying from enrichment theory, Genome-Wide association studies, whole exome sequencing, gene expression studies, and animal models for hair graying with age, aiming to overview the changes in hair graying at the genetic level and establish the foundation for future research. Meanwhile, by summarizing the genetics, it's of great value to explore the possible mechanism, treatment, or even prevention of hair graying with age.
Collapse
Affiliation(s)
- Sifan Wang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China
| | - Yuanbo Kang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan1#, Dongcheng District, Beijing 100730, P.R.China
| | - Fei Qi
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China.
| |
Collapse
|
6
|
Keshavarz M, Xie K, Bano D, Ehninger D. Aging - what it is and how to measure it. Mech Ageing Dev 2023:111837. [PMID: 37302556 DOI: 10.1016/j.mad.2023.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
The current understanding of the biology of aging is largely based on research aimed at identifying factors that influence lifespan. However, lifespan as a sole proxy measure of aging has limitations because it can be influenced by specific pathologies (not generalized physiological deterioration in old age). Hence, there is a great need to discuss and design experimental approaches that are well-suited for studies targeting the biology of aging, rather than the biology of specific pathologies that restrict the lifespan of a given species. For this purpose, we here review various perspectives on aging, discuss agreement and disagreement among researchers on the definition of aging, and show that while slightly different aspects are emphasized, a widely accepted feature, shared across many definitions, is that aging is accompanied by phenotypic changes that occur in a population over the course of an average lifespan. We then discuss experimental approaches that are in line with these considerations, including multidimensional analytical frameworks as well as designs that facilitate the proper assessment of intervention effects on aging rate. The proposed framework can guide discovery approaches to aging mechanisms in all key model organisms (e.g., mouse, fish models, D. melanogaster, C. elegans) as well as in humans.
Collapse
Affiliation(s)
- Maryam Keshavarz
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
7
|
Kataria S, Dabas P, Saraswathy KN, Sachdeva MP, Jain S. Investigating the morphology and genetics of scalp and facial hair characteristics for phenotype prediction. Sci Justice 2023; 63:135-148. [PMID: 36631178 DOI: 10.1016/j.scijus.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Microscopic traits and ultrastructure of hair such as cross-sectional shape, pigmentation, curvature, and internal structure help determine the level of variations between and across human populations. Apart from cosmetics and anthropological applications, such as determining species, somatic origin (body area), and biogeographic ancestry, the evidential value of hair has increased with rapid progression in the area of forensic DNA phenotyping (FDP). Individuals differ in the features of their scalp hair (greying, shape, colour, balding, thickness, and density) and facial hair (eyebrow thickness, monobrow, and beard thickness) features. Scalp and facial hair characteristics are genetically controlled and lead to visible inter-individual variations within and among populations of various ethnic origins. Hence, these characteristics can be exploited and made more inclusive in FDP, thereby leading to more comprehensive, accurate, and robust prediction models for forensic purposes. The present article focuses on understanding the genetics of scalp and facial hair characteristics with the goal to develop a more inclusive approach to better understand hair biology by integrating hair microscopy with genetics for genotype-phenotype correlation research.
Collapse
Affiliation(s)
- Suraj Kataria
- Department of Anthropology, University of Delhi, India.
| | - Prashita Dabas
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India.
| | | | - M P Sachdeva
- Department of Anthropology, University of Delhi, India.
| | - Sonal Jain
- Department of Anthropology, University of Delhi, India.
| |
Collapse
|
8
|
Zhao B, Li J, Liu M, Hu S, Yang N, Liang S, Zhang X, Dai Y, Bao Z, Chen Y, Wu X. lncRNA2919 Suppresses Rabbit Dermal Papilla Cell Proliferation via trans-Regulatory Actions. Cells 2022; 11:2443. [PMID: 35954286 PMCID: PMC9368379 DOI: 10.3390/cells11152443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Hair follicles (HFs) are complex organs that grow cyclically during mammals' growth and development. Long non-coding RNAs (lncRNAs) cannot be translated into proteins and play crucial roles in many biological processes. In our previous study, candidate lncRNAs associated with HF cyclic regeneration were screened, and we identified that the novel lncRNA, lncRNA2919, was significantly expressed during catagen. Here, we identified that lncRNA2919 has no coding potentiality and is highly expressed in the cell nucleus, and downregulates HF growth and development-related genes, inhibits cell proliferation, and promotes cell apoptosis in rabbit dermal papilla cells. lncRNA2919 recruits STAT1 to form a compound. As a key transcription factor, STAT1 regulates the transcriptional expression of KRTAP11-1. Our study revealed that lncRNA2919 is involved in HF cyclic regeneration through the trans-regulatory lncRNA2919-STAT1-KRTAP11-1 axis. This study elucidates the mechanism through which lncRNA2919 regulates HF growth and development and the role of lncRNA2919 as a new therapeutic target in animal wool production and human hair-related disease treatment.
Collapse
Affiliation(s)
- Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ming Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shuang Liang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants (Basel) 2022; 11:1121. [PMID: 35740018 PMCID: PMC9220264 DOI: 10.3390/antiox11061121] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Skin aging is one of the most evident signs of human aging. Modification of the skin during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume, laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence of external stimulation. The principal cellular perturbation in the skin driving senescence is the alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of structural change, throughout aging, the skin gradually loses its natural functional characteristics and regenerative potential. With aging, the skin immune system also undergoes functional senescence manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this natural phenomenon sometimes accelerated by external factors.
Collapse
Affiliation(s)
| | | | | | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.)
| |
Collapse
|
10
|
Gong G, Fan Y, Li W, Yan X, Yan X, Zhang L, Wang N, Chen O, Zhang Y, Wang R, Liu Z, Jiang W, Li J, Wang Z, Lv Q, Su R. Identification of the Key Genes Associated with Different Hair Types in the Inner Mongolia Cashmere Goat. Animals (Basel) 2022; 12:ani12111456. [PMID: 35681921 PMCID: PMC9179306 DOI: 10.3390/ani12111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
The Inner Mongolia cashmere goat is an excellent local breed in China. According to the characteristics of wool quilts, the Inner Mongolia cashmere goat can be divided into three types: a long-hair type (hair length of >22 cm), a short-hair type (hair length of ≤13 cm), and an intermediate type (hair length of >13 cm and ≤22 cm). It is found that hair length has a certain reference value for the indirect selection of other important economic traits of cashmere. In order to explore the molecular mechanisms and related regulatory genes of the different hair types, a weighted gene coexpression network analysis (WGCNA) was carried out on the gene expression data and phenotypic data of 12-month-old Inner Mongolia cashmere goats with a long-hair type (LHG) and a short-hair type (SHG) to explore the coexpression modules related to different coat types and nine candidate genes, and detect the relative expression of key candidate genes. The results showed that the WGCNA divided these genes into 19 coexpression modules and found that there was a strong correlation between one module and different hair types. The expression trends of this module’s genes were different in the two hair types, with high expression in the LHG and low expression in the SHG. GO functions are mainly concentrated in cellular components, including intermediate filaments (GO:0005882), intermediate filament cytoskeletons (GO:0045111), and cytoskeletal parts (GO:0044430). The KEGG pathway is mainly enriched in arginine as well as proline metabolism (chx00330) and the MAPK signaling pathway (chx04010). The candidate genes of the different hair types, including the KRT39, KRT74, LOC100861184, LOC102177231, LOC102178767, LOC102179881, LOC106503203, LOC108638293, and LOC108638298 genes, were screened. Through qRT-PCR, it was found that there were significant differences in these candidate genes between the two hair types, and most of them had a significant positive correlation with hair length. It was preliminarily inferred that these candidate genes could regulate the different hair types of cashmere goats and provide molecular markers for hair growth.
Collapse
Affiliation(s)
- Gao Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Yixing Fan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China;
| | - Wenze Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Xiaochun Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Xiaomin Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Ludan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Na Wang
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd., Hohhot 010018, China; (N.W.); (O.C.)
| | - Oljibilig Chen
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd., Hohhot 010018, China; (N.W.); (O.C.)
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Wei Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (Q.L.); (R.S.)
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (Q.L.); (R.S.)
| |
Collapse
|
11
|
Arbab AH, Zaroug EE, Mudawi MME. Review on Plants with Traditional Uses and Bio-Activity Against Hair Graying. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220208105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Hair graying occurs worldwide, and it has a high impact on the self-esteem of an individual. Hair graying is a melanogenesis disorder that can be attributed to many factors, including age, oxidative stress, psychological stress, and malnutrition. Though there are effective p-phenylenediamine based hair dyes, they often cause allergy and systematic toxicity. Plants are popular a traditional remedy for the management of hair disorders. Due to their high chemical diversity, phytoproducts offer great promises to develop an effective and safe product to manage hair graying and melanogenesis disorders. The aim of the present article is to review plants with traditional uses and bio-activity against hair graying. An extensive literature search was conducted on PubMed, Science Direct, and Google Scholar databases using many combinations of the following keywords: plants used to treat gray hair, natural products, hair graying, melanogenesis, pigmentation, and tyrosinase activity. This review documented about sixty-one plants, including a summary of 47 plants frequently used in traditional medicine, and a brief review of fourteen plants showing promising activity against hair graying. The active constituents and the mechanisms by which active constituents exert anti-hair graying effects were also reviewed.
Collapse
Affiliation(s)
- Ahmed H. Arbab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Elwaleed E. Zaroug
- Department of Phytochemistry and Natural Products, Northern Border University, Kingdom of Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Omdurman Islamic University, Sudan
| | - Mahmoud M. E. Mudawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Kingdom of Saudi Arabia
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Sudan
| |
Collapse
|
12
|
Sikkink SK, Mine S, Freis O, Danoux L, Tobin DJ. Stress-sensing in the human greying hair follicle: Ataxia Telangiectasia Mutated (ATM) depletion in hair bulb melanocytes in canities-prone scalp. Sci Rep 2020; 10:18711. [PMID: 33128003 PMCID: PMC7603349 DOI: 10.1038/s41598-020-75334-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Canities (or hair greying) is an age-linked loss of the natural pigment called melanin from hair. While the specific cause(s) underlying the loss of melanogenically-active melanocytes from the anagen hair bulbs of affected human scalp remains unclear, oxidative stress sensing appears to be a key factor involved. In this study, we examined the follicular melanin unit in variably pigmented follicles from the aging human scalp of healthy individuals (22-70 years). Over 20 markers were selected within the following categories: melanocyte-specific, apoptosis, cell cycle, DNA repair/damage, senescence and oxidative stress. As expected, a reduction in melanocyte-specific markers in proportion to the extent of canities was observed. A major finding of our study was the intense and highly specific nuclear expression of Ataxia Telangiectasia Mutated (ATM) protein within melanocytes in anagen hair follicle bulbs. ATM is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks and functions as an important sensor of reactive oxygen species (ROS) in human cells. The incidence and expression level of ATM correlated with pigmentary status in canities-affected hair follicles. Moreover, increased staining of the redox-associated markers 8-OHdG, GADD45 and GP-1 were also detected within isolated bulbar melanocytes, although this change was not clearly associated with donor age or canities extent. Surprisingly, we were unable to detect any specific change in the expression of other markers of oxidative stress, senescence or DNA damage/repair in the canities-affected melanocytes compared to surrounding bulbar keratinocytes. By contrast, several markers showed distinct expression of markers for oxidative stress and apoptosis/differentiation in the inner root sheath (IRS) as well as other parts of the hair follicle. Using our in vitro model of primary human scalp hair follicle melanocytes, we showed that ATM expression increased after incubation with the pro-oxidant hydrogen peroxide (H2O2). In addition, this ATM increase was prevented by pre-incubation of cells with antioxidants. The relationship between ATM and redox stress sensing was further evidenced as we observed that the inhibition of ATM expression by chemical inhibition promoted the loss of melanocyte viability induced by oxidative stress. Taken together these new findings illustrate the key role of ATM in the protection of human hair follicle melanocytes from oxidative stress/damage within the human scalp hair bulb. In conclusion, these results highlight the remarkable complexity and role of redox sensing in the status of human hair follicle growth, differentiation and pigmentation.
Collapse
Affiliation(s)
- Stephen K Sikkink
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK.
| | - Solene Mine
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Olga Freis
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Louis Danoux
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Desmond J Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK. .,The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
13
|
Pośpiech E, Kukla-Bartoszek M, Karłowska-Pik J, Zieliński P, Woźniak A, Boroń M, Dąbrowski M, Zubańska M, Jarosz A, Grzybowski T, Płoski R, Spólnicka M, Branicki W. Exploring the possibility of predicting human head hair greying from DNA using whole-exome and targeted NGS data. BMC Genomics 2020; 21:538. [PMID: 32758128 PMCID: PMC7430834 DOI: 10.1186/s12864-020-06926-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Greying of the hair is an obvious sign of human aging. In addition to age, sex- and ancestry-specific patterns of hair greying are also observed and the progression of greying may be affected by environmental factors. However, little is known about the genetic control of this process. This study aimed to assess the potential of genetic data to predict hair greying in a population of nearly 1000 individuals from Poland. RESULTS The study involved whole-exome sequencing followed by targeted analysis of 378 exome-wide and literature-based selected SNPs. For the selection of predictors, the minimum redundancy maximum relevance (mRMRe) method was used, and then two prediction models were developed. The models included age, sex and 13 unique SNPs. Two SNPs of the highest mRMRe score included whole-exome identified KIF1A rs59733750 and previously linked with hair loss FGF5 rs7680591. The model for greying vs. no greying prediction achieved accuracy of cross-validated AUC = 0.873. In the 3-grade classification cross-validated AUC equalled 0.864 for no greying, 0.791 for mild greying and 0.875 for severe greying. Although these values present fairly accurate prediction, most of the prediction information was brought by age alone. Genetic variants explained < 10% of hair greying variation and the impact of particular SNPs on prediction accuracy was found to be small. CONCLUSIONS The rate of changes in human progressive traits shows inter-individual variation, therefore they are perceived as biomarkers of the biological age of the organism. The knowledge on the mechanisms underlying phenotypic aging can be of special interest to the medicine, cosmetics industry and forensics. Our study improves the knowledge on the genetics underlying hair greying processes, presents prototype models for prediction and proves hair greying being genetically a very complex trait. Finally, we propose a four-step approach based on genetic and epigenetic data analysis allowing for i) sex determination; ii) genetic ancestry inference; iii) greying-associated SNPs assignment and iv) epigenetic age estimation, all needed for a final prediction of greying.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Magdalena Kukla-Bartoszek
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Joanna Karłowska-Pik
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland
| | - Piotr Zieliński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anna Woźniak
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | - Michał Boroń
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Magdalena Zubańska
- Faculty of Law and Administration, Department of Criminology and Forensic Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agata Jarosz
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Collegium Medicum of the Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | | | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Central Forensic Laboratory of the Police, Warsaw, Poland
| |
Collapse
|
14
|
Acer E, Kaya Erdoğan H, Kocatürk E, Saracoğlu ZN, Alataş Ö, Bilgin M. Evaluation of oxidative stress and psychoemotional status in premature hair graying. J Cosmet Dermatol 2020; 19:3403-3407. [DOI: 10.1111/jocd.13428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Ersoy Acer
- Department of Dermatology Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Hilal Kaya Erdoğan
- Department of Dermatology Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Evin Kocatürk
- Department of Biochemistry Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Zeynep Nurhan Saracoğlu
- Department of Dermatology Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Özkan Alataş
- Department of Biochemistry Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Muzaffer Bilgin
- Department of Biostatistics Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| |
Collapse
|
15
|
Stimulating hair growth via hormesis: Experimental foundations and clinical implications. Pharmacol Res 2019; 152:104599. [PMID: 31857242 DOI: 10.1016/j.phrs.2019.104599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Numerous agents (approximately 90) are shown to stimulate hair growth in cellular and animal models in a hormetic-like biphasic dose response manner. These hormetic dose responses occur within the framework of direct stimulatory responses as well as in preconditioning experimental protocols. These findings have important implications for experimental and clinical investigations with respect to study design strategies, dose selection and dose spacing along with sample size and statistical power issues. These findings further reflect the general occurrence of hormetic dose responses within the biological and biomedical literature that consistently appear to be independent of biological model, level of biological organization (i.e., cell, organ, and organism), endpoint, inducing agent, potency of the inducing agent, and mechanism.
Collapse
|
16
|
Kaur K, Kaur R, Bala I. Therapeutics of premature hair graying: A long journey ahead. J Cosmet Dermatol 2019; 18:1206-1214. [PMID: 31115162 DOI: 10.1111/jocd.13000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/09/2019] [Accepted: 04/26/2019] [Indexed: 01/24/2023]
Abstract
Premature graying of hair has major psychosocial and socioeconomic repercussion, as it is considered as a sign of hastily progressing old age, ill health and often leads to loss of self-esteem. Hair is said to gray prematurely when it happens before the age of 20 years in Caucasians, 25 years in Asians, and 30 years in Africans. The hair color chiefly depends on melanin pigment, and fabrication of this pigment takes place in melanosomes through the process of melanogenesis. This complex biochemical pathway (melanogenesis) is further dependent on tyrosinase which acts as fuel.The normal human scalp is subjected to various factors categorized as intrinsic and extrinsic leading to graying of hair. Intrinsic factors comprise of variants responsible for changes at genetic level while extrinsic factors include air pollution, ultraviolet radiation, smoking, and nutrition. It has been proposed that direct or indirect effect of all these factors results in the generation of reactive oxygen species (ROS), thus leading to further damage. Though research has expanded in last few years in terms of microscopic, biochemical (hormonal, enzymatic), and molecular changes happening within hair follicle/shaft, still the exact mechanism leading to premature graying of hair is not well understood. Probable solutions toward this quandary are diet, herbal remedies, and temporary hair colorants. Ironically, the latter one being the most common has various side effects such as allergic reactions, inflammation, and hair loss. The aim of this paper was to review the manifestation and probable future interventions in preventing premature hair graying.
Collapse
Affiliation(s)
- Kiranjeet Kaur
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Rajveer Kaur
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Indu Bala
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
17
|
Effects of the selective TrkA agonist gambogic amide on pigmentation and growth of human hair follicles in vitro. PLoS One 2019; 14:e0221757. [PMID: 31465471 PMCID: PMC6715186 DOI: 10.1371/journal.pone.0221757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
The human hair follicle is a neuroendocrine mini-organ that can be used to study aging processes in vitro. Neurotrophins maintain homeostasis in hair biology via the Trk-family of receptors. TrkA, the high affinity receptor for nerve growth factor (NGF), is expressed in hair follicle melanocytes and keratinocytes, where it regulates proliferation, differentiation and apoptosis and may thereby play a role in hair pigmentation and growth. We investigated TrkA expression during the human hair cycle and the effects of a selective high affinity TrkA agonist, Gambogic Amide, on hair pigmentation and hair growth in human hair follicles in vitro. In human scalp skin, TrkA expression was strongest in proliferating melanocytes re-establishing the pigmentary unit in the hair bulb during the early hair growth phase, anagen. During high anagen and in the de-composing pigmentary-unit of the regression phase, catagen, bulb-melanocytes lost TrkA expression and only undifferentiated outer root sheath melanocytes maintained it. In cultured human anagen hair follicles, Gambogic Amide was able to prevent gradual pigment loss, while it stimulated hair shaft elongation. This was achieved by increased melanocyte activation, migration and dendricity, highlighted by distinct c-KIT-expression in melanocyte sub-populations. Our results suggest that Gambogic Amide can maintain hair follicle pigmentation by acting on undifferentiated melanocytes residing in the outer root sheath and making them migrate to establish the pigmentary-unit. This suggests that the selective TrkA agonist Gambogic Amide acts as an anti-hair greying and hair growth promoting molecule in vitro.
Collapse
|
18
|
Fernandez-Flores A, Saeb-Lima M, Cassarino DS. Histopathology of aging of the hair follicle. J Cutan Pathol 2019; 46:508-519. [PMID: 30932205 DOI: 10.1111/cup.13467] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/12/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
Hair follicles experience several changes with aging, the most noticeable of which is graying of the hair shaft due to loss of melanin. Additional changes in the diameter and length of the hair have contributed to the concept of senescent alopecia, which is different from androgenetic alopecia according to most. Graying happens in most individuals, although in different grades and starting at different ages. It is related to a decrease in the number and activity of the melanocytes of the hair bulb, which eventually completely disappear from the bulb of the white hair. Residual non-active melanocytes remain in the outer root sheath and in the bulge, which allows for repigmentation of the hair under certain stimuli or conditions.
Collapse
Affiliation(s)
- Angel Fernandez-Flores
- Department of Cellular Pathology, Hospital El Bierzo, Ponferrada, Spain.,Department of the CellCOM-SB Research Group, Biomedical Investigation Institute of A Coruña, A Coruña, Spain.,Department of Cellular Pathology, Hospital de la Reina, Ponferrada, Spain
| | - Marcela Saeb-Lima
- Department of Dermatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Department of Dermatopathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - David S Cassarino
- Department of Pathology, Los Angeles Medical Center (LAMC), Southern California Kaiser Permanente, Los Angeles, California
| |
Collapse
|
19
|
Triwongwaranat D, Thuangtong R, Arunkajohnsak S. A review of the etiologies, clinical characteristics, and treatment of canities. Int J Dermatol 2019; 58:659-666. [DOI: 10.1111/ijd.14399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 10/15/2018] [Accepted: 01/17/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Daranporn Triwongwaranat
- Department of Dermatology Faculty of Medicine Siriraj Hospital Mahidol University Bangkok Thailand
| | - Rattapon Thuangtong
- Department of Dermatology Faculty of Medicine Siriraj Hospital Mahidol University Bangkok Thailand
| | - Sittiroj Arunkajohnsak
- Department of Dermatology Faculty of Medicine Siriraj Hospital Mahidol University Bangkok Thailand
| |
Collapse
|
20
|
Jo SK, Lee JY, Lee Y, Kim CD, Lee JH, Lee YH. Three Streams for the Mechanism of Hair Graying. Ann Dermatol 2018; 30:397-401. [PMID: 30065578 PMCID: PMC6029974 DOI: 10.5021/ad.2018.30.4.397] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hair graying is an obvious sign of human aging. Although graying has been investigated extensively, the mechanism remains unclear. Here, we reviewed previous studies on the mechanism of graying and seek to offer some new insights. The traditional view is that hair graying is caused by exhaustion of the pigmentary potential of the melanocytes of hair bulbs. Melanocyte dysfunction may be attributable to the effects of toxic reactive oxygen species on melanocyte nuclei and mitochondria. A recent study suggests that bulge melanocyte stem cells (MSCs) are the key cells in play. Graying may be caused by defective MSC self-maintenance, not by any deficiency in bulbar melanocytes. Our previous study suggested that graying may be principally attributable to active hair growth. Active hair growth may produce oxidative or genotoxic stress in hair bulge. These internal stress may cause eventually depletion of MSC in the hair follicles. Taken together, hair graying may be caused by MSC depletion by genotoxic stress in the hair bulge. Hair graying may also be sometimes caused by dysfunction of the melanocytes by oxidative stress in the hair bulb. In addition, hair graying may be attributable to MSC depletion by active hair growth.
Collapse
Affiliation(s)
- Seong Kyeong Jo
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji Yeon Lee
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Young Ho Lee
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
21
|
Kerepesi C, Daróczy B, Sturm Á, Vellai T, Benczúr A. Prediction and characterization of human ageing-related proteins by using machine learning. Sci Rep 2018; 8:4094. [PMID: 29511309 PMCID: PMC5840292 DOI: 10.1038/s41598-018-22240-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
Ageing has a huge impact on human health and economy, but its molecular basis - regulation and mechanism - is still poorly understood. By today, more than three hundred genes (almost all of them function as protein-coding genes) have been related to human ageing. Although individual ageing-related genes or some small subsets of these genes have been intensively studied, their analysis as a whole has been highly limited. To fill this gap, for each human protein we extracted 21000 protein features from various databases, and using these data as an input to state-of-the-art machine learning methods, we classified human proteins as ageing-related or non-ageing-related. We found a simple classification model based on only 36 protein features, such as the "number of ageing-related interaction partners", "response to oxidative stress", "damaged DNA binding", "rhythmic process" and "extracellular region". Predicted values of the model quantify the relevance of a given protein in the regulation or mechanisms of the human ageing process. Furthermore, we identified new candidate proteins having strong computational evidence of their important role in ageing. Some of them, like Cytochrome b-245 light chain (CY24A) and Endoribonuclease ZC3H12A (ZC12A) have no previous ageing-associated annotations.
Collapse
Affiliation(s)
- Csaba Kerepesi
- Institute for Computer Science and Control (MTA SZTAKI), Hungarian Academy of Sciences, Budapest, Hungary.
| | - Bálint Daróczy
- Institute for Computer Science and Control (MTA SZTAKI), Hungarian Academy of Sciences, Budapest, Hungary
| | - Ádám Sturm
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary
| | - András Benczúr
- Institute for Computer Science and Control (MTA SZTAKI), Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
22
|
Abstract
Premature graying of hair (PGH) is defined as graying of hair before the age of 20 years in Caucasians and before 30 years in African American population. It can severely affect the self-esteem of an individual. The exact etiopathogenesis remains unknown, although it has been associated with premature aging disorders, atopy, and autoimmune diseases. Patients, who present with PGH, should be assessed for syndromes and metabolism diseases. Hair dyes remain the main modality of the treatment for cosmetic concerns after nutritional supplementation.
Collapse
Affiliation(s)
| | - Huma Shamim
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Umashankar Nagaraju
- Department of Dermatology, Rajarajeswari Medical College and Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
23
|
Zhang J, Wallace SJ, Shiu MY, Smith I, Rhind SG, Langlois VS. Human hair follicle transcriptome profiling: a minimally invasive tool to assess molecular adaptations upon low-volume, high-intensity interval training. Physiol Rep 2017; 5. [PMID: 29212859 PMCID: PMC5727284 DOI: 10.14814/phy2.13534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 12/22/2022] Open
Abstract
High‐intensity interval training (HIIT) has become a popular fitness training approach under both civilian and military settings. Consisting of brief and intense exercise intervals, HIIT requires less time commitment yet is able to produce the consistent targeted physical adaptations as conventional endurance training. To effectively characterize and monitor HIIT‐induced cellular and molecular responses, a highly accessible yet comprehensive biomarker discovery source is desirable. Both gene differential expression (DE) and gene set (GS) analyses were conducted using hair follicle transcriptome established from pre and postexercise subjects upon a 10‐day HIIT program by RNA‐Seq, Comparing between pre and posttraining groups, differentially expressed protein coding genes were identified. To interpret the functional significance of the DE results, a comprehensive GS analysis approach featuring multiple algorithms was used to enrich gene ontology (GO) terms and KEGG pathways. The GS analysis revealed enriched themes such as energy metabolism, cell proliferation/growth/survival, muscle adaptations, and cytokine–cytokine interaction, all of which have been previously proposed as HIIT responses. Moreover, related cell signaling pathways were also measured. Specifically, G‐protein‐mediated signal transduction, phosphatidylinositide 3‐kinases (PI3K) – protein kinase B (PKB) and Janus kinase (JAK) – Signal Transducer and Activator of Transcription (STAT) signaling cascades were over‐represented. Additionally, the RNA‐Seq analysis also identified several HIIT‐responsive microRNAs (miRNAs) that were involved in regulating hair follicle‐specific processes, such as miR‐99a. For the first time, this study demonstrated that both existing and new biomarkers like miRNA can be explored for HIIT using the transcriptomic responses exhibited by the hair follicle.
Collapse
Affiliation(s)
- Jing Zhang
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada
| | - Sarah J Wallace
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada
| | - Maria Y Shiu
- Defense Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Ingrid Smith
- Defense Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G Rhind
- Defense Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Valerie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada
| |
Collapse
|
24
|
HOU CHUN, MIAO YONG, JI HANG, WANG SUSHENG, LIANG GANG, ZHANG ZHIHUA, HONG WEIJIN. 6-Gingerol inhibits hair cycle via induction of MMP2 and MMP9 expression. ACTA ACUST UNITED AC 2017; 89:2707-2717. [DOI: 10.1590/0001-3765201720170354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/02/2017] [Indexed: 02/02/2023]
Affiliation(s)
- CHUN HOU
- Guangzhou Medical University, P.R. China
| | - YONG MIAO
- Southern Medical University, P.R. China
| | - HANG JI
- Guangzhou Medical University, P.R. China
| | | | - GANG LIANG
- Guangzhou Medical University, P.R. China
| | | | | |
Collapse
|
25
|
A comparison of transcriptomic patterns measured in the skin of Chinese fine and coarse wool sheep breeds. Sci Rep 2017; 7:14301. [PMID: 29085060 PMCID: PMC5662721 DOI: 10.1038/s41598-017-14772-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022] Open
Abstract
We characterised wool traits, and skin gene expression profiles of fine wool Super Merino (SM) and coarse wool Small Tail Han (STH) sheep. SM sheep had a significantly higher total density of wool follicles, heavier fleeces, finer fibre diameter, and increased crimp frequency, staple length and wool grease (lanolin) production. We found 435 genes were expressed at significantly different levels in the skin of the two breeds (127 genes more highly in SM and 308 genes more highly in STH sheep). Classification of the genes more highly expressed in SM sheep revealed numerous lipid metabolic genes as well as genes encoding keratins, keratin-associated proteins, and wool follicle stem cell markers. In contrast, mammalian epidermal development complex genes and other genes associated with skin cornification and muscle function were more highly expressed in STH sheep. Genes identified in this study may be further evaluated for inclusion in breeding programs, or as targets for therapeutic or genetic interventions, aimed at altering wool quality or yield. Expression of the lipid metabolic genes in the skin of sheep may be used as a novel trait with the potential to alter the content or properties of lanolin or the fleece.
Collapse
|
26
|
Zhang J, Carnduff L, Norman G, Josey T, Wang Y, Sawyer TW, Martyniuk CJ, Langlois VS. Transcriptional profiling in rat hair follicles following simulated Blast insult: a new diagnostic tool for traumatic brain injury. PLoS One 2014; 9:e104518. [PMID: 25136963 PMCID: PMC4138085 DOI: 10.1371/journal.pone.0104518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/11/2014] [Indexed: 01/05/2023] Open
Abstract
With wide adoption of explosive-dependent weaponry during military activities, Blast-induced neurotrauma (BINT)-induced traumatic brain injury (TBI) has become a significant medical issue. Therefore, a robust and accessible biomarker system is in demand for effective and efficient TBI diagnosis. Such systems will also be beneficial to studies of TBI pathology. Here we propose the mammalian hair follicles as a potential candidate. An Advanced Blast Simulator (ABS) was developed to generate shock waves simulating traumatic conditions on brains of rat model. Microarray analysis was performed in hair follicles to identify the gene expression profiles that are associated with shock waves. Gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) were used to identify cell processes and molecular signaling cascades affected by simulated bomb blasts. Enrichment analyses indicated that genes with altered expression levels were involved in central nervous system (CNS)/peripheral nervous system (PNS) responses as well as signal transduction including Ca2+, K+-transportation-dependent signaling, Toll-Like Receptor (TLR) signaling and Mitogen Activated Protein Kinase (MAPK) signaling cascades. Many of the pathways identified as affected by shock waves in the hair follicles have been previously reported to be TBI responsive in other organs such as brain and blood. The results suggest that the hair follicle has some common TBI responsive molecular signatures to other tissues. Moreover, various TBI-associated diseases were identified as preferentially affected using a gene network approach, indicating that the hair follicle may be capable of reflecting comprehensive responses to TBI conditions. Accordingly, the present study demonstrates that the hair follicle is a potentially viable system for rapid and non-invasive TBI diagnosis.
Collapse
Affiliation(s)
- Jing Zhang
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Lisa Carnduff
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Grant Norman
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Tyson Josey
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | - Yushan Wang
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | - Thomas W. Sawyer
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | | | - Valerie S. Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Kim H, Yoo WG, Park J, Kim H, Kang BC. Semantic Modeling for SNPs Associated with Ethnic Disparities in HapMap Samples. Genomics Inform 2014; 12:35-41. [PMID: 24748859 PMCID: PMC3990764 DOI: 10.5808/gi.2014.12.1.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 11/20/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) have been emerging out of the efforts to research human diseases and ethnic disparities. A semantic network is needed for in-depth understanding of the impacts of SNPs, because phenotypes are modulated by complex networks, including biochemical and physiological pathways. We identified ethnicity-specific SNPs by eliminating overlapped SNPs from HapMap samples, and the ethnicity-specific SNPs were mapped to the UCSC RefGene lists. Ethnicity-specific genes were identified as follows: 22 genes in the USA (CEU) individuals, 25 genes in the Japanese (JPT) individuals, and 332 genes in the African (YRI) individuals. To analyze the biologically functional implications for ethnicity-specific SNPs, we focused on constructing a semantic network model. Entities for the network represented by "Gene," "Pathway," "Disease," "Chemical," "Drug," "ClinicalTrials," "SNP," and relationships between entity-entity were obtained through curation. Our semantic modeling for ethnicity-specific SNPs showed interesting results in the three categories, including three diseases ("AIDS-associated nephropathy," "Hypertension," and "Pelvic infection"), one drug ("Methylphenidate"), and five pathways ("Hemostasis," "Systemic lupus erythematosus," "Prostate cancer," "Hepatitis C virus," and "Rheumatoid arthritis"). We found ethnicity-specific genes using the semantic modeling, and the majority of our findings was consistent with the previous studies - that an understanding of genetic variability explained ethnicity-specific disparities.
Collapse
Affiliation(s)
- Hyoyoung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | - Won Gi Yoo
- Codes Division, Insilicogen, Inc., Suwon 441-813, Korea
| | - Junhyung Park
- Codes Division, Insilicogen, Inc., Suwon 441-813, Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | |
Collapse
|
28
|
Shi Y, Luo LF, Liu XM, Zhou Q, Xu SZ, Lei TC. Premature graying as a consequence of compromised antioxidant activity in hair bulb melanocytes and their precursors. PLoS One 2014; 9:e93589. [PMID: 24695442 PMCID: PMC3973559 DOI: 10.1371/journal.pone.0093589] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/04/2014] [Indexed: 12/22/2022] Open
Abstract
Intricate coordinated mechanisms that govern the synchrony of hair growth and melanin synthesis remain largely unclear. These two events can be uncoupled in prematurely gray hair, probably due to oxidative insults that lead to the death of oxidative stress-sensitive melanocytes. In this study, we examined the gene expression profiles of middle (bulge) and lower (hair bulb) segments that had been micro-dissected from unpigmented and from normally pigmented hair follicles from the same donors using quantitative real-time RT-PCR (qPCR) arrays. We found a significant down-regulation of melanogenesis-related genes (TYR, TYRP1, MITF, PAX3, POMC) in unpigmented hair bulbs and of marker genes typical for melanocyte precursor cells (PAX3, SOX10, DCT) in unpigmented mid-segments compared with their pigmented analogues. qPCR, western blotting and spin trapping assays revealed that catalase protein expression and hydroxyl radical scavenging activities are strongly repressed in unpigmented hair follicles. These data provide the first clear evidence that compromised antioxidant activity in gray hair follicles simultaneously affects mature hair bulb melanocytes and their immature precursor cells in the bulge region.
Collapse
Affiliation(s)
- Ying Shi
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Long-Fei Luo
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiao-Ming Liu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qiong Zhou
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shi-Zheng Xu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
29
|
Adenovirus-mediated expression of keratinocyte growth factor promotes secondary flap necrotic wound healing in an extended animal model. Aesthetic Plast Surg 2013; 37:1023-33. [PMID: 23949128 DOI: 10.1007/s00266-013-0200-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 07/16/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND No effective treatments have been found for flap necrosis. Animal models that focus on the initial flap viability are inappropriate for necrotic wound studies. Keratinocyte growth factor (KGF) promotes keratinocyte proliferation with stronger activity and fewer complications and thus may be useful for necrotic flap wound healing. METHODS Rats with modified flap necrosis were randomly divided into four groups. An adenoviral vector expressing KGF was injected subdermally in the back of the animals after necrosis began. The expression and effect of KGF was assessed by real-time polymerase chain reaction, enzyme-linked immunoassay, and transwell, and wound healing was monitored. RESULTS The plasmid and adenovirus were able to express KGF and stimulate epithelial cell growth (p = 0.029). Histology showed that the necrosis healed fastest in the KGF administration group than in the control groups (p < 0.01). The adenovirus-mediated KGF (Ad-KGF) group had the thickest epithelium on days 15 (p = 0.044) and 25 (p = 0.014). The KGF level in the blood serum soared 10 and 15 days postoperatively (p < 0.01) but returned to baseline by day 25 (p = 0.561). The KGF mRNA levels in vivo increased dramatically in the Ad-KGF group (p = 0.037). CONCLUSIONS The extended flap model is applicable in necrotic wound study. Keratinocyte growth factor can promote secondary necrotic flap wound healing, and administration of KGF can be achieved by an adenoviral vector.
Collapse
|
30
|
Westgate GE, Botchkareva NV, Tobin DJ. The biology of hair diversity. Int J Cosmet Sci 2013; 35:329-36. [PMID: 23363384 DOI: 10.1111/ics.12041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/23/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Gillian E Westgate
- Centre for Skin Sciences; School of Life Sciences; University of Bradford; Richmond Road Bradford West Yorkshire BD7 1DP UK
- Westgate Consultancy Ltd; Court Lane Stevington Bedfordshire MK43 7QT UK
| | - Natalia V Botchkareva
- Centre for Skin Sciences; School of Life Sciences; University of Bradford; Richmond Road Bradford West Yorkshire BD7 1DP UK
| | - Desmond J Tobin
- Centre for Skin Sciences; School of Life Sciences; University of Bradford; Richmond Road Bradford West Yorkshire BD7 1DP UK
| |
Collapse
|