1
|
Zhigulev A, Norberg Z, Cordier J, Spalinskas R, Bassereh H, Björn N, Pradhananga S, Gréen H, Sahlén P. Enhancer mutations modulate the severity of chemotherapy-induced myelosuppression. Life Sci Alliance 2024; 7:e202302244. [PMID: 38228368 PMCID: PMC10796589 DOI: 10.26508/lsa.202302244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Non-small cell lung cancer is often diagnosed at advanced stages, and many patients are still treated with classical chemotherapy. The unselective nature of chemotherapy often results in severe myelosuppression. Previous studies showed that protein-coding mutations could not fully explain the predisposition to myelosuppression. Here, we investigate the possible role of enhancer mutations in myelosuppression susceptibility. We produced transcriptome and promoter-interaction maps (using HiCap) of three blood stem-like cell lines treated with carboplatin or gemcitabine. Taking advantage of publicly available enhancer datasets, we validated HiCap results in silico and in living cells using epigenetic CRISPR technology. We also developed a network approach for interactome analysis and detection of differentially interacting genes. Differential interaction analysis provided additional information on relevant genes and pathways for myelosuppression compared with differential gene expression analysis at the bulk level. Moreover, we showed that enhancers of differentially interacting genes are highly enriched for variants associated with differing levels of myelosuppression. Altogether, our work represents a prominent example of integrative transcriptome and gene regulatory datasets analysis for the functional annotation of noncoding mutations.
Collapse
Affiliation(s)
- Artemy Zhigulev
- Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Zandra Norberg
- Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Julie Cordier
- Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Rapolas Spalinskas
- Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Hassan Bassereh
- Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Niclas Björn
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Sailendra Pradhananga
- Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Henrik Gréen
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Pelin Sahlén
- Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
2
|
Nunthanasup N, Ketprasit N, Noulsri E, Palasuwan A, Combes V, Kulkeaw K, Palasuwan D. Thrombopoietin-independent generation of platelet-like particles from megakaryoblastic cells. Sci Rep 2023; 13:22553. [PMID: 38110522 PMCID: PMC10728061 DOI: 10.1038/s41598-023-50111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023] Open
Abstract
The use of megakaryoblastic leukemia MEG-01 cells can help reveal the mechanisms of thrombopoiesis. However, conventional in vitro activation of platelet release from MEG-01 cells requires thrombopoietin, which is costly. Here, we aim to develop a more straightforward and affordable method. Synchronization of the MEG-01 cells was initially performed using serum-free culture, followed by spontaneous cell differentiation in the presence of serum. Different stages of megakaryoblast differentiation were classified based on cell morphology, DNA content, and cell cycle. The MEG-01 cells released platelet-like particles at a level comparable to that of the thrombopoietin-activated MEG-01 cells. The platelet-like particles were distinguishable from PLP-derived extracellular vesicles and could express P-selectin following ADP activation. Importantly, the platelet-like particles induced fibrin clotting in vitro using platelet-poor plasma. Therefore, this thrombopoietin-independent cell synchronization method is an effective and straightforward method for studying megakaryopoiesis and thrombopoiesis.
Collapse
Affiliation(s)
- Nuntiporn Nunthanasup
- Program in Clinical Hematology Sciences, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nutpakal Ketprasit
- Oxidation in Red Cell Disorders Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Egarit Noulsri
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Attakorn Palasuwan
- Oxidation in Red Cell Disorders Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Valery Combes
- Malaria and Microvesicles Research Group, School of Life Science, Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Duangdao Palasuwan
- Oxidation in Red Cell Disorders Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Skopek R, Palusińska M, Kaczor-Keller K, Pingwara R, Papierniak-Wyglądała A, Schenk T, Lewicki S, Zelent A, Szymański Ł. Choosing the Right Cell Line for Acute Myeloid Leukemia (AML) Research. Int J Mol Sci 2023; 24:5377. [PMID: 36982453 PMCID: PMC10049680 DOI: 10.3390/ijms24065377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Immortalized cell lines are widely used in vitro tools in oncology and hematology research. While these cell lines represent artificial systems and may accumulate genetic aberrations with each passage, they are still considered valuable models for pilot, preliminary, and screening studies. Despite their limitations, cell lines are cost-effective and provide repeatable and comparable results. Choosing the appropriate cell line for acute myeloid leukemia (AML) research is crucial for obtaining reliable and relevant results. Several factors should be considered when selecting a cell line for AML research, such as specific markers and genetic abnormalities associated with different subtypes of AML. It is also essential to evaluate the karyotype and mutational profile of the cell line, as these can influence the behavior and response to the treatment of the cells. In this review, we evaluate immortalized AML cell lines and discuss the issues surrounding them concerning the revised World Health Organization and the French-American-British classifications.
Collapse
Affiliation(s)
- Rafał Skopek
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Katarzyna Kaczor-Keller
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland
| | | | - Tino Schenk
- Department of Hematology and Medical Oncology, Clinic of Internal Medicine II, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
| | - Sławomir Lewicki
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 00-001 Warsaw, Poland
| | - Artur Zelent
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
4
|
Qi K, Hu X, Yu X, Cheng H, Wang C, Wang S, Wang Y, Li Y, Cao J, Pan B, Wu Q, Qiao J, Zeng L, Li Z, Xu K, Fu C. Targeting cyclin-dependent kinases 4/6 inhibits survival of megakaryoblasts in acute megakaryoblastic leukaemia. Leuk Res 2022; 120:106920. [PMID: 35872339 DOI: 10.1016/j.leukres.2022.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/19/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Acute megakaryoblastic leukaemia (AMKL) is characterized by expansion of megakaryoblasts, which are hyper-proliferative cells that fail to undergo differentiation. Insight to the cell-cycle regulation revealed important events in early or late megakaryocytes (MKs) maturation; the cyclin-dependent kinases 4 and 6 (CDK4/6) have been reported to participate in the development of progenitor megakaryocytes, mainly by promoting cell cycle progression and DNA polyploidization. However, it remains unclear whether the continuous proliferation, but not differentiation, of megakaryoblasts is related to an aberrant regulation of CDK4/6 in AMKL. Here, we found that CDK4/6 were up regulated in patients with AMKL, and persistently maintained at a high level during the differentiation of abnormal megakaryocytes in vitro, according to a database and western blot. Additionally, AMKL cells were exceptionally reliant on the cell cycle regulators CDK4 or 6, as blocking their activity using an inhibitor or short hairpin RNA (shRNA) significantly reduced the proliferation of 6133/MPL megakaryocytes, reduced DNA polyploidy, induced apoptosis, decreased the level of phosphorylated retinoblastoma protein (p-Rb), and activation of caspase 3. Additionally, CDK4/6 inhibitors and shRNA reduced the numbers of leukemia cells in the liver and bone marrow (BM), alleviated hepatosplenomegaly, and prolonged the survival of AMKL-transplanted mice. These results suggested that blocking the activity of CDK4/6 may represent an effective approach to control megakaryoblasts in AMKL.
Collapse
Affiliation(s)
- Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Xueting Hu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Xiangru Yu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Hai Cheng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Chunqing Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shujin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yanjie Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jiang Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Qingyun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| |
Collapse
|
5
|
Zhou X, Chen X, Hong T, Zhang M, Cai Y, Cui L. TTC3-Mediated Protein Quality Control, A Potential Mechanism for Cognitive Impairment. Cell Mol Neurobiol 2021; 42:1659-1669. [PMID: 33638766 PMCID: PMC9239942 DOI: 10.1007/s10571-021-01060-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/11/2021] [Indexed: 01/14/2023]
Abstract
The tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.
Collapse
Affiliation(s)
- Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China.
| |
Collapse
|
6
|
A compound combination screening approach with potential to identify new treatment options for paediatric acute myeloid leukaemia. Sci Rep 2020; 10:18514. [PMID: 33116257 PMCID: PMC7595190 DOI: 10.1038/s41598-020-75453-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Paediatric acute myeloid leukaemia (AML) is a heterogeneous disease characterised by genetics and morphology. The introduction of intensive chemotherapy treatments together with patient stratification and supportive therapy has resulted in a moderate improvement in patient prognosis. However, overall survival rates remain unacceptably poor, with only 65% of patients surviving longer than 5 years. Recently age-specific differences in AML have been identified, highlighting the need for tailored treatments for paediatric patients. Combination therapies have the potential to improve patient prognosis, while minimising harmful side-effects. In the laboratory setting, identifying key combinations from large drug libraries can be resource-intensive, prohibiting discovery and translation into the clinic. To minimise redundancy and maximise discovery, we undertook a multiplex screen of 80 apoptotic-inducing agents in paediatric AML pre-clinical models. The screen was designed using an all-pairs testing algorithm, which ensured that all pairs of compounds could be tested, while minimising the number of wells used. We identified a combination of ABT-737, a Bcl-2 family inhibitor and Purvalanol A, a CDK inhibitor, as a potential targeted therapy for AML patients with an MLL rearrangement and an FLT3-ITD. Our approach has the potential to reduce resource-intensity and time associated with the identification of novel combination therapies.
Collapse
|
7
|
Whole-genome sequencing and gene network modules predict gemcitabine/carboplatin-induced myelosuppression in non-small cell lung cancer patients. NPJ Syst Biol Appl 2020; 6:25. [PMID: 32839457 PMCID: PMC7445166 DOI: 10.1038/s41540-020-00146-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Gemcitabine/carboplatin chemotherapy commonly induces myelosuppression, including neutropenia, leukopenia, and thrombocytopenia. Predicting patients at risk of these adverse drug reactions (ADRs) and adjusting treatments accordingly is a long-term goal of personalized medicine. This study used whole-genome sequencing (WGS) of blood samples from 96 gemcitabine/carboplatin-treated non-small cell lung cancer (NSCLC) patients and gene network modules for predicting myelosuppression. Association of genetic variants in PLINK found 4594, 5019, and 5066 autosomal SNVs/INDELs with p ≤ 1 × 10−3 for neutropenia, leukopenia, and thrombocytopenia, respectively. Based on the SNVs/INDELs we identified the toxicity module, consisting of 215 unique overlapping genes inferred from MCODE-generated gene network modules of 350, 345, and 313 genes, respectively. These module genes showed enrichment for differentially expressed genes in rat bone marrow, human bone marrow, and human cell lines exposed to carboplatin and gemcitabine (p < 0.05). Then using 80% of the patients as training data, random LASSO reduced the number of SNVs/INDELs in the toxicity module into a feasible prediction model consisting of 62 SNVs/INDELs that accurately predict both the training and the test (remaining 20%) data with high (CTCAE 3–4) and low (CTCAE 0–1) maximal myelosuppressive toxicity completely, with the receiver-operating characteristic (ROC) area under the curve (AUC) of 100%. The present study shows how WGS, gene network modules, and random LASSO can be used to develop a feasible and tested model for predicting myelosuppressive toxicity. Although the proposed model predicts myelosuppression in this study, further evaluation in other studies is required to determine its reproducibility, usability, and clinical effect.
Collapse
|
8
|
Sanada C, Xavier-Ferrucio J, Lu YC, Min E, Zhang PX, Zou S, Kang E, Zhang M, Zerafati G, Gallagher PG, Krause DS. Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. Blood 2016; 128:923-33. [PMID: 27268089 PMCID: PMC4990855 DOI: 10.1182/blood-2016-01-693705] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
Bipotent megakaryocyte/erythroid progenitors (MEPs) give rise to progeny limited to the megakaryocyte (Mk) and erythroid (E) lineages. We developed a novel dual-detection functional in vitro colony-forming unit (CFU) assay for single cells that differentiates down both the Mk and E lineages (CFU-Mk/E), which allowed development and validation of a novel purification strategy for the identification and quantitation of primary functional human MEPs from granulocyte colony-stimulating factor-mobilized peripheral blood and bone marrow. Applying this assay to fluorescence-activated cell sorter-sorted cell populations, we found that the Lin(-)CD34(+)CD38(mid)CD45RA(-)FLT3(-)MPL(+)CD36(-)CD41(-) population is much more highly enriched for bipotent MEPs than any previously reported subpopulations. We also developed purification strategies for primary human lineage-committed Mk and E progenitors identified as CFU-Mk and burst forming unit-E. Comparative expression analyses in MEP, MkP, and ErP populations revealed differential expression of MYB We tested whether alterations in MYB concentration affect the Mk-E fate decision at the single cell level in MEPs and found that short hairpin RNA-mediated MYB knockdown promoted commitment of MEPs to the Mk lineage, further defining its role in MEP lineage fate. There are numerous applications for these novel enrichment strategies, including facilitating mechanistic studies of MEP lineage commitment, improving approaches for in vitro expansion of Mk and E cells, and developing improved therapies for benign and malignant hematologic disease.
Collapse
Affiliation(s)
| | | | - Yi-Chien Lu
- Department of Laboratory Medicine, Yale Stem Cell Center
| | | | - Ping-Xia Zhang
- Department of Laboratory Medicine, Yale Stem Cell Center
| | - Siying Zou
- Yale Stem Cell Center, Department of Cell Biology
| | | | - Meng Zhang
- Yale Stem Cell Center, Department of Cell Biology
| | | | | | - Diane S Krause
- Department of Laboratory Medicine, Yale Stem Cell Center, Department of Cell Biology, Department of Pathology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
9
|
Sakamoto S, Kawabata H, Masuda T, Uchiyama T, Mizumoto C, Ohmori K, Koeffler HP, Kadowaki N, Takaori-Kondo A. H-Ferritin Is Preferentially Incorporated by Human Erythroid Cells through Transferrin Receptor 1 in a Threshold-Dependent Manner. PLoS One 2015; 10:e0139915. [PMID: 26441243 PMCID: PMC4595017 DOI: 10.1371/journal.pone.0139915] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/19/2015] [Indexed: 02/04/2023] Open
Abstract
Ferritin is an iron-storage protein composed of different ratios of 24 light (L) and heavy (H) subunits. The serum level of ferritin is a clinical marker of the body's iron level. Transferrin receptor (TFR)1 is the receptor not only for transferrin but also for H-ferritin, but how it binds two different ligands and the blood cell types that preferentially incorporate H-ferritin remain unknown. To address these questions, we investigated hematopoietic cell-specific ferritin uptake by flow cytometry. Alexa Fluor 488-labeled H-ferritin was preferentially incorporated by erythroid cells among various hematopoietic cell lines examined, and was almost exclusively incorporated by bone marrow erythroblasts among human primary hematopoietic cells of various lineages. H-ferritin uptake by erythroid cells was strongly inhibited by unlabeled H-ferritin but was only partially inhibited by a large excess of holo-transferrin. On the other hand, internalization of labeled holo-transferrin by these cells was not inhibited by H-ferritin. Chinese hamster ovary cells lacking functional endogenous TFR1 but expressing human TFR1 with a mutated RGD sequence, which is required for transferrin binding, efficiently incorporated H-ferritin, indicating that TFR1 has distinct binding sites for H-ferritin and holo-transferrin. H-ferritin uptake by these cells required a threshold level of cell surface TFR1 expression, whereas there was no threshold for holo-transferrin uptake. The requirement for a threshold level of TFR1 expression can explain why among primary human hematopoietic cells, only erythroblasts efficiently take up H-ferritin.
Collapse
Affiliation(s)
- Soichiro Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology, Japanese Red Cross Takatsuki Hospital, Takatsuki, Japan
| | - Hiroshi Kawabata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Taro Masuda
- Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tatsuki Uchiyama
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology and Immunology, Japanese Red Cross Otsu Hospital, Otsu, Japan
| | - Chisaki Mizumoto
- Department of Hematology and Immunology, Japanese Red Cross Otsu Hospital, Otsu, Japan
| | - Katsuyuki Ohmori
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - H. Phillip Koeffler
- Division of Hematology and Oncology, Cedars-Sinai Medical Center, University of California Los Angeles, School of Medicine, Los Angeles, California, United States of America
- National University of Singapore, Singapore, Singapore
| | - Norimitsu Kadowaki
- Division of Endocrinology and Metabolism, Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Graduate School of Medicine, Kagawa University, Takamatsu, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Jimenez K, Khare V, Evstatiev R, Kulnigg-Dabsch S, Jambrich M, Strobl H, Gasche C. Increased expression of HIF2α during iron deficiency-associated megakaryocytic differentiation. J Thromb Haemost 2015; 13:1113-27. [PMID: 25715026 PMCID: PMC4949661 DOI: 10.1111/jth.12884] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/12/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Iron deficiency is associated with reactive thrombocytosis; however, the mechanisms driving this phenomenon remain unclear. We previously demonstrated that this occurs alongside enhanced megakaryopoiesis in iron-deficient rats, without alterations in the megakaryopoietic growth factors thrombopoietin, interleukin-6, or interleukin-11. OBJECTIVES The aim of this study was to evaluate megakaryocyte differentiation under iron deficiency in an in vitro model and to investigate potential genes involved in this process. METHODS Human erythroleukemia and megakaryoblastic leukemia cell lines, as well as cord-blood derived hematopoietic stem cells were cultured under iron deficiency. Cell morphology, ploidy, expression of CD41, CD61, and CD42b, and proplatelet formation were assessed in iron-deficient cultures. Polymerase chain reaction arrays were used to identify candidate genes that were verified using real-time polymerase chain reaction. Hypoxia-inducible factor 1, α subunit (HIF2α) protein expression was assessed in bone marrow sections from iron-deficient rats and vascular endothelial growth factor (VEGF)-A in culture supernatants. RESULTS AND CONCLUSIONS Iron deficiency enhanced megakaryoid features in cell lines, increasing ploidy and initiating formation of proplatelet-like structures. In cord blood cell cultures, iron deficiency increased the percentage of cells expressing megakaryopoietic markers and enhanced proplatelet formation. HIF2α and VEGF were identified as potential pathways involved in this process. HIF2α protein expression was increased in megakaryocytes from iron-deficient rats, and VEGF-A concentration was higher in iron-deficient culture supernatants. Addition of VEGF-A to cell cultures increased percentage expression of megakaryocyte CD41. In conclusion, the data demonstrate that iron deficiency augments megakaryocytic differentiation and proplatelet formation and a potential role of HIF2α in megakaryopoiesis.
Collapse
Affiliation(s)
- K Jimenez
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - V Khare
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - R Evstatiev
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - S Kulnigg-Dabsch
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - M Jambrich
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - H Strobl
- Center of Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
- Center of Molecular Medicine, Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - C Gasche
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Phosphorylation of ribosomal protein S6 kinase 1 at Thr421/Ser424 and dephosphorylation at Thr389 regulates SP600125-induced polyploidization of megakaryocytic cell lines. PLoS One 2014; 9:e114389. [PMID: 25486532 PMCID: PMC4259319 DOI: 10.1371/journal.pone.0114389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 11/07/2014] [Indexed: 11/19/2022] Open
Abstract
Megakaryocytes (MKs) are one of the few cell types that become polyploid; however, the mechanisms by which these cells are designated to become polyploid are not fully understood. In this investigation, we successfully established two relatively synchronous polyploid cell models by inducing Dami and CMK cells with SP600125. We found that SP600125 induced the polyploidization of Dami and CMK cells, concomitant with the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) at Thr421/Ser424 and dephosphorylation at Thr389. The polyploidization was partially blocked by H-89, a cAMP-dependent protein kinase (PKA) inhibitor, through direct binding to S6K1, leading to dephosphorylation at Thr421/Ser424 and phosphorylation at Thr389, independent of PKA. Overexpression of a rapamycin-resistant mutant of S6K1 further enhanced the inhibitory effect of LY294002 on the SP600125-induced polyploidization of Dami and CMK cells. SP600125 also induced the polyploidization of Meg-01 cells, which are derived from a patient with chronic myelogenous leukemia, without causing a significant change in S6K1 phosphorylation. Additionally, SP600125 induced the polyploidization of HEL cells, which are derived from a patient with erythroleukemia, and phosphorylation at Thr389 of S6K1 was detected. However, the polyploidization of both Meg-01 cells and HEL cells as a result of SP600125 treatment was lower than that of SP600125-induced Dami and CMK cells, and it was not blocked by H-89 despite the increased phosphorylation of S6K1 at Thr389 in both cell lines in response to H-89. Given that the Dami and CMK cell lines were derived from patients with acute megakaryocytic leukemia (AMKL) and expressed high levels of platelet-specific antigens, our data suggested that SP600125-induced polyploidization is cell-type specific, that these cell lines were more differentiated, and that phosphorylation at Thr421/Ser424 and dephosphorylation at Thr389 of S6K1 may play an important role in the SP600125-induced polyploidization of these cell lines synergistically with other signaling pathways.
Collapse
|
12
|
Caldwell JT, Edwards H, Buck SA, Ge Y, Taub JW. Targeting the wee1 kinase for treatment of pediatric Down syndrome acute myeloid leukemia. Pediatr Blood Cancer 2014; 61:1767-73. [PMID: 24962331 PMCID: PMC4199830 DOI: 10.1002/pbc.25081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Most Down syndrome children with acute myeloid leukemia (DS-AML) have an overall excellent prognosis, however, patients who suffer an induction failure or relapse, have an extremely poor prognosis. Hence, new therapies need to be developed for this subgroup of DS-AML patients. One new therapeutic approach is preventing cell cycle checkpoint activation by inhibiting the upstream kinase wee1 with the first-in-class inhibitor MK-1775 in combination with the standard genotoxic agent cytarabine (AraC). PROCEDURE Using the clinically relevant DS-AML cell lines CMK and CMY, as well as ex vivo primary DS-AML patient samples, the ability of MK-1775 to enhance the cytotoxicity of AraC was investigated with MTT assays. The mechanism by which MK-1775 enhanced AraC cytotoxicity was investigated in the cell lines using Western blots to probe CDK1 and H2AX phosphorylation and flow cytometry to determine apoptosis, cell cycle arrest, DNA damage, and aberrant mitotic entry. RESULTS MK-1775 alone had modest single-agent activity, however, MK-1775 was able to synergize with AraC in causing proliferation arrest in both cell lines and primary patient samples, and enhance AraC-induced apoptosis. MK-1775 was able to decrease inhibitory CDK1(Y15) phosphorylation at the relatively low concentration of 100 nM after only 4 hours. Furthermore, it was able to enhance DNA damage induced by AraC and partially abrogate cell cycle arrest. Importantly, the DNA damage enhancement appeared in early S-phase. CONCLUSIONS MK-1775 is able to enhance the cytotoxicity of AraC in DS-AML cells and presents a promising new treatment approach for DS-AML.
Collapse
Affiliation(s)
- J. Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, Michigan,Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Steven A. Buck
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan,Correspondence to: Yubin Ge, Department of Oncology, Wayne State University School of Medicine, 110 East Warren Ave., Detroit, MI 48201.
| | - Jeffrey W. Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan,Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan,Correspondence to: Jeffrey W. Taub, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI 48201,
| |
Collapse
|
13
|
Identification of NuRSERY, a new functional HDAC complex composed by HDAC5, GATA1, EKLF and pERK present in human erythroid cells. Int J Biochem Cell Biol 2014; 50:112-22. [PMID: 24594363 DOI: 10.1016/j.biocel.2014.02.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/17/2014] [Accepted: 02/21/2014] [Indexed: 12/21/2022]
Abstract
To clarify the role of HDACs in erythropoiesis, expression, activity and function of class I (HDAC1, HDAC2, HDAC3) and class IIa (HDAC4, HDAC5) HDACs during in vitro maturation of human erythroblasts were compared. During erythroid maturation, expression of HDAC1, HDAC2 and HDAC3 remained constant and activity and GATA1 association (its partner of the NuRD complex), of HDAC1 increased. By contrast, HDAC4 content drastically decreased and HDAC5 remained constant in content but decreased in activity. In erythroid cells, pull down experiments identified the presence of a novel complex formed by HDAC5, GATA1, EKLF and pERK which was instead undetectable in cells of the megakaryocytic lineage. With erythroid maturation, association among HDAC5, GATA1 and EKLF persisted but levels of pERK sharply decreased. Treatment of erythroleukemic cells with inhibitors of ERK phosphorylation reduced by >90% the total and nuclear content of HDAC5, GATA1 and EKLF, suggesting that ERK phosphorylation is required for the formation of this complex. Based on the function of class IIa HDACs as chaperones of other proteins to the nucleus and the erythroid-specificity of HDAC5 localization, this novel HDAC complex was named nuclear remodeling shuttle erythroid (NuRSERY). Exposure of erythroid cells to the class II-selective HDAC inhibitor (HDACi) APHA9 increased γ/(γ+β) globin expression ratios (Mai et al., 2007), suggesting that NuRSERY may regulate globin gene expression. In agreement with this hypothesis, exposure of erythroid cells to APHA9 greatly reduced the association among HDAC5, GATA1 and EKLF. Since exposure to APHA9 did not affect survival rates or p21 activation, NuRSERY may represent a novel, possibly less toxic, target for epigenetic therapies of hemoglobinopaties and other disorders.
Collapse
|
14
|
Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, Fujita KI, Koike T, Harimoto KI, Dohda T, Watanabe A, Okita K, Takahashi N, Sawaguchi A, Yamanaka S, Nakauchi H, Nishimura S, Eto K. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 2014; 14:535-48. [PMID: 24529595 DOI: 10.1016/j.stem.2014.01.011] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 10/02/2013] [Accepted: 01/12/2014] [Indexed: 12/25/2022]
Abstract
The donor-dependent supply of platelets is frequently insufficient to meet transfusion needs. To address this issue, we developed a clinically applicable strategy for the derivation of functional platelets from human pluripotent stem cells (PSCs). This approach involves the establishment of stable immortalized megakaryocyte progenitor cell lines (imMKCLs) from PSC-derived hematopoietic progenitors through the overexpression of BMI1 and BCL-XL to respectively suppress senescence and apoptosis and the constrained overexpression of c-MYC to promote proliferation. The resulting imMKCLs can be expanded in culture over extended periods (4-5 months), even after cryopreservation. Halting the overexpression of c-MYC, BMI1, and BCL-XL in growing imMKCLs led to the production of CD42b(+) platelets with functionality comparable to that of native platelets on the basis of a range of assays in vitro and in vivo. The combination of robust expansion capacity and efficient platelet production means that appropriately selected imMKCL clones represent a potentially inexhaustible source of hPSC-derived platelets for clinical application.
Collapse
Affiliation(s)
- Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Naoya Takayama
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Shinji Hirata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Hideya Seo
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Hiroshi Endo
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Kiyosumi Ochi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Ken-ichi Fujita
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Tomo Koike
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Ken-ichi Harimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Takeaki Dohda
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Akira Watanabe
- Department of Reprogramming Science, CiRA, Kyoto University, 606-8507, Japan
| | - Keisuke Okita
- Department of Reprogramming Science, CiRA, Kyoto University, 606-8507, Japan
| | - Nobuyasu Takahashi
- Department of Anatomy, Ultrastructural Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Akira Sawaguchi
- Department of Anatomy, Ultrastructural Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shinya Yamanaka
- Department of Reprogramming Science, CiRA, Kyoto University, 606-8507, Japan
| | - Hiromitsu Nakauchi
- Laboratory of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Nishimura
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan; Laboratory of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
15
|
Sunohara M, Morikawa S, Fuse A, Sato I. GATA-dependent regulation of TPO-induced c-mpl gene expression during megakaryopoiesis. Okajimas Folia Anat Jpn 2014; 90:101-106. [PMID: 24815109 DOI: 10.2535/ofaj.90.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Thrombopoietin (TPO) and its receptor, c-Mpl, play the crucial role during megakaryocytopoiesis. Previously, we have shown that the promoter activity of c-mpl induced by TPO is modulated by transcription through a PKC-dependent pathway and that GATA(-77) is involved as a positive regulatory element in TPO-induced c-mpl gene expression in the megakaryoblastic CMK cells. In this research, to examine participating possibility of GATA promoter element in TPO- induced c-mpl gene expression through a PKC-independent pathway, the promoter activity of site-directed mutagenesis and the effect of potein kinase C modulator were measured by a transient transfection assay system. Together with our previous results on the TPO-induced c-mpl promoter, this study indicates destruction of -77GATA in c-mpl promoter decreased the activity by 47.3% under existence of GF109203. These results suggest that GATA promoter element plays significant role in TPO-induced c-mpl gene expression through a PKC-independent pathway.
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University
| | | | | | | |
Collapse
|
16
|
Sunohara M, Morikawa S, Fuse A, Sato I. Role of promoter element in c-mpl gene expression induced by TPO. Okajimas Folia Anat Jpn 2013; 89:131-135. [PMID: 23614986 DOI: 10.2535/ofaj.89.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Thrombopoietin (TPO) and its receptor, c-Mpl, play the crucial role for the development of megakaryocyte and considered to regulate megakaryocytopoiesis. Previously we reported that TPO increased the c-mpl promoter activity determined by a transient expression system using a vector containing the luciferase gene as a reporter and the expression of the c-mpl gene is modulated by transcription through a protein kinase C (PKC)-dependent pathway in the megakaryoblastic cells. In this research, to elucidate the required elements in c-mpl promoter, the promoter activity of the deletion constructs and site-directed mutagenesis were measured by a transient transfection assay system. Destruction of -77GATA in c-mpl promoter decreased the activity by 22.8%. Our study elucidated that -77GATA involved in TPO-induced c-mpl gene expression in a human megakaryoblastic cell line, CMK.
Collapse
MESH Headings
- Cell Differentiation/physiology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/pathology
- Leukemia, Megakaryoblastic, Acute/physiopathology
- Megakaryocytes/pathology
- Promoter Regions, Genetic/physiology
- Protein Kinase C/physiology
- Receptors, Thrombopoietin/genetics
- Recombinant Proteins/pharmacology
- Signal Transduction/physiology
- Thrombopoiesis/genetics
- Thrombopoiesis/physiology
- Thrombopoietin/pharmacology
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | | | | | |
Collapse
|
17
|
AF10 plays a key role in the survival of uncommitted hematopoietic cells. PLoS One 2012; 7:e51626. [PMID: 23284727 PMCID: PMC3526614 DOI: 10.1371/journal.pone.0051626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/02/2012] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is a complex process regulated by both cell intrinsic and cell extrinsic factors. Alterations in the expression of critical genes during hematopoiesis can modify the balance between stem cell differentiation and proliferation, and may ultimately give rise to leukemia and other diseases. AF10 is a transcription factor that has been implicated in the development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other genes, MLL and CALM. The link between AF10 and leukemia, together with the known interactions between AF10 and hematopoietic regulators, suggests that AF10 may be important in hematopoiesis and in leukemic transformation. Here we show that AF10 is important for proper hematopoietic differentiation. The induction of hematopoietic differentiation in both human hematopoietic cell lines and murine total bone marrow cells triggers a decrease of AF10 mRNA and protein levels, particularly in stem cells and multipotent progenitors. Gain- and loss-of-function studies demonstrate that over- or under-expression of AF10 leads to apoptotic cell death in stem cells and multipotent progenitors. We conclude that AF10 plays a key role in the maintenance of multipotent hematopoietic cells.
Collapse
|
18
|
Gruber TA, Gedman AL, Zhang J, Koss CS, Marada S, Ta HQ, Chen SC, Su X, Ogden SK, Dang J, Wu G, Gupta V, Andersson AK, Pounds S, Shi L, Easton J, Barbato MI, Mulder HL, Manne J, Wang J, Rusch M, Ranade S, Ganti R, Parker M, Ma J, Radtke I, Ding L, Cazzaniga G, Biondi A, Kornblau SM, Ravandi F, Kantarjian H, Nimer SD, Döhner K, Döhner H, Ley TJ, Ballerini P, Shurtleff S, Tomizawa D, Adachi S, Hayashi Y, Tawa A, Shih LY, Liang DC, Rubnitz JE, Pui CH, Mardis ER, Wilson RK, Downing JR. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 2012; 22:683-97. [PMID: 23153540 PMCID: PMC3547667 DOI: 10.1016/j.ccr.2012.10.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/05/2012] [Accepted: 10/17/2012] [Indexed: 01/12/2023]
Abstract
To define the mutation spectrum in non-Down syndrome acute megakaryoblastic leukemia (non-DS-AMKL), we performed transcriptome sequencing on diagnostic blasts from 14 pediatric patients and validated our findings in a recurrency/validation cohort consisting of 34 pediatric and 28 adult AMKL samples. Our analysis identified a cryptic chromosome 16 inversion (inv(16)(p13.3q24.3)) in 27% of pediatric cases, which encodes a CBFA2T3-GLIS2 fusion protein. Expression of CBFA2T3-GLIS2 in Drosophila and murine hematopoietic cells induced bone morphogenic protein (BMP) signaling and resulted in a marked increase in the self-renewal capacity of hematopoietic progenitors. These data suggest that expression of CBFA2T3-GLIS2 directly contributes to leukemogenesis.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Proteins/metabolism
- Child
- Chromosome Inversion
- Chromosomes, Human, Pair 16
- Drosophila/genetics
- Drosophila/growth & development
- Gene Expression Profiling
- Humans
- Kruppel-Like Transcription Factors/genetics
- Leukemia, Megakaryoblastic, Acute/classification
- Leukemia, Megakaryoblastic, Acute/diagnosis
- Leukemia, Megakaryoblastic, Acute/genetics
- Mice
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/physiology
- Prognosis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/physiology
- Repressor Proteins/genetics
- Sequence Analysis, RNA
- Signal Transduction
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Tanja A. Gruber
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda Larson Gedman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cary S. Koss
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suresh Marada
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huy Q. Ta
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shann-Ching Chen
- Hartwell Center for Biotechnology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Stacey K. Ogden
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinjun Dang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vedant Gupta
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anna K. Andersson
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Pediatric Cancer Genome Project, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael I. Barbato
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Pediatric Cancer Genome Project, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather L. Mulder
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Pediatric Cancer Genome Project, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jayanthi Manne
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Pediatric Cancer Genome Project, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jianmin Wang
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Ramapriya Ganti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Parker
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Hartwell Center for Biotechnology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ina Radtke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Ding
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, USA, The Genome Institute at Washington University, St Louis, MO, USA
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Pediatric Clinic, Univ. Milan Bicocca, Monza, Italy
| | - Andrea Biondi
- Pediatric Unit, University of Milan-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Steven M. Kornblau
- Department of Blood and Marrow Transplantation, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Stephen D. Nimer
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute , New York, NY, USA
| | - Konstanze Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Timothy J. Ley
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, USA, The Genome Institute at Washington University, St Louis, MO, USA
| | - Paola Ballerini
- Laboratoire d'Hématologie, Hôpital A. Trousseau, Paris, France
| | - Sheila Shurtleff
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daisuke Tomizawa
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Souichi Adachi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Haematology/Oncology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Akio Tawa
- Dept. of Pediatrics, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Der-Cherng Liang
- Division of Pediatric Hematology Oncology, Mackay Memorial Hospital, Taipei Taiwan
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elaine R Mardis
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, USA, The Genome Institute at Washington University, St Louis, MO, USA
| | - Richard K Wilson
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, USA, The Genome Institute at Washington University, St Louis, MO, USA
| | - James R. Downing
- St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, Memphis, TN, USA and St. Louis, MO, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
19
|
Wen Q, Goldenson B, Silver SJ, Schenone M, Dancik V, Huang Z, Wang LZ, Lewis TA, An WF, Li X, Bray MA, Thiollier C, Diebold L, Gilles L, Vokes MS, Moore CB, Bliss-Moreau M, Verplank L, Tolliday NJ, Mishra R, Vemula S, Shi J, Wei L, Kapur R, Lopez CK, Gerby B, Ballerini P, Pflumio F, Gilliland DG, Goldberg L, Birger Y, Izraeli S, Gamis AS, Smith FO, Woods WG, Taub J, Scherer CA, Bradner JE, Goh BC, Mercher T, Carpenter AE, Gould RJ, Clemons PA, Carr SA, Root DE, Schreiber SL, Stern AM, Crispino JD. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell 2012; 150:575-89. [PMID: 22863010 DOI: 10.1016/j.cell.2012.06.032] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/03/2012] [Accepted: 06/04/2012] [Indexed: 01/04/2023]
Abstract
The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.
Collapse
Affiliation(s)
- Qiang Wen
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nakazawa T, Tadokoro S, Kamae T, Kiyomizu K, Kashiwagi H, Honda S, Kanakura Y, Tomiyama Y. Agonist stimulation, talin-1, and kindlin-3 are crucial for α(IIb)β(3) activation in a human megakaryoblastic cell line, CMK. Exp Hematol 2012; 41:79-90.e1. [PMID: 23022222 DOI: 10.1016/j.exphem.2012.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Platelet integrin α(IIb)β(3) activation is regulated by inside-out signaling via agonist stimulation. However, when α(IIb)β(3) was exogenously expressed in cell lines such as Chinese hamster ovarian cells, physiological agonists hardly induced α(IIb)β(3) activation. To overcome this disadvantage, we characterized the functional regulation of endogenously expressed α(IIb)β(3) in a megakaryoblastic cell line, CMK, employing an initial velocity assay for PAC-1 binding. We firstly demonstrated that protease-activated receptor 1-activating peptide induced robust, but transient α(IIb)β(3) activation in CMK cells with high glycoprotein-Ib expression. Stable talin-1 or kindlin-3 knockdown cells confirmed that the protease-activated receptor 1-activating peptide-induced α(IIb)β(3) activation was dependent on talin-1 and kindlin-3 expression. In sharp contrast to exogenously expressed α(IIb)β(3) in Chinese hamster ovarian cells, transient overexpression of full-length talin (FL-talin) or talin-head domain (THD) alone did not activate α(IIb)β(3) in CMK cells, but required agonist stimulation. Similarly, kindlin-3 overexpression alone did not induce α(IIb)β(3) activation, but it significantly augmented agonist-induced α(IIb)β(3) activation. Several mutants of FL-talin and THD suggested that the head-rod interaction was critical for autoinhibition of talin-1, and the interaction between the THD and the membrane-proximal region of the β(3) cytoplasmic tail was essential for talin-mediated α(IIb)β(3) activation. In addition, THD and kindlin-3 cooperatively augmented protease-activated receptor 1-induced α(IIb)β(3) activation. We proposed that the CMK cell line is an attractive platform for investigating agonist-, talin-1-, and kindlin-3- dependent α(IIb)β(3) activation.
Collapse
Affiliation(s)
- Tsuyoshi Nakazawa
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
A unique role of GATA1s in Down syndrome acute megakaryocytic leukemia biology and therapy. PLoS One 2011; 6:e27486. [PMID: 22110660 PMCID: PMC3217966 DOI: 10.1371/journal.pone.0027486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute megakaryocytic leukemia (AMkL) in Down syndrome (DS) children is uniformly associated with somatic GATA1 mutations, which result in the synthesis of a shorter protein (GATA1s) with altered transactivation activity compared to the wild-type GATA1. It is not fully established whether leukemogenesis and therapeutic responses in DS AMkL patients are due to loss of the wild-type GATA1 or due to a unique function of GATA1s. METHODOLOGY Stable clones of CMK cells with decreased GATA1s or Bcl-2 levels were generated by using GATA1- or BCL-2-specific lentivirus shRNAs. In vitro ara-C, daunorubicin, and VP-16 cytotoxicities of the shRNA stable clones were determined by using the Cell Titer-blue reagent. Apoptosis and cell cycle distribution were determined by flow cytometry analysis. Changes in gene transcript levels were determined by gene expression microarray and/or real-time RT-PCR. Changes in protein levels were measured by Western blotting. In vivo binding of GATA1s to IL1A promoter was determined by chromatin immunoprecipitation assays. RESULTS Lentivirus shRNA knockdown of the GATA1 gene in the DS AMkL cell line, CMK (harbors a mutated GATA1 gene and only expresses GATA1s), resulting in lower GATA1s protein levels, promoted cell differentiation towards the megakaryocytic lineage and repressed cell proliferation. Increased basal apoptosis and sensitivities to ara-C, daunorubicin, and VP-16 accompanied by down-regulated Bcl-2 were also detected in the CMK GATA1 shRNA knockdown clones. Essentially the same results were obtained when Bcl-2 was knocked down with lentivirus shRNA in CMK cells. Besides Bcl-2, down-regulation of GATA1s also resulted in altered expression of genes (e.g., IL1A, PF4, and TUBB1) related to cell death, proliferation, and differentiation. CONCLUSION Our results suggest that GATA1s may facilitate leukemogenesis and potentially impact therapeutic responses in DS AMkL by promoting proliferation and survival, and by repressing megakaryocytic lineage differentiation, potentially by regulating expression of Bcl-2 protein and other relevant genes.
Collapse
|
22
|
Usui M, Kato H, Kuriyama N, Azumi Y, Kishiwada M, Mizuno S, Sakurai H, Tabata M, Hayashi T, Suzuki K, Isaji S. Effect of a prostaglandin I(2) analog on the expression of thrombomodulin in liver and spleen endothelial cells after an extensive hepatectomy. Surg Today 2011; 41:230-236. [PMID: 21264759 DOI: 10.1007/s00595-009-4263-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 11/19/2009] [Indexed: 11/29/2022]
Abstract
PURPOSE Dysfunction of the remnant liver after a hepatectomy is caused by microthrombus formation due to endothelial cell (EC) damage. This study evaluated the effect of prostaglandin I(2) (PGI(2)) on the expression of thrombomodulin (TM), a marker for the anticoagulant properties of ECs, using cultured human umbilical vein endothelial cells (HUVECs), and using a canine extensive hepatectomy model. METHODS The presence of PGI(2) receptors was confirmed on HUVECs by reverse transcription-polymerase chain reaction, and the effect of the PGI(2) analog on TM expression on HUVECs was determined by an enzyme-linked immunosorbent assay. Twenty mongrel dogs were divided into four groups comprising a sham operation, 70% hepatectomy, 84% hepatectomy, and 84% hepatectomy, with the administration of the PGI(2) analog, respectively, and TM expression in the liver, spleen, pancreas, kidney, lung, portal vein, and intestine was determined immunohistochemically. RESULTS The TM expression on HUVECs was upregulated by the PGI(2) analog. The TM expression on ECs in the hepatic sinusoids and splenic sinus were markedly decreased after the 84% hepatectomy, but such damage was markedly mitigated following an 84% hepatectomy with administration of the PGI(2) analog. CONCLUSIONS An extensive hepatectomy induced severe EC damage not only in the hepatic sinusoids but in the splenic sinuses as well. Prostaglandin I(2) prevented damage to these ECs, suggesting that PGI(2) improves the microcirculation in the remnant liver.
Collapse
Affiliation(s)
- Masanobu Usui
- Departments of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sunohara M, Morikawa S, Murata H, Fuse A, Sato I. PKC plays a crucial roles in c-mpl gene expression in megakaryoblastic cells. Okajimas Folia Anat Jpn 2010; 87:151-4. [PMID: 21174945 DOI: 10.2535/ofaj.87.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thrombopoietin is the cytokine involved in megakaryopoiesis and its receptor (c-Mpl) is considered to regulate development of megakaryocyte. In this research, to elucidate the underlying mechanisms of c-mpl gene expression in megakaryoblastic cells, we investigated the effect of a protein kinase C (PKC) on c-mpl promoter activity in a time-dependent manner. PKC is a member of a family of serine/threonine protein kinases in the cytosol involved in cell growth and differentiation. Phorbol 12-myristate 13-acetate (PMA) is known as PKC activator, significantly enhanced the c-mpl promoter activity and PKC inhibitor, 2-methylpiperazine dihydrochloride (H-7) suppressed the up-regulation of PMA-induced promoter activity and this effect decreased in a time-dependent manner. These results clearly suggest that in megakaryoblastic cells, PKC plays the crucial role in the initiation of up-regulation of PMA-induced c-mpl promoter activity.
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | | | | | | | | |
Collapse
|
24
|
Sunohara M, Morikawa S, Murata H, Fuse A, Sato I. Modulation mechanism of c-Mpl promoter activity in megakaryoblastic cells. Okajimas Folia Anat Jpn 2010; 86:89-91. [PMID: 20166549 DOI: 10.2535/ofaj.86.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thrombopoietin receptor (c-Mpl) is considered to regulate megakaryocytopoiesis. In this study, we investigated an effect of activation of a protein kinase C (PKC) on c-mpl promoter activity to elucidate the underlying mechanisms of c-mpl gene expression in megakaryoblastic cells. PKC is a member of a family of serine/threonine protein kinases in the cytosol involved in cell growth and differentiation. Phorbol 12-myristate 13-acetate (PMA) is known as PKC activator, significantly enhanced the c-mpl promoter activity and PKC inhibitors (H7, GF109203) suppressed the up-regulation of PMA-induced promoter activity and reduced the steady level of its activity. These results strongly suggest that PKC plays the essential role in the modulation of c-mpl promoter activity of megakaryoblastic cells.
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | | | | | | | | |
Collapse
|
25
|
Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura AJ, Hirata N, Narita M, Kohno T, Yokota J, Bohgaki M, Obuse C, Hatakeyama S, Obata T, Noguchi M. The E3 Ligase TTC3 Facilitates Ubiquitination and Degradation of Phosphorylated Akt. Dev Cell 2009; 17:800-10. [DOI: 10.1016/j.devcel.2009.09.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 08/22/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
26
|
Yoshida A, Ryo R, Yamaguchi N, Okuma M. Expression of P62, A Putative Collagen Receptor, on Human Megakaryocytic Leukemia Cells. Leuk Lymphoma 2009. [DOI: 10.3109/10428199209064895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Kyttälä S, Habermann I, Minami T, Ehninger G, Kiani A. Regulation of Down Syndrome Critical Region 1 expression by Nuclear Factor of Activated T cells in megakaryocytes. Br J Haematol 2008; 144:395-408. [PMID: 19036088 DOI: 10.1111/j.1365-2141.2008.07490.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As precursors of platelets, megakaryocytes must fulfil the complex tasks of protein synthesis and platelet assembly. Megakaryocytic dysfunction can lead to neoplastic disorders, such as acute megakaryoblastic leukaemia, an entity with a 500-fold increased incidence in children with Down syndrome (DS). Down Syndrome Critical Region 1 (DSCR1), a member of the calcipressin family of calcineurin inhibitors, is overexpressed in DS, and destabilization of the calcineurin/Nuclear Factor of Activated T cells (NFAT) pathway by overexpression of DSCR1 has been implicated in some of the pathophysiological features of the disease. The roles of NFAT and DSCR1 in megakaryocyte signalling and gene expression, however, are unknown. In this study, we show that calcineurin and NFAT are components of a calcium-induced signalling cascade in megakaryocytes. NFAT activation in megakaryocytes was induced by fibrillar collagen type I and was completely sensitive to the calcineurin inhibitor cyclosporin A. We established DSCR1 as a calcium-induced NFAT target gene in these cells and show that overexpression of DSCR1 in megakaryocytes strongly inhibits NFAT activation as well as NFAT-dependent expression of the Fas ligand gene (FASLG). These results suggest that DSCR1 acts as an endogenous feedback inhibitor of NFAT signalling in megakaryocytes, and may have implications for megakaryocytic gene expression in DS.
Collapse
Affiliation(s)
- Satu Kyttälä
- Department of Medicine I, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
28
|
Abstract
Oncogenic activation of tyrosine kinase signaling pathway is recurrent in human leukemia. To gain insight into the oncogenic process leading to acute megakaryoblastic leukemia (AMKL), we performed sequence analyses of a subset of oncogenes known to be activated in human myeloid and myeloproliferative disorders. In a series of human AMKL samples from both Down syndrome and non-Down syndrome patients, mutations were identified within KIT, FLT3, JAK2, JAK3, and MPL genes, with a higher frequency in DS than in non-DS patients. The novel mutations were analyzed using BaF3 cells, showing that JAK3 mutations were activating mutations. Finally, we report a novel constitutively active MPL mutant, MPLT487A, observed in a non-Down syndrome childhood AMKL that induces a myeloproliferative disease in mouse bone marrow transplantation assay.
Collapse
|
29
|
Fuhrken PG, Chen C, Miller WM, Papoutsakis ET. Comparative, genome-scale transcriptional analysis of CHRF-288-11 and primary human megakaryocytic cell cultures provides novel insights into lineage-specific differentiation. Exp Hematol 2007; 35:476-489. [PMID: 17309828 DOI: 10.1016/j.exphem.2006.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/12/2006] [Accepted: 10/30/2006] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Little is known about the transcriptional events underlying megakaryocytic (Mk) differentiation. We sought to identify genes and pathways previously unassociated with megakaryopoiesis and to evaluate the CHRF-288-11 (CHRF) megakaryoblastic cell line as a model system for investigating megakaryopoiesis. METHODS Using DNA microarrays, Q-RT-PCR, and protein-level assays, we compared the dynamic gene expression pattern of phorbol ester-induced differentiation of CHRF cells to cytokine-induced Mk differentiation of human mobilized peripheral blood CD34(+) cells. RESULTS Transcriptional patterns of well-known Mk genes were similar between the two systems. CHRF cells constitutively express some early Mk genes including GATA-1. Expression patterns of apoptosis-related genes suggested that increased p53 activity is involved in Mk apoptosis, and this was confirmed by p53-DNA-binding activity data and flow-cytometric analysis of the p53 target gene BBC3. Certain Rho and G-protein-coupled-receptor signaling pathway components were upregulated, including genes not previously associated with Mk cells. Ontological analysis revealed upregulation of defense-response genes, including both known and candidate platelet-derived contributors to inflammation. Upregulation of interferon-responsive genes occurred in the cell line, but not in the primary cells, likely due to a known genetic mutation in the JAK2/STAT5 signaling pathway. CONCLUSIONS This analysis of megakaryopoiesis, which integrates dynamic gene expression data with protein abundance and activity assays, has identified a number of genes and pathways that may help govern megakaryopoiesis. Furthermore, the transcriptional data support the hypothesis that CHRF cells resemble an early Mk phenotype and, with certain limitations, exhibit genuine transcriptional features of Mk differentiation upon treatment with phorbol esters.
Collapse
Affiliation(s)
- Peter G Fuhrken
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | | | | | | |
Collapse
|
30
|
Iwamoto K, Bundo M, Ueda J, Nakano Y, Ukai W, Hashimoto E, Saito T, Kato T. Detection of chromosomal structural alterations in single cells by SNP arrays: a systematic survey of amplification bias and optimized workflow. PLoS One 2007; 2:e1306. [PMID: 18074030 PMCID: PMC2111048 DOI: 10.1371/journal.pone.0001306] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 11/16/2007] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In single-cell human genome analysis using whole-genome amplified product, a strong amplification bias involving allele dropout and preferential amplification hampers the quality of results. Using an oligonucleotide single nucleotide polymorphism (SNP) array, we systematically examined the nature of this amplification bias, including frequency, degree, and preference for genomic location, and we assessed the effects of this amplification bias on subsequent genotype and chromosomal copy number analyses. METHODOLOGY/PRINCIPAL FINDINGS We found a large variability in amplification bias among the amplified products obtained by multiple displacement amplification (MDA), and this bias had a severe effect on the genotype and chromosomal copy number analyses. We established optimal experimental conditions for pre-screening for high-quality amplified products, processing array data, and analyzing chromosomal structural alterations. Using this optimized protocol, we successfully detected previously unidentified chromosomal structural alterations in single cells from a lymphoblastoid cell line. These alterations were subsequently confirmed by karyotype analysis. In addition, we successfully obtained reproducible chromosomal copy number profiles of single cells from the cell line with a complex karyotype, indicating the applicability and potential of our optimized workflow. CONCLUSIONS/SIGNIFICANCE Our results suggest that the quality of amplification products should be critically assessed before using them for genomic analyses. The method of MDA-based whole-genome amplification followed by SNP array analysis described here will be useful for exploring chromosomal alterations in single cells.
Collapse
Affiliation(s)
- Kazuya Iwamoto
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kanezaki R, Toki T, Xu G, Narayanan R, Ito E. Cloning and characterization of the novel chimeric gene p53/FXR2 in the acute megakaryoblastic leukemia cell line CMK11-5. TOHOKU J EXP MED 2006; 209:169-80. [PMID: 16778363 DOI: 10.1620/tjem.209.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The loss of p53 function is a key event in tumorigenesis. Inactivation of p53 in primary tumors and cell lines is mediated by several molecular mechanisms, including deletions and rearrangements. However, generation of a p53 fusion gene has not yet been reported. Here we report a novel p53/an autosomal homolog of the fragile X mental retardation (FXR2) chimeric gene generated by an interstitial deletion. Western blot analyses have shown that the p53/FXR2 protein is indeed expressed in a Down syndrome-related acute megakaryoblastic leukemia cell line, CMK11-5 cells. To investigate the properties of the p53/FXR2 protein, we observed its subcellular localization. Flag-tagged expression vectors were transfected into COS-7 cells and the proteins were stained with an anti-Flag antibody. The p53/FXR2 protein was expressed at high levels in the cytoplasm, whereas wild-type p53 and FXR2 were localized primarily in the nucleus and in the periphery of the nucleus, respectively. Treatment with a topoisomerase II inhibitor, VP16, failed to induce expression of a p53 target gene, the cyclin-dependent kinase inhibitor p21(WAF-1/CIP1), in CMK11-5 cells, and transient transfection analysis showed that the p53/FXR2 protein failed to transactivate the p21(WAF-1/CIP1) promoter. These results suggest that the p53/FXR2 fusion protein lacks the ability of wild-type p53 to function as a transcription factor. The p53/FXR2 gene is the first reported p53 fusion gene.
Collapse
Affiliation(s)
- Rika Kanezaki
- Department of Pediatrics, Hirosaki University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
32
|
Walters DK, Mercher T, Gu TL, O'Hare T, Tyner JW, Loriaux M, Goss VL, Lee KA, Eide CA, Wong MJ, Stoffregen EP, McGreevey L, Nardone J, Moore SA, Crispino J, Boggon TJ, Heinrich MC, Deininger MW, Polakiewicz RD, Gilliland DG, Druker BJ. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006; 10:65-75. [PMID: 16843266 DOI: 10.1016/j.ccr.2006.06.002] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/21/2006] [Accepted: 06/01/2006] [Indexed: 12/18/2022]
Abstract
Tyrosine kinases are aberrantly activated in numerous malignancies, including acute myeloid leukemia (AML). To identify tyrosine kinases activated in AML, we developed a screening strategy that rapidly identifies tyrosine-phosphorylated proteins using mass spectrometry. This allowed the identification of an activating mutation (A572V) in the JAK3 pseudokinase domain in the acute megakaryoblastic leukemia (AMKL) cell line CMK. Subsequent analysis identified two additional JAK3 alleles, V722I and P132T, in AMKL patients. JAK3(A572V), JAK3(V722I), and JAK3(P132T) each transform Ba/F3 cells to factor-independent growth, and JAK3(A572V) confers features of megakaryoblastic leukemia in a murine model. These findings illustrate the biological importance of gain-of-function JAK3 mutations in leukemogenesis and demonstrate the utility of proteomic approaches to identifying clinically relevant mutations.
Collapse
MESH Headings
- Alleles
- Animals
- Apoptosis/drug effects
- Benzamides
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Humans
- Imatinib Mesylate
- Janus Kinase 2
- Janus Kinase 3
- K562 Cells
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Megakaryoblastic, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Mutant Proteins/chemistry
- Mutant Proteins/genetics
- Mutant Proteins/metabolism
- Phosphorylation/drug effects
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein Structure, Tertiary/genetics
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Pyrimidines/pharmacology
- RNA, Small Interfering/genetics
- TYK2 Kinase
Collapse
|
33
|
Xu G, Kanezaki R, Toki T, Watanabe S, Takahashi Y, Terui K, Kitabayashi I, Ito E. Physical association of the patient-specific GATA1 mutants with RUNX1 in acute megakaryoblastic leukemia accompanying Down syndrome. Leukemia 2006; 20:1002-8. [PMID: 16628190 DOI: 10.1038/sj.leu.2404223] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations of the GATA1 gene on chromosome X have been found in almost all cases of transient myeloproliferative disorder and acute megakaryoblastic leukemia (AMKL) accompanying Down syndrome (DS). Although most GATA1 mutations lead to the expression of GATA1s lacking the N-terminal activation domain, we recently found two novel GATA1 proteins with defects in another N-terminal region. It has been suggested that loss of the N-terminal portion of GATA1 might interfere with physiological interactions with the critical megakaryocytic transcription factor RUNX1, and this would imply that GATA1s is not able to interact properly with RUNX1. However, the interaction domain of GATA1 remains controversial. In this study, we show that GATA1 binds to RUNX1 through its zinc-finger domains, and that the C-finger is indispensable for synergy with RUNX1. All of the patient-specific GATA1 mutants interacted efficiently with RUNX1 and retained their ability to act synergistically with RUNX1 on the megakaryocytic GP1balpha promoter, whereas the levels of transcriptional activities were diverse among the mutants. Thus, our data indicate that physical interaction and synergy between GATA1 and RUNX1 are retained in DS-AMKL, although it is still possible that increased RUNX1 activity plays a role in the development of leukemia in DS.
Collapse
Affiliation(s)
- G Xu
- 1Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hattori H, Matsuzaki A, Suminoe A, Koga Y, Tashiro K, Hara T. Identification of novel genes with prognostic value in childhood leukemia using cDNA microarray and quantitative RT-PCR. Pediatr Hematol Oncol 2006; 23:115-27. [PMID: 16651240 DOI: 10.1080/08880010500457780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to identify genes distinctively expressed or suppressed in childhood leukemia with different prognoses, using cDNA microarray and quantitative reverse transcription-polymerase chain reaction (RT-PCR). The expression levels of the selected genes by cDNA microarray were quantified in primary leukemic blasts from 44 patients (acute lymphoblastic leukemia, 28; acute myelogenous leukemia (AML), 13; transient myeloproliferative disorder, 3). The expression levels of CDKN2C, CRADD, and IGFBP-2 genes were significantly associated with the event-free survival of the patients in AML. The present results suggest that a combination of cDNA microarray and quantitative RT-PCR may be useful to identify novel genes with prognostic value in childhood AML.
Collapse
Affiliation(s)
- Hiroyoshi Hattori
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Horie O, Saigo K, Murayama T, Ryo R. Differential Expression of Proteinase Inhibitor-9 and Granzyme B mRNAs in Activated Immunocompetent Cells. TOHOKU J EXP MED 2005; 205:103-13. [PMID: 15673968 DOI: 10.1620/tjem.205.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of proteinase inhibitor (PI)-9 in hematopoietic cells remains unclear. To clarify the role of PI-9 in these cells, we compared the expressions of PI-9 mRNA and antigen with those of granzyme B (GrB). While the strongest expression of PI-9 mRNA was observed in a NK cell line YT-N10, it was also expressed in a B-acute lymphoblastic leukemia cell line U-Tree02, an Epstein-Barr Virus (EBV)-transformed B cell clone, a CD8+ T lymphocyte clone and a megakaryocytic cell line CMK, but not in a T cell line Jurkat. Phorbol 12-myristate 13 acetate (PMA) enhanced PI-9 mRNA expression in the CD8+ T lymphocyte clone and YT-N10 cells prior to GrB mRNA expression. IL-2 and IL-12 also had similar effects. PMA increased PI-9 mRNA expression in the EBV-transformed B cell clone and CMK cells, but IL-6 showed no effect. No changes were noted in PI-9 and GrB antigens after the addition of these agonists. Patients with graft-versus-host disease (GVHD) may have activated CTLs and NK cells. We therefore examined the expression of PI-9 and GrB mRNAs in eight patients after allogeneic hematopoietic stem cell transplantation with GVHD (n = 4) or without chronic GVHD (n = 4). Expression of GrB mRNA was significantly increased in three patients with GVHD and one patient without GVHD. Surprisingly, PI-9 mRNA expression was decreased in the eight patients. These results indicate that earlier synthesis of PI-9 may be essential for the prevention of autolysis of immunocompetent cells, and that the expression of PI-9 and GrB mRNAs may be controlled through different pathways.
Collapse
Affiliation(s)
- Osamu Horie
- Department of Medical Technology, Faculty of Health Sciences, Kobe University School of Medicine, Suma, Kobe 654-0142, Japan.
| | | | | | | |
Collapse
|
36
|
Jackers P, Szalai G, Moussa O, Watson DK. Ets-dependent regulation of target gene expression during megakaryopoiesis. J Biol Chem 2004; 279:52183-90. [PMID: 15466856 DOI: 10.1074/jbc.m407489200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Megakaryopoiesis is the process by which hematopoietic stem cells in the bone marrow differentiate into mature megakaryocytes. The expression of megakaryocytic genes during megakaryopoiesis is controlled by specific transcription factors. Fli-1 and GATA-1 transcription factors are required for development of megakaryocytes and promoter analysis has defined in vitro functional binding sites for these factors in several megakaryocytic genes, including GPIIb, GPIX, and C-MPL. Herein, we utilize chromatin immunoprecipitation to examine the presence of Ets-1, Fli-1, and GATA-1 on these promoters in vivo. Fli-1 and Ets-1 occupy the promoters of GPIIb, GPIX, and C-MPL genes in both Meg-01 and CMK11-5 cells. Whereas GPIIb is expressed in both Meg-01 and CMK11-5 cells, GPIX and C-MPL are only expressed in the more differentiated CMK11-5 cells. Thus, in vivo occupancy by an Ets factor is not sufficient to promote transcription of some megakaryocytic genes. GATA-1 and Fli-1 are both expressed in CMK11-5 cells and co-occupy the GPIX and C-MPL promoters. Transcription of all three megakaryocytic genes is correlated with the presence of acetylated histone H3 and phosphorylated RNA polymerase II on their promoters. We also show that exogenous expression of GATA-1 in Meg-01 cells leads to the expression of endogenous c-mpl and gpIX mRNA. Whereas GPIIb, GPIX, and C-MPL are direct target genes for Fli-1, both Fli-1 and GATA-1 are required for formation of an active transcriptional complex on the C-MPL and GPIX promoters in vivo. In contrast, GPIIb expression appears to be independent of GATA-1 in Meg-01 cells.
Collapse
Affiliation(s)
- Pascale Jackers
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | |
Collapse
|
37
|
McElwaine S, Mulligan C, Groet J, Spinelli M, Rinaldi A, Denyer G, Mensah A, Cavani S, Baldo C, Dagna-Bricarelli F, Hann I, Basso G, Cotter FE, Nizetic D. Microarray transcript profiling distinguishes the transient from the acute type of megakaryoblastic leukaemia (M7) in Down's syndrome, revealing PRAME
as a specific discriminating marker. Br J Haematol 2004; 125:729-42. [PMID: 15180862 DOI: 10.1111/j.1365-2141.2004.04982.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transient myeloproliferative disorder (TMD) is a unique, spontaneously regressing neoplasia specific to Down's syndrome (DS), affecting up to 10% of DS neonates. In 20-30% of cases, it reoccurs as progressive acute megakaryoblastic leukaemia (AMKL) at 2-4 years of age. The TMD and AMKL blasts are morphologically and immuno-phenotypically identical, and have the same acquired mutations in GATA1. We performed transcript profiling of nine TMD patients comparing them with seven AMKL patients using Affymetrix HG-U133A microarrays. Similar overall transcript profiles were observed between the two conditions, which were only separable by supervised clustering. Taqman analysis on 10 TMD and 10 AMKL RNA samples verified the expression of selected differing genes, with statistical significance (P < 0.05) by Student's t-test. The Taqman differences were also reproduced on TMD and AMKL blasts sorted by a fluorescence-activated cell sorter. Among the significant differences, CDKN2C, the effector of GATA1-mediated cell cycle arrest, was increased in AMKL but not TMD, despite the similar level of GATA1. In contrast, MYCN (neuroblastoma-derived oncogene) was expressed in TMD at a significantly greater level than in AMKL. MYCN has not previously been described in leukaemogenesis. Finally, the tumour antigen PRAME was identified as a specific marker for AMKL blasts, with no expression in TMD. This study provides markers discriminating TMD from AMKL-M7 in DS. These markers have the potential as predictive, diagnostic and therapeutic targets. In addition, the study provides further clues into the pathomechanisms discerning self-regressive from the progressive phenotype.
Collapse
Affiliation(s)
- Suzanne McElwaine
- Centre for Haematology, Institute of Cell and Molecular Science, Barts and The London, Queen Mary's School of Medicine, University of London, Medical College Building, Turner Street, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tanaka N, Sato T, Fujita H, Morita I. Constitutive Expression and Involvement of Cyclooxygenase-2 in Human Megakaryocytopoiesis. Arterioscler Thromb Vasc Biol 2004; 24:607-12. [PMID: 14726416 DOI: 10.1161/01.atv.0000117181.68309.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Cyclooxygenase-1 (COX-1), but not COX-2, is expressed in human platelets, and thromboxane A
2
(TXA
2
) produced via COX-1 induces platelet aggregation. The objectives of this study were to investigate the expression of COX-1 and COX-2 during platelet differentiation and to determine whether these enzymes are involved in the differentiation.
Methods and Results—
CD34
+
progenitor cells isolated from human cord blood were cultured with thrombopoietin and c-kit ligand. The cells differentiated into megakaryocytes (CD34
−
/CD41
+
) after 8 days of culture and into platelets (CD41
+
/prodium iodide
−
) after 14 days of culture. The CD34
+
cells expressed a trace of COX-1 gene and no COX-2 gene. On day 5, COX-2 gene expression was observed and continued throughout the remainder of the culture. COX-1 gene expression increased after 8 days of culture. The treatment of this liquid culture with indomethacin, a dual inhibitor of COX-1 and COX-2, and NS-398, a COX-2–specific inhibitor, suppressed megakaryocyte differentiation. In contrast, at a dose of 10
−7
M, mofezolac, which is a highly selective inhibitor of COX-1, did not affect differentiation. NS-398–induced suppression of megakaryocyte differentiation was partly abrogated by stable analogues of TXA
2
.
Conclusions—
We report here that COX-2 and COX-1 are constitutively expressed in megakaryocytes, and TXA
2
produced by COX-2 plays an important role in megakaryocytopoiesis.
Collapse
Affiliation(s)
- Nobuhito Tanaka
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
39
|
Kashiwagi H, Shiraga M, Honda S, Kosugi S, Kamae T, Kato H, Kurata Y, Tomiyama Y. Activation of integrin alpha IIb beta 3 in the glycoprotein Ib-high population of a megakaryocytic cell line, CMK, by inside-out signaling. J Thromb Haemost 2004; 2:177-86. [PMID: 14717982 DOI: 10.1111/j.1538-7836.2003.00529.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Affinity/avidity state of integrin alpha IIb beta 3 is regulated by intracellular inside-out signaling. Although several megakaryocytic cell lines have been established, soluble ligand binding to alpha IIb beta 3 expressed in these cells by cellular agonists has not been demonstrated. We have re-examined agonist-induced alpha IIb beta 3 activation on megakaryocytic cell lines with a marker of the late stage of megakaryocytic differentiation, glycoprotein Ib (GPIb). Activation of alpha IIb beta 3 was assessed by PAC1 and soluble fibrinogen binding to the cells. We found that alpha IIb beta 3 expressed in CMK cells with high GPIb expression was activated by a phorbor ester, phorbol myristate acetate (PMA). Although the population of the GPIbhigh cells was <0.5% of the total cells, incubation with a nucleoside analog, ribavirin, efficiently increased the PMA-reactive GPIbhigh cells. Not only PMA but also a calcium ionophore, A23187, induced alpha IIb beta 3 activation, and PMA and A23187 had an additive effect on alpha IIb beta 3 activation. Ligand binding to the activated alpha IIb beta 3 in the GPIbhigh CMK cells is totally abolished by an alpha IIb beta 3-specific antagonist, and inhibited by wortmannin, cytochalasin-D and prostaglandin E1, and the effects of these inhibitors on alpha IIb beta 3 activation in the GPIbhigh CMK cells were compatible with those in platelets. We have also demonstrated that the ribavirin-treated CMK cells express PKC-alpha, -beta, -delta and -theta, and suggested that PKC-alpha and/or -beta appear to be responsible for PMA-induced activation of alpha IIb beta 3 in CMK cells.
Collapse
Affiliation(s)
- H Kashiwagi
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University and Department of Blood Transfusion, Osaka University Hospital, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Saffak T, Schäfer S, Haas C, Nüsing RM. Regulation of the human thromboxane A2 receptor gene in human megakaryoblastic MEG-01 cells. Prostaglandins Leukot Essent Fatty Acids 2003; 69:299-306. [PMID: 14580363 DOI: 10.1016/s0952-3278(03)00112-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Thromboxane A(2) (TXA(2)) is an important mediator for platelet aggregation and blood vessel constriction. TXA(2) receptor (TP receptor) is expressed in different cell types including smooth muscle cells, endothelial cells and platelets. Expression level of TP receptor may modulate the action of TXA(2) on target cells. In megakaryoblastic MEG-01 cells, a cell line representing a model for platelet precursor cells, addition of phorbolester 12-O-tetradecanoylphorbol-13-acetate (TPA) caused an increase in transcriptional activity of TP receptor gene promoter. Within 20 h a rise in expression of TP receptor mRNA and protein was observed. The effect of TPA was concentration-dependent and was blocked by specific inhibitors of protein kinase C. Flow cytometry analysis indicated that the increase in TP receptor expression appeared to be one of the earliest events in the course of TPA-induced maturation of MEG-01 cells. Stimulation of the protein kinase A pathway by incubation with forskolin or IBMX caused a decrease in transcriptional activity. Promoter deletion experiments indicated that the responsive elements for protein kinase A and C are located upstream and downstream, respectively, of -700 bp of the TP receptor gene. These experiments indicate that the expression of the human thromboxane receptor is differently regulated in platelet precursor cells by the protein kinase A and C pathway.
Collapse
Affiliation(s)
- T Saffak
- Department of Pediatrics, Faculty of Medicine, Philipp's University, Deutschhausstrasse 12, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
41
|
Kojima H, Kanada H, Shimizu S, Kasama E, Shibuya K, Nakauchi H, Nagasawa T, Shibuya A. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J Biol Chem 2003; 278:36748-53. [PMID: 12847109 DOI: 10.1074/jbc.m300702200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet adhesion to vascular endothelial cells is a pathophysiologically relevant cell-to-cell interaction. However, the mechanisms underlying this cellular interaction are incompletely understood. In search of the ligand for CD226 adhesion molecule expressed on platelets, we found that human umbilical vein endothelial cells (HUVEC) express significant amount of putative CD226 ligand. We demonstrated that thrombin-activated, but not resting, platelets bind to intact HUVEC. Anti-CD226 monoclonal antibody specifically inhibited the binding, indicating that CD226 mediates the intercellular binding between thrombin-activated platelets and HUVEC. We also demonstrated that platelet activation with thrombin induces tyrosine phosphorylation of CD226 as well as CD226-mediated platelet adhesion. Moreover, experiments using mutant transfectants suggested that the tyrosine at residue 322 of CD226 plays an important role for its adhesive function. CD226 was also expressed on primary megakaryocytes and megakaryocytic cell lines. Anti-CD226 monoclonal antibody inhibited binding of megakaryocytic cell lines to HUVEC. Taken together, these results reveal a novel mechanism for adhesion of platelets and megakaryocytic cells to vascular endothelial cells.
Collapse
Affiliation(s)
- Hiroshi Kojima
- Division of Hematology, Institute of Clinical Medicine and Department of Immunology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsuruga M, Dang Y, Shiono Y, Oka S, Yamazaki Y. Differential effects of vitamin E and three hydrophilic antioxidants on the actinomycin D-induced and colcemid-accelerated apoptosis in human leukemia CMK-7 cell line. Mol Cell Biochem 2003; 250:131-7. [PMID: 12962151 DOI: 10.1023/a:1024912806686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The actinomycin D (AD)-induced apoptosis in human leukemia CMK-7 cell line is greatly accelerated by microtubule disruption with colcemid (CL). We studied the effect of antioxidants on this apoptosis in order to learn how the universal signal mediators, reactive oxygen species (ROS), are involved. Caspase-3 activation and DNA fragmentation were both suppressed by vitamin E (VE), t-butylhydroxyanisole, and luteolin. The ROS formation in the AD treatment was evidenced by flow cytometry, and further supported by suppression of caspase-3 activation by superoxide radical-forming enzyme inhibitors (TTFA, rotenone, and DPI). The inhibition of apoptosis by VE was completed during the initial 1-h treatment with AD, but it did not appear when VE was added with CL to washed cells after AD treatment. Luteolin, an iron chelator PDTC, and a water-soluble VE analogue, trolox, inhibited the apoptosis when added with CL after the AD treatment. Western blot analysis showed that the proteolytic cleavage of procaspase-9 and procaspase-3 were both inhibited when VE was added with AD or when luteolin was added with CL, and that the cytochrome c liberation was suppressed by both antioxidants. This result implies that the ROS are initially formed in lipophilic environments (e.g. mitochondrial membrane) and then they diffuse into an aqueous environment (i.e. cytoplasm) where they promote the apoptotic process in combination with the cytoskeletal disruption. Thus, the different antioxidants are effective to scavenge ROS for preventing the apoptosis in its different phases.
Collapse
Affiliation(s)
- Mie Tsuruga
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
43
|
Sato T, Ono M, Fujita H, Tanaka N, Tomiyama J, Sakamoto Y, Takano Y, Murota SI, Morita I. Development of a liquid culture system for megakaryocyte terminal differentiation: fibrinogen promotes megakaryocytopoiesis but not thrombopoiesis. Br J Haematol 2003; 121:315-23. [PMID: 12694255 DOI: 10.1046/j.1365-2141.2003.04266.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Megakaryocyte differentiation is composed of three distinct stages: formation of erythromegakaryocytic progenitor cells, maturation of megakaryocytes and production of platelets. We have developed a liquid culture system for megakaryocyte terminal differentiation from haematopoietic stem cells into proplatelets. In this system, CD34+ cells isolated from human cord blood, differentiated to CD41+ cells, were classified either as propidium iodide (PI)+ cells (large) or PI- cells (small) by fluorescence-activated cell sorting analysis on the late-stage CD41+ cells. Transmission electron microscopy showed that the cultured small cells were morphologically identical to platelets isolated from normal peripheral blood. Moreover, the number of differentiated cells that were CD42b-positive attained an approximately 60-fold expansion over that of the primary CD34+ cells in this culture system. Furthermore, gene expression of megakaryocytopoietic transcriptional factors, GATA-1 and NF-E2, and several megakaryocytic markers such as glycoprotein (GP)IIb and thromboxane synthase was observed in the individual differentiation stage. Treatment with fibrinogen, a ligand of GPIIb/IIIa, increased the number of CD41+/PI+ cells, but treatment in the late stage suppressed CD41+/PI- cell formation, suggesting that fibrinogen promotes megakaryocytopoiesis, but not thrombopoiesis. We conclude that this liquid culture system using human CD34+ cells may be used to mimic the physiological development from haematopoietic stem cells into megakaryocytes, as well as promote subsequent thrombopoiesis.
Collapse
Affiliation(s)
- Takahiro Sato
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kunishima S, Kojima T, Inoue C, Kamiya T, Saito H. GATA-1 transcription factor is mutated in CMK megakaryoblastic cell line. Br J Haematol 2003; 120:542-3. [PMID: 12580977 DOI: 10.1046/j.1365-2141.2003.04112_1.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, Le Beau MM, Crispino JD. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 2002; 32:148-52. [PMID: 12172547 DOI: 10.1038/ng955] [Citation(s) in RCA: 543] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Children with Down syndrome have a 10-20-fold elevated risk of developing leukemia, particularly acute megakaryoblastic leukemia (AMKL). While a subset of pediatric AMKLs is associated with the 1;22 translocation and expression of a mutant fusion protein, the genetic alterations that promote Down syndrome-related AMKL (DS-AMKL) have remained elusive. Here we show that leukemic cells from every individual with DS-AMKL that we examined contain mutations in GATA1, encoding the essential hematopoietic transcription factor GATA1 (GATA binding protein 1 or globin transcription factor 1). Each mutation results in the introduction of a premature stop codon in the gene sequence that encodes the amino-terminal activation domain. These mutations prevent synthesis of full-length GATA1, but not synthesis of a shorter variant that is initiated downstream. We show that the shorter GATA1 protein, which lacks the N-terminal activation domain, binds DNA and interacts with its essential cofactor Friend of GATA1 (FOG1; encoded by ZFPM1) to the same extent as does full-length GATA1, but has a reduced transactivation potential. Although some reports suggest that the activation domain is dispensable in cell-culture models of hematopoiesis, one study has shown that it is required for normal development in vivo. Together, these findings indicate that loss of wildtype GATA1 constitutes one step in the pathogenesis of AMKL in Down syndrome.
Collapse
Affiliation(s)
- Joshua Wechsler
- Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Mizutani C, Tohyama Y, Miura Y, Hishita T, Nishihara T, Yamamura H, Ichiyama S, Uchiyama T, Tohyama K. Sustained activation of MEK1-ERK1/2 pathway in membrane skeleton occurs dependently on cell adhesion in megakaryocytic differentiation. Biochem Biophys Res Commun 2002; 297:664-71. [PMID: 12270146 DOI: 10.1016/s0006-291x(02)02235-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A human megakaryoblastic cell line, CMK, was treated with 12-o-tetradecanoylphorbol-13-acetate (TPA) for differentiation-induction. We examined TPA-induced activation of the MEK1-ERK1/2 pathway in the 100,000g Triton X-insoluble fraction of CMK cells as the membrane skeleton and researched the relation of the MEK1-ERK1/2 activation with integrin expression. We found that this activation was divided into two phases: the first activation occurred transiently in the membrane skeleton fraction of the suspended cell status and diminished after 1h; and the second sustained activation was maintained by cell adhesion. TPA-treated CMK cells revealed increased expression of integrins alphaIIb and beta3 only when the cell adhesion persisted, regardless of the difference of culture substratum. Sustained activation of the MEK1-ERK1/2 pathway is generated in the membrane skeleton by continuous cell adhesion and seems to be essential to TPA-induced megakaryocytic differentiation of CMK cells.
Collapse
Affiliation(s)
- Chisato Mizutani
- The Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kato A, Kawamata N, Tamayose K, Egashira M, Miura R, Fujimura T, Murayama K, Oshimi K. Ancient ubiquitous protein 1 binds to the conserved membrane-proximal sequence of the cytoplasmic tail of the integrin alpha subunits that plays a crucial role in the inside-out signaling of alpha IIbbeta 3. J Biol Chem 2002; 277:28934-41. [PMID: 12042322 DOI: 10.1074/jbc.m204340200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of the cytoplasmic tails of the integrin alpha(IIb)beta(3) plays an important role in the signal transduction in platelets. We searched for proteins that bind to the alpha(IIb) cytoplasmic tail using the yeast two-hybrid assay with a cDNA library of the megakaryocyte-derived cell line and identified a protein, ancient ubiquitous protein 1 (Aup1), that is ubiquitously expressed in human cells. Observation of UT7/TPO cells expressing a red fluorescent protein-tagged Aup1 indicated its localization in the cytoplasm. Immunoprecipitation of UT7/TPO cells by an antibody for Aup1 revealed that approximately 40% of alpha(IIb) is complexed with Aup1. Binding study with an alpha(IIb) cytoplasmic tail peptide and glutathione S-transferase-Aup1 fusion protein revealed a low affinity (K(d) = 90 microm). Subsequent yeast two-hybrid assay indicated binding of Aup1 to cytoplasmic tails of other integrin alpha subunits. Binding study with the purified Aup1 and various glutathione S-transferase-alpha(IIb) cytoplasmic tail peptides revealed specific binding of Aup1 to the membrane-proximal sequence (KVGFFKR) that is conserved among the integrin alpha subunits and plays a crucial role in the alpha(IIb)beta(3) inside-out signaling. As Aup1 possesses domains related to signal transduction, these results suggest involvement of Aup1 in the integrin signaling.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Hematology, Department of Internal Medicine and Division of Biochemical Analysis, Central Laboratory of Medical Sciences, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tagawa H, Miura I, Suzuki R, Suzuki H, Hosokawa Y, Seto M. Molecular cytogenetic analysis of the breakpoint region at 6q21-22 in T-cell lymphoma/leukemia cell lines. Genes Chromosomes Cancer 2002; 34:175-85. [PMID: 11979551 DOI: 10.1002/gcc.10057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Chromosome band 6q21 is reported to be one of the most frequent target regions in T-cell lymphoma for both translocations and deletions. To explore whether the breakpoint clustering in T-cell malignancy indicates the presence of a common breakpoint region in 6q, we employed fluorescence in situ hybridization analysis using various YAC, BAC, and PAC clones aligned at 6q21-22. We identified two T-cell lymphoma/leukemia cell lines with different differentiation stages that had breakpoints within the same novel gene, TCBA1 (T-cell lymphoma breakpoint associated target 1). In a T-cell lymphoblastic lymphoma cell line, HT-1, the TCBA1 fused to SUSP1 (SUMO-1-specific protease), creating a SUSP1-TCBA1 chimeric gene. However, in an adult T-cell leukemia cell line, ATN-1, no chimeric gene was detected, although aberrant TCBA1 transcripts were produced. We conclude that TCBA1 is a possible target gene for T-cell lineage-specific chromosome aberrations at 6q21.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Animals
- Base Sequence/genetics
- Chromosome Breakage/genetics
- Chromosomes, Artificial/genetics
- Chromosomes, Human, Pair 6/genetics
- Contig Mapping/methods
- Cytogenetic Analysis/methods
- Drosophila melanogaster
- Humans
- In Situ Hybridization, Fluorescence/methods
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/pathology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Mice
- Molecular Sequence Data
- Nucleotide Mapping/methods
- Plasmids/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hiroyuki Tagawa
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Wang Z, Miura N, Bonelli A, Mole P, Carlesso N, Olson DP, Scadden DT. Receptor tyrosine kinase, EphB4 (HTK), accelerates differentiation of select human hematopoietic cells. Blood 2002; 99:2740-7. [PMID: 11929761 DOI: 10.1182/blood.v99.8.2740] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EphB4 (HTK) and its ligand, ephrinB2, are critical for angiogenesis and result in fatal abnormalities of capillary formation in null mice. EphB4 was originally identified in human bone marrow CD34(+) cells by us and has since been reported to be expressed in erythroid progenitors, whereas the ligand ephrinB2 is expressed in bone marrow stromal cells. Reasoning that the developmental relationship between angiogenesis and hematopoiesis implies common regulatory molecules, we assessed whether EphB4 signaling influences the function and phenotype of primitive human hematopoietic cells. Ectopically expressed EphB4 in cell lines of restricted differentiation potential promoted megakaryocytic differentiation, but not granulocytic or monocytic differentiation. Primary cord blood CD34(+) cells transduced with EphB4 resulted in the elevated expression of megakaryocytic and erythroid specific markers, consistent with EphB4 selectively enhancing some lineage-committed progenitors. In less mature cells, EphB4 depleted primitive cells, as measured by long-term culture-initiating cells or CD34(+)CD38(-) cell numbers, and increased progenitor cells of multiple cell types. Effects of ectopic EphB4 expression could be abrogated by either targeted mutations of select tyrosine residues or by the tyrosine kinase inhibitor, genistein. These data indicate that EphB4 accelerates the differentiation of primitive cells in a nonlineage-restricted manner but alters only select progenitor populations, influencing lineages linked by common ancestry with endothelial cells. EphB4 enforces preferential megakaryocytic and erythroid differentiation and may be a molecular bridge between angiogenesis and hematopoiesis.
Collapse
Affiliation(s)
- Zhengyu Wang
- Experimental Hematology, AIDS Research Center and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Alvarez S, MacGrogan D, Calasanz MJ, Nimer SD, Jhanwar SC. Frequent gain of chromosome 19 in megakaryoblastic leukemias detected by comparative genomic hybridization. Genes Chromosomes Cancer 2001; 32:285-93. [PMID: 11579469 DOI: 10.1002/gcc.1192] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acute megakaryocytic leukemia is a rare subtype of AML that is often difficult to diagnose; it is most commonly associated with Down syndrome in children. To identify chromosomal imbalances and rearrangements associated with acute megakaryocytic leukemia, we used G-banding, comparative genomic hybridization (CGH), and whole chromosome painting (WCP) on a variety of primary patients' samples and leukemia cell lines. The most common abnormality was gain of chromosome 19 or arm 19q, which was detected by CGH in four of 12 (33.3%) primary samples and nine of 11 (81.8%) cell lines. In none of the primary samples was this abnormality detected by G-banding analysis. WCP was used to define further the nature of the chromosome 19 gain in the cell lines, which was found to be due to the presence of additional 19q material on marker chromosomes or to cryptic translocations involving 19q. The most common chromosomal loss--detected only in the cell lines--was deletion of chromosomal band 13q14, which was seen in six of 11 (54.5%) cell lines. Other recurrent changes included gains of 1p, 6p, 8q, 11q, 15q, 17q, and 21q and losses of 2, 4q, 5q, 7q, 9p, and 11p. Combining conventional and molecular cytogenetic analyses defined recurrent clonal chromosomal abnormalities, which will aid in the identification of critical genes that are abnormal in acute megakaryocytic leukemia cells.
Collapse
Affiliation(s)
- S Alvarez
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute for Cancer Research, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|