Bayer AL, Chirinos J, Cabello C, Yang J, Matsutani T, Malek TR, Levy RB. Expansion of a restricted residual host T reg-cell repertoire is dependent on IL-2 following experimental autologous hematopoietic stem transplantation.
Eur J Immunol 2011;
41:3467-78. [PMID:
21928285 DOI:
10.1002/eji.201141611]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/02/2011] [Accepted: 09/12/2011] [Indexed: 12/18/2022]
Abstract
We previously identified a population of residual T(reg) cells following autologous hematopoietic stem transplantation (HSCT), that rapidly undergoes significant expansion in lymphopenic transplant recipients prior to repopulation by donor de novo derived T(reg) cells. These CD4(+) Foxp3(+) T cells provide protection from the development of autoimmune disease. Although ablative conditioning results in excess IL-7 and IL-15, IL-2 is typically not found at high levels following autologous HSCT. We therefore examined the role of these three STAT-5 signaling cytokines in the expansion of residual T(reg) cells after autologous HSCT. The present study found that the residual T(reg) cell population included surviving peripheral host Foxp3(+) CD4(+) T cells whose expansion was critically dependent on IL-2, which could be solely provided by surviving host cells. IL-7 was found to contribute to T(reg) cell homeostasis, however, not as a growth factor but rather for their persistence. In conjunction with this expansion, TCR spectratype analyses revealed that the residual host T(reg) -cell compartment differed from that present in non-conditioned healthy mice since the residual host Treg cells exhibit a limited TCR diversity. Collectively, these data indicate that the proliferation of T(reg) and T effector (T(eff) ) cells post-HSCT utilize separate pools of cytokines which has important implications regarding the development of clinical strategies to elicit the desired immune responses in patients post-transplant.
Collapse