1
|
Zhang Z, Zhang L, Li J, Feng R, Li C, Liu Y, Sun G, Xiao F, Zhang C. Comprehensive analysis of m 6A methylome alterations after azacytidine plus venetoclax treatment for acute myeloid leukemia by nanopore sequencing. Comput Struct Biotechnol J 2024; 23:1144-1153. [PMID: 38510975 PMCID: PMC10950754 DOI: 10.1016/j.csbj.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
N6 adenosine methylation (m6A), one of the most prevalent internal modifications on mammalian RNAs, regulates RNA transcription, stabilization, and splicing. Growing evidence has focused on the functional role of m6A regulators on acute myeloid leukemia (AML). However, the global m6A levels after azacytidine (AZA) plus venetoclax (VEN) treatment in AML patients remain unclear. In our present study, bone marrow (BM) sample pairs (including pre-treatment [AML] and post-treatment [complete remission (CR)] samples) were harvested from three AML patients who had achieved CR after AZA plus VEN treatment for Nanopore direct RNA sequencing. Notably, the amount of m6A sites and the m6A levels in CR BMs was significantly lower than those in the AML BMs. Such a significant reduction in the m6A levels was also detected in AZA-treated HL-60 cells. Thirteen genes with decreased m6A and expression levels were identified, among which three genes (HPRT1, SNRPC, and ANP32B) were closely related to the prognosis of AML. Finally, we speculated the mechanism via which m6A modifications affected the mRNA stability of these three genes. In conclusion, we illustrated for the first time the global landscape of m6A levels in AZA plus VEN treated AML (CR) patients and revealed that AZA had a significant demethylation effect at the RNA level in AML patients. In addition, we identified new biomarkers for AZA plus VEN-treated AML via Nanopore sequencing technology in RNA epigenetics.
Collapse
Affiliation(s)
- Zaifeng Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan Santiao, Beijing 100730, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangtao Li
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan Santiao, Beijing 100730, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
da Conceição Braga L, Gonçalves BÔP, Coelho PL, da Silva Filho AL, Silva LM. Identification of best housekeeping genes for the normalization of RT-qPCR in human cell lines. Acta Histochem 2022; 124:151821. [PMID: 34861601 DOI: 10.1016/j.acthis.2021.151821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/01/2022]
Abstract
The identification of the best reference gene is a critical step to evaluate the relative change in mRNA expression of a target gene by RT-qPCR. In this work, we evaluated nineteen genes of different functional classes using Real Time Human Reference Gene Panel (Roche Applied Sciences), to identify the internal housekeeping genes (HKGs) most suitable for gene expression normalization data in human cell lines. Normal cell lines CCD-19LU (lung fibroblast), HEK-293 (epithelial cell of embryonic kidney), WI-26 VA4 (lung fibroblast), and human cancer cells, BT-549 (breast cancer), Hs 578T (breast cancer), MACL-1 (breast cancer), HeLa (cervical carcinoma), U-87 MG (glioblastoma/astrocytoma), RKO-AS45-1 (colorectal carcinoma), and TOV-21G (ovarian adenocarcinoma) were cultivated according to manufacturer's protocol. Twelve candidate reference genes were commonly expressed in five cell lines (CCD-19Lu, HEK-293, RKO-AS45-1, TOV-21G, and U-87 MG). To verify the expression stability, we used the RefFinder web tool, which integrates data from the computational programs Normfinder, BestKeeper, geNorm, and the comparative Delta-Ct method. The ACTB was the most stable reference gene to the CCD-19Lu and HEK-293 cells. The best combination of HKGs for the RKO-AS45-1 and TOV-21G cell lines were B2M/GAPDH and PBGD/B2M, respectively. For the U-87 MG cells, GAPDH and IPO8 were the most suitable HKGs. Thus, our findings showed that it is crucial to use the right HKGs to precise normalize gene expression levels in cancer studies, once a suitable HKG for one cell type cannot be to the other.
Collapse
|
3
|
Halouani A, Jmii H, Michaux H, Renard C, Martens H, Pirottin D, Mastouri M, Aouni M, Geenen V, Jaïdane H. Housekeeping Gene Expression in the Fetal and Neonatal Murine Thymus Following Coxsackievirus B4 Infection. Genes (Basel) 2020; 11:genes11030279. [PMID: 32150956 PMCID: PMC7140870 DOI: 10.3390/genes11030279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
The thymus fulfills the role of T-cell production and differentiation. Studying transcription factors and genes involved in T-cell differentiation and maturation during the fetal and neonatal periods is very important. Nevertheless, no studies to date have been interested in evaluating the expressions of housekeeping genes as internal controls to assess the varying expressions of different genes inside this tissue during that period or in the context of viral infection. Thus, we evaluated by real-time quantitative polymerase chain reaction (qPCR) the expression of the most common internal control genes in the thymus of Swiss albino mice during the fetal and neonatal period, and following in utero infection with Coxsackievirus B4. The stability of expression of these reference genes in different samples was investigated using the geNorm application. Results demonstrated that the expression stability varied greatly between genes. Oaz1 was found to have the highest stability in different stages of development, as well as following Coxsackievirus B4 infection. The current study clearly demonstrated that Oaz1, with very stable expression levels that outperformed other tested housekeeping genes, could be used as a reference gene in the thymus and thymic epithelial cells during development and following Coxsackievirus B4 infection.
Collapse
Affiliation(s)
- Aymen Halouani
- Faculté de Pharmacie de Monastir, Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.M.); (M.A.)
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
- Faculté de Médicine, Université de Liège, GIGA-I3 Immunoendocrinologie, CHU-B34, B-4000 Liege, Sart Tilman, Belgium; (H.M.); (C.R.); (H.M.); (V.G.)
| | - Habib Jmii
- Faculté de Pharmacie de Monastir, Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.M.); (M.A.)
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Hélène Michaux
- Faculté de Médicine, Université de Liège, GIGA-I3 Immunoendocrinologie, CHU-B34, B-4000 Liege, Sart Tilman, Belgium; (H.M.); (C.R.); (H.M.); (V.G.)
| | - Chantal Renard
- Faculté de Médicine, Université de Liège, GIGA-I3 Immunoendocrinologie, CHU-B34, B-4000 Liege, Sart Tilman, Belgium; (H.M.); (C.R.); (H.M.); (V.G.)
| | - Henri Martens
- Faculté de Médicine, Université de Liège, GIGA-I3 Immunoendocrinologie, CHU-B34, B-4000 Liege, Sart Tilman, Belgium; (H.M.); (C.R.); (H.M.); (V.G.)
| | - Dimitri Pirottin
- University of Liège, GIGA-I3 and Department of Functional Sciences, Laboratory of Cellular and Molecular Immunology, CHU-B34, B-4000 Liège, Sart Tilman, Belgium;
| | - Maha Mastouri
- Faculté de Pharmacie de Monastir, Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.M.); (M.A.)
| | - Mahjoub Aouni
- Faculté de Pharmacie de Monastir, Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.M.); (M.A.)
| | - Vincent Geenen
- Faculté de Médicine, Université de Liège, GIGA-I3 Immunoendocrinologie, CHU-B34, B-4000 Liege, Sart Tilman, Belgium; (H.M.); (C.R.); (H.M.); (V.G.)
| | - Hela Jaïdane
- Faculté de Pharmacie de Monastir, Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.M.); (M.A.)
- Correspondence:
| |
Collapse
|
4
|
Hadadi E, Souza LEBD, Bennaceur-Griscelli A, Acloque H. Identification of valid reference genes for circadian gene-expression studies in human mammary epithelial cells. Chronobiol Int 2018; 35:1689-1701. [PMID: 30296179 DOI: 10.1080/07420528.2018.1508151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The circadian clock controls most of the physiological processes in the body throughout days and nights' alternation. Its dysregulation has a negative impact on many aspects of human health, such as obesity, lipid disorders, diabetes, skin regeneration, hematopoiesis and cancer. To date, poor is known on the molecular mechanisms that links mammary gland homeostasis to the circadian clock but recent reports highlight the importance of loss of circadian genes for mammary gland development and during tumour progression in breast cancer. Gene expression studies are then required to clarify how the circadian clock can modulates the human mammary gland development during ontology and its behaviour in physiological and oncogenic context. For this, in addition to genome-wide studies, real-time quantitative RT-PCR (qPCR) is a powerful and pertinent technique to quantify the expression of a reduced set of genes of interest in many different samples. Relative quantification of qPCR data requires the use of reference genes for normalisation. For circadian studies, reference genes expression must not oscillate in mirror of the circadian clock and must not be affected by the synchronisation protocols required in vitro to reset the circadian clock. Inappropriate selection of reference genes can consequently affect the amplitude of gene expression oscillation and bias data interpretation. Currently, no standard reference genes have been validated regarding these criteria for human mammary epithelial cells and the purpose of this study was to fill this gap. For this, we used the RefFinder tool, which combines four different algorithms, on 9 candidate reference genes. We compared reference genes stability using three different synchronisation protocols applied on four different mammary epithelial cell lines. This allowed us to define a set of reference genes in human mammary epithelial cells whose expression remains stable despite synchronisation protocols. We observed that the synchronisation of cells by serum shock was the most suitable procedure for maintaining the amplitude of oscillation of clock genes over time and we identified RPL4, RPLP0, HSPCB and TBP as an optimal combination of reference genes for the normalisation of the oscillatory expression of clock genes in human mammary epithelial cells.
Collapse
Affiliation(s)
- Eva Hadadi
- a Inserm, UMRS935 ESTeam Paris Sud, Malignant and Therapeutic Stem Cell Models , Villejuif , France
| | | | - Annelise Bennaceur-Griscelli
- a Inserm, UMRS935 ESTeam Paris Sud, Malignant and Therapeutic Stem Cell Models , Villejuif , France.,b Service d'hématologie , APHP, GHU Paris Sud , Villejuif , France.,c UFR de Médecine Kremlin Bicêtre , Univ. P.Sud, Univ. Paris Saclay , Le Kremlin Bicêtre , France
| | - Hervé Acloque
- a Inserm, UMRS935 ESTeam Paris Sud, Malignant and Therapeutic Stem Cell Models , Villejuif , France.,d UMR1388 GenPhySE , INRA, Université de Toulouse, INRA, INPT, ENVT , Castanet Tolosan , France
| |
Collapse
|
5
|
Green MR, Sambrook J. Quantification of RNA by Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Cold Spring Harb Protoc 2018; 2018:2018/10/pdb.prot095042. [PMID: 30275077 DOI: 10.1101/pdb.prot095042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This protocol describes a real-time reverse transcription-polymerase chain reaction (RT-PCR) assay using a two-enzyme, two-tube approach, carried out using either SYBR Green I or TaqMan chemistries. The protocol uses a PCR volume of 20 µL (although most manufacturers recommend 50-µL reactions). However, if the PCR target is not very abundant (i.e., present at one to 10 copies per sample), a larger volume may yield better reproducibility between samples. Discussion on preparing high-quality RNA, choosing a priming method, selecting an enzyme, and selecting an endogenous reference gene is also included.
Collapse
|
6
|
Selection of stable reference genes in heat stressed peripheral blood mononuclear cells of tropically adapted Indian cattle and buffaloes. Mol Cell Probes 2013; 27:140-4. [DOI: 10.1016/j.mcp.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022]
|
7
|
Housekeeping gene selection advisory: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin are targets of miR-644a. PLoS One 2012; 7:e47510. [PMID: 23091630 PMCID: PMC3472982 DOI: 10.1371/journal.pone.0047510] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 09/12/2012] [Indexed: 12/17/2022] Open
Abstract
Results of overexpression or downregulation of a microRNA (miRNA) on its target mRNA expression are often validated by reverse-transcription and quantitative PCR analysis using an appropriate housekeeping gene as an internal control. The possible direct or indirect effects of a miRNA on the expression of housekeeping genes are often overlooked. Among many housekeeping genes, expressions of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin have been used extensively for normalization of gene expression data. Here, we show that GAPDH and β-actin are direct targets of miR-644a. Our data demonstrate the unsuitability of GAPDH and β-actin as internal controls in miR-644a functional studies and emphasize the need to carefully consider the choice of a reference gene in miRNA experiments.
Collapse
|
8
|
Mary P, Dauphinot L, Bois N, Potier MC, Studer V, Tabeling P. Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology. BIOMICROFLUIDICS 2011; 5:24109. [PMID: 21716808 PMCID: PMC3124518 DOI: 10.1063/1.3596394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 04/28/2011] [Indexed: 05/02/2023]
Abstract
In the present work, we have measured the messenger RNA expression of specific genes both from total RNA and cells encapsulated in droplets. The microfluidic chip introduced includes the following functionalities: RNA∕cell encapsulation, lysis, reverse transcription and real-time polymerase chain reaction. We have shown that simplex and duplex gene expression measurements can be carried out over a population of 100 purified RNA samples encapsulated simultaneously in 2 nl droplets in less than 2 h. An analysis of 100 samples containing one to three cells has shown excellent consistency with standard techniques regarding average values. The cell-to-cell distributions of the E-cadherin expression suggest fluctuations on the order of 80% in the number of transcripts, which is highly consistent with the general findings from the literature. A mathematical model has also been introduced to strengthen the interpretation of our results. The present work paves the way for the systematic acquisition of such information in biological and biomedical studies.
Collapse
|
9
|
Foldager CB, Munir S, Ulrik-Vinther M, Søballe K, Bünger C, Lind M. Validation of suitable house keeping genes for hypoxia-cultured human chondrocytes. BMC Mol Biol 2009; 10:94. [PMID: 19818117 PMCID: PMC2764705 DOI: 10.1186/1471-2199-10-94] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 10/09/2009] [Indexed: 02/06/2023] Open
Abstract
Background Hypoxic culturing of chondrocytes is gaining increasing interest in cartilage research. Culturing of chondrocytes under low oxygen tension has shown several advantages, among them increased synthesis of extracellular matrix and increased redifferentiation of dedifferentiated chondrocytes. Quantitative gene expression analyses such as quantitative real-time PCR (qRT-PCR) are powerful tools in the investigation of underlying mechanisms of cell behavior and are used routinely for differentiation and phenotype assays. However, the genes used for normalization in normoxic cell-cultures might not be suitable in the hypoxic environment. The objective of this study was to determine hypoxia-stable housekeeping genes (HKG) for quantitative real-time PCR (qRT-PCR) in human chondrocytes cultured in 21%, 5% and 1% oxygen by geNorm and NormFinder analyses. Results The chondrocytic response to the hypoxic challange was validated by a significant increase in expression of the hypoxia-inducible gene ankyrin repeat 37 as well as SOX9 in hypoxia. When cultured on the 3-dimentional (3D) scaffold TATA-binding protein (TBP) exhibited the highest expression stability with NormFinder while Ribosomal protein L13a (RPL13A) and beta2-microglobulin (B2M) were the most stable using geNorm analysis. In monolayer RPL13A were the most stable gene using NormFinder, while geNorm assessed RPL13A and human RNA polymerase II (RPII) as most stable. When examining the combination of (3D) culturing and monolayer RPL13A and B2M showed the highest expression stability from geNorm analysis while RPL13A also showed the highest expression stability using NormFinder. Often used HKG such as beta actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were the most unstable genes investigated in all comparisons. The pairwise variations for the two most stable HKG in each group were all below the cut-off value of 0.15, suggesting that the two most stable HKG from geNorm analysis would be sufficient for qRT-PCR. Conclusion All data combined we recommend RPL13A, B2M and RPII as the best choice for qRT-PCR analyses when comparing normoxic and hypoxic cultured human chondrocytes although other genes might also be suitable. However, the matching of HKG to target genes by means of a thorough investigation of the stability in each study would always be preferable.
Collapse
|
10
|
Identification of suitable reference genes for gene expression studies of human serous ovarian cancer by real-time polymerase chain reaction. Anal Biochem 2009; 394:110-6. [PMID: 19622337 DOI: 10.1016/j.ab.2009.07.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/11/2009] [Accepted: 07/15/2009] [Indexed: 12/31/2022]
Abstract
Quantitative real-time RT-PCR (RT-qPCR) has proven to be a valuable molecular technique in gene expression quantification. Target gene expression levels are usually normalized to a stably expressed reference gene simultaneously determined in the same sample. It is critical to select optimal reference genes to interpret data generated by RT-qPCR. However, no suitable reference genes have been identified in human ovarian cancer to date. In this study, 10 housekeeping genes, ACTB, ALAS1, GAPDH, GUSB, HPRT1, PBGD, PPIA, PUM1, RPL29, and TBP as well as 18S rRNA that were already used in various studies were analyzed to determine their applicability. Totally 20 serous ovarian cancer specimens and 20 normal ovarian epithelial tissue specimens were examined. All candidate reference genes showed significant differences in expression between malignant and nonmalignant groups except GUSB, PPIA, and TBP. The expression stability and suitability of the 11 genes were validated employing geNorm and NormFinder. GUSB, PPIA, and TBP were demonstrated as the most stable reference genes and thus could be used as reference genes for normalization in gene profiling studies of serous ovarian cancer, while the combination of two genes (GUSB and PPIA) or the all three genes should be recommended as a much more reliable normalization strategy.
Collapse
|
11
|
Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 2005; 6:279-84. [PMID: 15815687 DOI: 10.1038/sj.gene.6364190] [Citation(s) in RCA: 1253] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Real-time RT-PCR has become a common technique, no longer limited to specialist core facilities. It is in many cases the only method for measuring mRNA levels of vivo low copy number targets of interest for which alternative assays either do not exist or lack the required sensitivity. Benefits of this procedure over conventional methods for measuring RNA include its sensitivity, large dynamic range, the potential for high throughout as well as accurate quantification. To achieve this, however, appropriate normalisation strategies are required to control for experimental error introduced during the multistage process required to extract and process the RNA. There are many strategies that can be chosen; these include normalisation to sample size, total RNA and the popular practice of measuring an internal reference or housekeeping gene. However, these methods are frequently applied without appropriate validation. In this review we discuss the relative merits of different normalisation strategies and suggest a method of validation that will enable the measurement of biologically meaningful results.
Collapse
Affiliation(s)
- J Huggett
- Centre for Infectious Diseases and International Health, University College London, London, UK.
| | | | | | | |
Collapse
|
12
|
Schummer M, Ng WV, Bumgarner RE, Nelson PS, Schummer B, Bednarski DW, Hassell L, Baldwin RL, Karlan BY, Hood L. Comparative hybridization of an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene 1999; 238:375-85. [PMID: 10570965 DOI: 10.1016/s0378-1119(99)00342-x] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Comparative hybridization of cDNA arrays is a powerful tool for the measurement of differences in gene expression between two or more tissues. We optimized this technique and employed it to discover genes with potential for the diagnosis of ovarian cancer. This cancer is rarely identified in time for a good prognosis after diagnosis. An array of 21,500 unknown ovarian cDNAs was hybridized with labeled first-strand cDNA from 10 ovarian tumors and six normal tissues. One hundred and thirty-four clones are overexpressed in at least five of the 10 tumors. These cDNAs were sequenced and compared to public sequence databases. One of these, the gene HE4, was found to be expressed primarily in some ovarian cancers, and is thus a potential marker of ovarian carcinoma.
Collapse
Affiliation(s)
- M Schummer
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|